L聚乳酸的结构式应该怎么写? 能否写成 H[OOCCH(CH3)CH2]OH
乳酸缩聚表示为HO[OCCH(CH3)]nOH ,丙交酯开环聚合表示为:
OH[CHCH3COOCHCH3C]*,根据聚合情况,*=OH(端羟基封端),OOH(端羧基封端),和酯键封端.
济南岱罡生物技术有限公司是一家专业提供医用生物降解材料的生产、销售及服务的高科技公司.公司坐落于环境优美的山东省济南市,技术力量雄厚,具有一支高素质、实干的高科技研发队伍,研发手段先进,拥有多年的医用生物降解材料研发经验,同时拥有十万级别净化室.目前
公司主要产品为医用生物降解聚酯材料——聚乳酸及其共聚物.
公司秉承专业、专心、专注的工作理念,以一流的产品、一流的服务,以真诚的态度取得客户的
信任和合作,共创美好的未来.
专 业:专业的研发队伍、专业的技术服务
专 心:专心做人、专心做事
专 注:专注生物降解材料研发
主要产品:
医用生物降解聚合物
● 聚乳酸(PLA) ● 聚乳酸/乙醇酸共聚物(PLGA)
● 温敏聚乳酸水凝胶(MPEG-PLA、MPEG-PLGA)
● 聚乙二醇/聚乳酸共聚物(PLA-PEG-PLA、PLGA-PEG-PLGA)
● 端羧基聚乳酸(OH-PLA-COOH、OH-PLGA-COOH)
● 端羟基聚乳酸(OH-PLA-OH,OH-PLGA-COOH)
● 聚己内酯及共聚物(PCL,P(LA-CL)
● 聚三亚甲基碳酸酯及其共聚物(TMC、P(LA-TMC))
● 聚对二氧环已酮及其共聚物(PPDO、P(LA-PDO))
单 体
● 丙交酯(外消旋、左旋)LA ● 乙交酯GA
● 三亚甲级碳酸酯TMC ● 对二氧环己酮PDO
制 品
● 电纺丝 ● 多孔泡沫支架(片状/管状/棒状)● 聚乳酸膜
1.本发明涉及可降解塑料领域,具体地说,涉及一种海水可降解呋喃二甲酸乙二醇共聚酯及制备方法。
背景技术:
2.微塑料在全球范围内的海洋和陆地环境存在。科学家们在人体胚胎中也发现了微塑料,微塑料不仅对环境造成危害,也严重威胁人类的身体健康。其中海洋微塑料污染特别严重,每年约有1000万吨的塑料垃圾被丢弃进入海洋,这些塑料垃圾在洋流、光、风、水力作用下形成直径小于5mm的微塑料,微塑料广泛存在于海产品中,特别是扇贝和鱼类。人们通过食物渠道进食一定数量的微塑料,从而影响身体的生理健康及免疫系统。因此,开发海水中可降解的塑料是非常有必要的,既可以缓解海洋塑料污染问题,又可以保护人类的身体健康。
3.聚呋喃二甲酸乙二醇酯(pef)可由呋喃二甲酸衍生物和乙二醇缩聚制备获得,其玻璃化转变温度为86~88℃,熔点为211~230℃。且pef比石油基聚对苯二甲酸乙二醇酯(pet)拥有高一个数量级别的气体阻隔性。因此生物基pef具有更广泛的应用价值。然而可降解pef的菌类比较少,且pef具有一定的结晶性,亲水性差,在海水中几乎不降解。因此,开发海水可降解pef共聚酯既可以缓解海洋塑料污染,又可以改善pef的性能,拓宽其应用领域。
技术实现要素:
4.本发明的目的是提供一种海水可降解呋喃二甲酸乙二醇共聚酯的制备方法,步骤简单易操作。
5.本发明的另一目的是提供由上述制备方法制得的海水可降解呋喃二甲酸乙二醇共聚酯,能被海水有效降解。
6.为实现上述目的,本发明采用如下的技术方案:
7.一方面,本发明提供一种海水可降解呋喃二甲酸乙二醇共聚酯的制备方法,包括以下步骤:
8.(1)呋喃二甲酸、乙醇酸和乙二醇以及催化剂在搅拌条件下,于150~180℃反应3~6h,当出水量和出甲醇量达到理论量的95%以上,300~500pa下抽真空反应30~120min,冷却破真空常温出料制备酯化物;
9.(2)将步骤(1)制得的酯化物溶于甲苯中,于50~80℃下加入催化剂开环己内酯反应2~10h,过滤、洗涤,制备得到聚呋喃二甲酸
‑
乙醇酸
‑
乙二醇酯
‑
co
‑
己内酯(pefga
‑
co
‑
cl)。
10.作为优选,步骤(1)中所述呋喃二甲酸、乙醇酸和乙二醇的摩尔比为1:1.2:1。
11.作为优选,步骤(1)、步骤(2)中所述催化剂为锡类或钛类催化剂,优选为二丁基锡二月桂酸酯、辛酸亚锡、二(十二烷基硫)二丁基锡、二醋酸二丁基锡、钛酸四丁酯中的一种
或几种。
12.作为优选,步骤(1)中所述呋喃二甲酸为2,5呋喃二甲酸或2,5呋喃二甲酸二甲酯。
13.另一方面,本发明还提供由上述制备方法制得的海水可降解呋喃二甲酸乙二醇共聚酯,其结构式如式ⅰ所示,其数均分子量为2
×
104~8
×
104g/mol。
[0014][0015]
本发明从聚酯结构出发,考虑海水环境中聚酯的酶促水解作用和非酶促水解作用,提供了一种海水可降解pef共聚酯及制备方法。本发明在pef的主链上引入乙醇酸结构与己内酯结构提高pef共聚酯的海水降解速率:
[0016]
(1)利用乙醇酸易水解的特点提高共聚酯的非酶促水解能力,在pef主链中引入乙醇酸链段可以提高共聚酯的海水降解速率。
[0017]
(2)己内酯结构可以提高共聚酯的酶促水解能力,且具有较高的柔性,引入己内酯链段既可以提高共聚酯的海水降解速率,又可以提高共聚酯的断裂伸长率,提高其机械性能。
[0018]
(3)本发明制备步骤简单,反应条件温和。
具体实施方式
[0019]
为进一步了解本发明的内容,结合实施例对本发明作详细描述。应当理解的是,实施例仅仅是对本发明进行解释而并非限定。
[0020]
实施例1
[0021]
将0.5mol(59g)2,5呋喃二甲酸、0.6mol(37.2g)乙二醇和0.5mol(38g)乙醇酸以及催化剂辛酸亚锡(0.4g)加入500ml带有搅拌的三口烧瓶中,150~180℃反应3h,出水量达到理论出水量的95%以上,300pa抽真空60min制备分子量~5000g/mol的pef酯化物,将酯化物溶于甲苯中,加入0.5mol(57g)己内酯和0.228g辛酸亚锡催化剂于60℃反应4h,过滤洗涤制备得到数均分子量为~3
×
104g/mol的pef共聚酯a。
[0022]
实施例2
[0023]
将0.5mol(59g)2,5呋喃二甲酸、0.6mol(37.2g)乙二醇和0.2mol(15.2g)乙醇酸以及催化剂辛酸亚锡(0.3g)加入500ml带有搅拌的三口烧瓶中,150~180℃反应3h,出水量达到理论出水量的95%以上,300pa抽真空60min制备分子量~5000g/mol的pef酯化物,将酯化物溶于甲苯中,加入0.5mol(57g)己内酯和0.228g辛酸亚锡催化剂于反应4h,过滤洗涤制备得到数均分子量为~3.5
×
104g/mol的pef共聚酯b。
[0024]
实施例3
[0025]
将0.5mol(59g)2,5呋喃二甲酸、0.6mol(37.2g)乙二醇和0.8mol(60.8g)乙醇酸以及催化剂辛酸亚锡(0.5g)加入500ml带有搅拌的三口烧瓶中,150~180℃反应3h,出水量达到理论出水量的95%以上,300pa抽真空60min制备分子量~5000g/mol的pef酯化物,将酯化物溶于甲苯中,加入0.5mol(57g)己内酯和0.228g辛酸亚锡催化剂于60℃反应4h,过滤洗
涤制备得到数均分子量为~3
×
104g/mol的pef共聚酯c。
[0026]
实施例4
[0027]
将0.5mol(59g)2,5呋喃二甲酸、0.6mol(37.2g)乙二醇和0.5mol(38g)乙醇酸以及催化剂辛酸亚锡(0.4g)加入500ml带有搅拌的三口烧瓶中,150~180℃反应3h,出水量达到理论出水量的95%以上,300pa抽真空60min制备分子量~5000g/mol的pef酯化物,将酯化物溶于甲苯中,加入0.2mol(22.8g)己内酯和0.091g辛酸亚锡于60℃反应4h,过滤洗涤制备得到数均分子量为~4
×
104g/mol的pef共聚酯d。
[0028]
实施例5
[0029]
将0.5mol(92g)2,5呋喃二甲酸二甲酯、0.6mol(37.2g)乙二醇和0.5mol(38g)乙醇酸以及催化剂辛酸亚锡(0.5g)加入500ml带有搅拌的三口烧瓶中,150~180℃反应3h,出水量达到理论出水量的95%以上,300pa抽真空60min制备分子量~5000g/mol的pef酯化物,将酯化物溶于甲苯中,加入0.8mol(91.2g)己内酯和0.364g辛酸亚锡于60℃反应4h,过滤洗涤制备得到数均分子量为~3.7
×
104g/mol的pef共聚酯e。
[0030]
实施例6
[0031]
将0.5mol(92g)2,5呋喃二甲酸二甲酯、0.6mol(37.2g)乙二醇和0.5mol(38g)乙醇酸以及催化剂辛酸亚锡(0.5g)加入500ml带有搅拌的三口烧瓶中,150~180℃反应3h,出水量达到理论出水量的95%以上,100pa抽真空120min制备分子量~10000g/mol的pef酯化物,将酯化物溶于甲苯中,加入0.5mol(57g)己内酯和0.228g辛酸亚锡于60℃反应4h,过滤洗涤制备得到数均分子量为~4
×
104g/mol的pef共聚酯f。
[0032]
对比例1
[0033]
将0.5mol(59g)呋喃二甲酸、0.6mol(37.2g)乙二醇以及催化剂辛酸亚锡(0.2g)加入500ml带有搅拌的三口烧瓶中,150~180℃反应3h,出水量达到理论出水量的95%以上,抽真空至真空度<30pa,温度缓慢升温到200~240℃反应4~6h至完全爬杆现象,破真空出料,烘干备用,制备得到数均分子量为~3
×
104g/molpef共聚酯g。
[0034]
对比例2
[0035]
将0.5mol(59g)呋喃二甲酸、0.6mol(37.2g)乙二醇和0.5mol(38g)乙醇酸以及催化剂辛酸亚锡(0.4g)加入500ml带有搅拌的三口烧瓶中,150~180℃反应3h,出水量达到理论出水量的95%以上,抽真空至真空度<30pa,温度缓慢升温到200~240℃反应4~6h至完全爬杆现象,破真空出料,烘干备用,制备得到数均分子量为~3.5
×
104g/molpefga共聚酯h。
[0036]
将实施例1
‑
7与对比例1
‑
2分别制得的共聚酯根据gb/t 1040.1
‑
2006要求制备成标准样条,然后进行性能测试。
[0037]
拉伸性能测试:根据gb/t 1040.1
‑
2006测定,拉伸速率5mm/min,测试温度为25℃。
[0038]
降解性能测试:将样条放入海水中(东海近海海水)中,每周更换一次海水,测试温度23℃,测试时间3个月,取出样品,干燥至恒重称量。
[0039]
表1性能测试结果
[0040]
[0041][0042]
从表1中数据可以看出,乙醇酸和己内酯结构可以显著提高pef共聚酯的海水降解能力,且具有乙醇酸和己内酯结构的pef共聚酯具有优良的机械性能,满足使用要求。
[0043]
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。
适合的加工方式有:真空成型、射出成型、吹瓶、透明膜、贴合膜、保鲜膜、纸淋膜,融溶纺丝等。
聚乳酸(PLA)的原料主要为玉米等天然原料,降低了对石油资源的依赖,同时也间接降低了原油炼油等过程中所排放的氮氧化物及硫氧化物等污染气体的排放。为了摆脱对日趋枯竭的石油资源的依赖,大力开发环境友好的可生物降解的聚合物,替代石油基塑料产品,已成为当前研究开发的热点。根据我国可持续发展战略,以再生资源为原料,采用生物技术生产可生物降解的聚乳酸(PLA)市场潜力巨大。将粮食产品深加工,生产高附加值的产品是实现跨越式经济发展的重大举措。
国内聚乳酸市场分析:
我国是一个生产塑料树脂材料及消费大国,年生产各类塑料制品近1900多万吨。大力开发生产对环境友好的EDP塑料制品,势在必行,这有益于减少石油基塑料制品所带来的环境污染和对不可再生石油资源的依赖及消耗。目前,国内有多家企事业单位从事“聚乳酸〔PLA〕”聚酯材料的研究及应用工作,国家和省及部委也将PLA开发项目列入“九五”、“十五”、“863”、“973”、《火炬计划》、《星火计划》、“十一五”和《国家中长期科学科技发展规划》重点科研攻关项目。但是,目前国内PLA产业化步伐缓慢,产品经过多年的研发仅有浙江海正集团和上海同杰良生物技术有限公司等较有实力的企事业单位较有成效,江阴杲信也开发了粒子,纤维和无纺布等产品,PLA聚酯材料主要依赖国外进口,由于PLA原料进口价格比较昂贵,这也限制了PLA高分子材料在我国的应用和发展。
随着我国加入世贸组织,先进的生产技术和设备及新产品大量进入国内市场,这也促使国内一些企事业单位和集团公司及乳酸生产厂家着手建立PLA产业,以国内丰富的资源优势和科研院校的技术优势及人力资源优势与国外PLA产品抗衡,并使国内能顺利的形成以PLA产品为代表的消费市场,并且能够出口创汇。
经济学家及环保人士指出,在我国发展以高性能EDP材料作为治理环境污染措施之一,正在逐步取得政府的支持。国家已将EDP塑料列入国家优先发展高新技术产业重点领域(包装材料、农业应用材料、医用材料等),《中国21世纪议程》也将发展EDP塑料包装材料列入发展内容之一,生物质塑料正在推向市场、开拓市场,无论在农业用、包装用、日用、医用等领域都具有较大的市场潜力。
2005年中国塑料包装材料需求量将达到550万吨,按其中1/3为难以收集的一次性塑料包装材料和制品计算,其废弃物将达到180万吨;据农业部预测,2005年地膜覆盖面积将达1.7亿亩,所需地膜加上堆肥袋、育苗钵,农副产品保鲜膜、片、盒等需求量将达到120万吨;垃圾袋等一次性日用杂品、建筑用网、无纺布、医用卫生材料中一部分也是难以收集或不宜收集的,预计废弃物将达到440万吨,若其中50%采用EDP塑料代替的话,则EDP塑料市场需求量将达到220万吨,再加上作为资源补充替代的产品,则2005年国内EDP塑料总需求量将达到260万吨。另一方面,我国EDP塑料产品由于品质有保障,而成本相对较低。近年来澳大利亚、日本、韩国等一些国家从减量化措施出发,对我国高淀粉含量的聚烯烃部分生物降解塑料市场看好,而纷纷来华洽谈贸易和协作,目前进入国际市场的出口量达到2万吨,预计2005年出口量将达到20万吨。据此,2005年EDP塑料国内外市场总需求量将达到2800万吨,在塑料制品总计划产量(25000万吨)中占11.2%。这与国外发展趋势是基本相符的。因此,EDP塑料是一个正在发展而市场潜力巨大的新兴行业,2005年~2010年需求量年均增长率按20%计算,2010年市场需求量将达到690万吨。
据专家预测,目前我国为实现可持续资源发展战略,已计划建立国家级生物质塑料生产基地。在今后5~10年内,我国国内将形成一个由PLA降解塑料为主的销售大市场,并且年产值几百亿元。在药物控制释放材料和骨固定材料及人体组织修复材料等方面,如能以其成功的制成几种药物控制释放系统和骨固定材料及微创导管材料并进入市场,年产值将至少也有几十亿元。在生态纤维制品方面,能开发并生产出优质的纤维制品,将有年产值100亿元的市场销售空间。在降解塑料制品方面,我国消费市场空间更大,年销售额将达到上百亿元。在一次性医疗制品方面,如能开发出既能功能性自毁又能环境分解消毁的环保一次性使用医疗器械产品,那么市场空间和利润将是巨大的,其意义更加深远。
聚乳酸(PLA)是一种对人体没有毒害作用的聚酯类材料,具有良好的生物相容性、生物降解性和生物可吸收性。在各种药学和生物医学应用方面,聚乳酸与聚乙醇酸(PGA)、乳酸-乙醇酸共聚物(PLGA)等可以酶降解或化学降解,在完成其目标任务后不需要外科手术除去,因此广泛用作药物缓释、手术缝合线及骨折内固定材料等生物医用高分子材料。聚乳酸在常温下性能稳定,其降解产物为环境可再生资源——乳酸,不会对环境造成污染,也用作环保高分子材料,可采用通用的塑料加工方法,如挤出、注塑、中空成型等,制成薄膜、片材、泡沫塑料、注塑制品、中空吹塑瓶等。
目前,聚乳酸合成方法有两种,一种是由乳酸直接缩聚合成聚乳酸(PC法),采用的聚合方法通常为熔融缩聚法、熔融缩聚-固相聚合法、溶液缩聚法;另一种是开环聚合法(ROP法),即先将乳酸单体经脱水环化合成丙交酯(3,6-二甲基-1,4-二氧杂环己烷-2,5-二酮),然后丙交酯开环聚合得到聚乳酸,该法可以得到相对分子质量高的聚乳酸。
聚乳酸有极大的应用前景,但是其物理上的缺陷,如脆性和慢结晶速度等会阻碍PLA加工成型。国外已经有许多关于聚乳酸及其改性物的研究。近些年,我国也大力着手于聚乳酸的研究。本文对最近聚乳酸的合成方法和改性研究进行详细评述。
1 聚乳酸合成方法
1.1 聚乳酸直接合成法
1.1.1 原理
直接合成法是采用高效脱水剂和催化剂使乳酸或乳酸低聚物分子间脱水缩合成高分子质量聚乳酸,图1(略)是聚乳酸直接合成过程。采用直接法合成的聚乳酸,原料乳酸来源充足,大大降低了成本,有利于聚乳酸材料的普及,但该法得到的聚乳酸相对分子质量较低,机械性能较差,这就抑制了该法得到的聚乳酸的实际应用。
直接聚合法的关键是把原料和反应过程中生成的小分子(水)除去,并控制反应温度。因为反应温度提高虽然有利于反应的正向进行,但当温度过高时,低聚物会发生裂解环化,解聚为乳酸的环状二聚体——丙交酯。在高真空状态下,水分子被带走的同时,也会带走解聚生成的丙交酯,这就促使反应向着解聚方向进行,不利于高分子质量聚乳酸的生成。所以,反应一方面要除去水分子,另一方面要抑制丙交酯的流失,这就是关键所在。
1.1.2 熔融缩聚法
反应体系温度高于聚合物的熔点,反应在熔融状态下进行,是没有任何介质的本体聚合反应,所形成的副产物(水、丙交酯等)通过惰性气体携带或借助于体系的真空度而不断排除。优点是产物纯净,不需要分离介质;缺点是熔融缩聚法得到的产物相对分子质量不高。因为随着反应的进行,体系的黏度越来越大,小分子难以排出,平衡难以向聚合方向进行。在熔融聚合过程中,催化剂、反应时间、反应温度及真空度对产物相对分子质量的影响很大。
同济大学任杰等发明了一种直接熔融制备高分子聚乳酸的方法。在惰性气体保护的环境下,向聚乳酸预聚体中加入含有两个活性官能团的扩链剂,一个官能团易与羟基反应,另一个官能团易与羧基反应,如1,2-环氧辛酰氯、环氧氯丙烷、2,4-甲苯二异氰酸酯、四甲基二异氰酸酯等,然后通过反应挤出制备聚乳酸,从而使反应得到的聚乳酸的特性黏度由预聚体的0.1-0.2dL/g提高到1.0-1.5dL/g。
东华大学余木火等发明了一种熔融缩聚制备高分子质量聚乳酸的方法。通过以乳酸、脂肪族二元酸为起始原料,制得两端为羧基的乳酸预聚物,然后再加入一定比例的环氧树脂,于一定温度、压力条件下制得高分子质量的聚乳酸。通过优化条件可以得到粘均分子质量为13万-22万的高聚物。
在催化剂的选用方面,常用的酯化反应催化剂有中强酸H2SO4、H3PO4等;过渡金属及其氧化物、盐,如Sn、Zn、SnO2、ZnO、SnCl2、SnCl4等;金属有机物,如辛酸亚锡、三乙基铝等。本课题研究组采用易与产物分离的稀土氧化物Y2O3、Nd2O3、Eu2O3催化乳酸,直接缩聚合成了粘均分子质量为8.157×103g/mol的聚乳酸。在后续研究中又采用稀土固体超强酸SO42-/TiO2-Ce4+催化剂直接催化合成聚乳酸,得到粘均分子质量(1.39×104g/mol)较高的聚乳酸。
1.1.3 熔融缩聚-固相聚合法
该法是首先使反应物单体乳酸减压脱水缩聚合成低分子质量的聚乳酸,然后将预聚物在高于玻璃化温度但低于熔点的温度下进行缩聚反应。在低分子质量的乳酸预聚体中,大分子链部分被“冻结”形成结晶区,而官能团末端基、小分子单体及催化剂被排斥在无定形区,可获得足够能量通过扩散互相靠近发生有效碰撞,使聚合反应得以继续进行。通过真空或惰性气体将反应体系中的小分子副产物冰)带走,使反应平衡向正方向移动,促进预聚体分子质量的进一步提高。由于反应是在比较缓和的条件下进行,可以避免高温下的副反应,从而提高聚乳酸的纯度和质量。邢云杰等首先将L-乳酸熔融缩聚得到低分子质量的L-乳酸预聚物,预聚物在等温结晶后可以保持其在较高温度下的固相聚合条件下不融化,聚乳酸的解聚反应在固相聚合时大为抑制。在分子筛存在的条件下,真空固相聚合,得到重均分子质量在10万-15万的聚乳酸。
1.1.4 溶液缩聚法
溶液缩聚是反应物在一种惰性溶剂中进行的缩聚反应,优点是反应温度相对较低,副反应少,容易得到较高分子质量的产物,但反应中需要大量的溶剂,因此需要增设溶剂提纯、回收设备。同济大学任杰等发明了一种用于溶液缩聚的反应装置,该装置可以达到溶剂的反复回流使用,既可用于溶剂密度小于水的反应,也可用于溶剂密度大于水的反应,大大降低了反应成本。在反应过程中,溶剂可以有效降低反应体系的黏度,吸收反应放出的热量,使反应过程平稳;溶剂可以溶解原料单体乳酸,使正在增长的聚乳酸溶解或溶胀,以利于增长反应的继续进行;溶剂还可以与缩聚时产生的小分子副产物水等形成共沸物而及时带走小分子。复旦大学钟伟等使用苯甲醚作为溶剂合成聚乳酸;黎丽等采用二甲苯作溶剂,溶液共沸合成高分子质量聚乳酸;华南理工汪朝阳等以二异氰酸酯为扩链剂、四氢呋喃为溶剂进行扩链反应合成聚乳酸,均取得了较为满意的结果。
1.2 聚乳酸开环聚合法
图2(略)为聚乳酸开环聚合法的合成过程。首先,乳酸分子间脱水生成低分子质量聚乳酸;然后,在180-230℃的温度下低聚物解聚生成环状丙交酯(LA);最后,丙交酯开环聚合生成高聚物。该法可以得到相对分子质量为70万~100万的聚乳酸。
常用的聚合方法主要有三种:阳离子聚合、阴离子聚合、配位聚合。其中,用于阳离子聚合的引发剂有质子酸,如RSO3H等;路易斯酸,如SnCl2、MnCl2、Sn(Oct)2等;烷基化试剂,如三氟甲基磺酸(CF3SO3CH3)等多种酸性化合物。在LA的阴离子聚合中,应用于反应的阴离子催化剂一般具有较强的亲核性和碱性,如碱金属烷氧化物等。Kasperczyk等人使用叔丁氧锂催化聚合rac-LA并研究rac-LA聚合的立构可控性。LA的配位开环聚合常用的引发剂为羧酸锡盐类、异丙醇铝、烷氧铝或双金属烷氧化合物等。其中,羧酸锡盐类,尤其是辛酸亚锡[Sn(Oct)2],投入工业生产中,易处理,在LA聚合中可与有机溶剂和熔融LA单体互溶,所以催化活性高,并且辛酸亚锡经美国FDA认定,已可作为食品添加剂。
为了使PLA在生物医学领域应用更加广泛,科学家研制了一系列含生物可吸收金属的相关催化剂,比如Mg、Ca、Fe、Zn等金属催化剂,用于LA的活性聚合研究和工业化生产中,尤其是Zn盐化合物。到目前为止,乳酸锌是锌化合物中效果最佳的LA聚合催化剂,它可以更好地控制PLA的分子质量,并且LA转化率高,聚合分散度(PDI)较窄。Oota等在丙交酯开环聚合聚乳酸时,采用环状亚胺,如琥珀酰亚胺、戊二酰亚胺、苯邻二甲酰亚胺等作为聚合引发剂,在氮气流保护、较低反应温度(100-190℃)、低催化剂含量(辛酸亚锡摩尔百分含量0.00001%-0.1%)的反应条件下,有效地合成了聚乳酸,从而避免了以往合成的聚乳酸由于反应温度较高(180-230℃)而导致颜色较重,并且重金属催化剂含量较高,做成的食品包装制品对人体有害等一系列问题。
2 聚乳酸改性研究
2.1 聚乳酸的共聚改性
E•A•弗莱克斯曼发明了一种包含缩水甘油基的无规乙烯共聚物增韧的热塑性聚乳酸组合物,使得聚乳酸组合物容易熔融加工成各种具有可接受韧性的制件。所述乙烯共聚物,是指来自乙烯和至少两种其他单体的聚合物。改性聚乳酸中的共聚单体也可以选用乙交酯、乙醇酸的二聚环酯、ε-乙内酯等。这种共聚改性的方法是利用两种单体活性相近,极性也相近的性质,将两种单体混合,通过自由基共聚合,得到无规共聚物。如果两种单体活性相近,而极性相反,且竞聚率r1→0或r2→0,将两种单体混合,通过自由基聚合,可得到交替共聚物。张倩等合成一种生物医用高分子材料交替共聚乙丙交酯,兼有聚乙交酯(PGA)和PLA两种聚酯材料的优良特性。
近年来,通过聚合物的化学反应制备嵌段共聚物或接枝共聚物得到人们的关注。Kazuki Fukushima等合成了高分子质量的有规立构嵌段D,L-聚乳酸:首先,熔融缩聚合成较低分子质量的D-聚乳酸和L-聚乳酸;然后将这两种构型的聚乳酸1:1等量熔融状态下混合,以形成立体配合物;最后,使熔融态的立体配合物降温进行固相聚合反应,非晶态的聚乳酸链延长为高分子质量的有规嵌段外消旋聚乳酸。研究表明,使用淀粉与D,L-丙交酯合成的淀粉D,L-丙交酯接枝共聚物能够被酸、碱和微生物完全降解,并且机械性能更佳。由于淀粉来源充足,价格便宜,因此大大降低了合成接枝共聚物的成本,有利于该材料的普及。
2.2 聚乳酸的共混改性
单独的聚乳酸机械性能、柔性较差,限制了其应用的范围,而其他一些重要的聚酯,如聚(ε-2己内酯)(PCL)、聚氧化乙烯(PEO)、聚羟基脂肪酸丁酯(PHB)、聚乙醇酸(PGA)等,任何一种都有限制其广泛应用的缺陷,但共混改性材料可以弥补他们各自应用上的限制。共混改性材料兼有几种材料的优点,从而扩大了聚酯类材料的应用范围。
Huiming Xiong等合成了表面密度较大的L-聚乳酸(L-PLA)-聚苯乙烯(PS)-聚甲基丙烯酸甲酯(PMMA)三元共混聚合物。他们首先在乳液中合成羟基功能化PS-PMMA复合物,然后以该复合物为分子引发剂、三乙基铝为催化剂,插入L-丙交酯,进行聚合,从而使聚合物韧性大大提高。冉祥海发明了一种三元复配聚乳酸型复合材料。该材料由聚乳酸、聚丙撑碳酸酯(PPC)、聚3-羟基丁酸酯(PHB)和各种助剂共混制成。以这种三元复配聚乳酸型复合材料为母料制备的热塑性复合材料,改善了聚乳酸制品的成型加工性、耐热性、撕裂强度及制品的尺寸稳定性。
2.3 聚乳酸的复合改性
聚乳酸的脆性问题是抑制其作为骨科固定材料的重要原因之一,将聚乳酸与其他材料复合进行改性,可以使聚乳酸的脆性问题得到解决。
羟基磷灰石(Hydroxyapatite)是一种胶体磷酸钙,在人体内主要分布于骨骼和牙齿中,因此可以作为骨缺损修复材料和骨组织工程载体材料,但是单独的羟基磷灰石的力学性能不适合作为骨移植材料。将表面进行过改性处理的羟基磷灰石(HA)与聚乳酸通过热煅法、热压法、流延法等进行复合,可以获得力学性能优良的HA/PLLA复合材料。
上海交通大学孙康等发明了一种改性甲壳素纤维增强聚乳酸复合材料,将由湿法纺丝成形工艺制备得到的酰化改性甲壳素纤维通过含有聚乳酸胶液的浸胶槽,用缠绕机缠绕成无纬预浸布,而后将干燥、适当裁剪后的预浸料片模压成型。该复合材料界面结合、生物相容性好,相对于聚乳酸而言,降低了降解速率,具有更好的强度保持性,可更好地满足骨折内固定材料的使用要求。
2.4 聚乳酸的增塑改性
增塑聚乳酸就是通过加入生物相容性的增塑剂来提高聚乳酸的柔韧性和抗冲击性能。对增塑后的聚乳酸进行热分析和机械性能表征研究其玻璃化转变温度(Tg)、弹性模量、断裂伸长率等的变化,从而来确定增塑剂的效能。
Bo-Hsin Li在L-聚乳酸中混入二苯基甲烷-4,4'-二异氰酸酯(MDI),从而使聚乳酸的热性质和机械性能得到改善。通过差示扫描量热分析和热重分析,当MDI的-NCO与L-聚乳酸的-OH的摩尔比为2:1时,聚乳酸的玻璃化转变温度由55℃提高到64℃,拉伸强度由改性前的4.9MPa提高到5.8MPa。
3 结语
综上所述,国外对聚乳酸及其改性聚合物的研究和材料应用方面已经比较成熟,我国尚属起步阶段。聚乳酸材料虽然有无毒无害、环保等优点,但在我国并没有大量应用,主要是由于聚乳酸的生产成本居高不下,相对同类材料在价格上没有优势。因此,研究的主要方向是要降低聚乳酸的生产成本,以使这种环保材料能真正应用于我们的生活及医疗事业上。虽然丙交酯的开环聚合法可以得到高分子质量聚乳酸,但该法工艺较复杂,成本较高,所以,开发成本较低的乳酸直接合成法,有利于聚乳酸真正的实现应用于人们的生产生活中。同时,聚乳酸的合成工艺过程将直接影响聚乳酸的性能,因此,今后的研究方向主要是优化聚乳酸的合成工艺条件,寻找新的、可以回收利用的、毒性低的、高催化活性的催化剂。此外,单纯的聚乳酸机械性能较差、易破碎,制约了其应用的范围,所以通过共聚、共混、复合的方法改善聚乳酸的机械性能、热性能等也是聚乳酸研究的一个主要方向。
我国大部分有关聚乳酸的研究主要集中在合成高分子质量的聚乳酸上,并且合成的分子质量分布较宽。高分子质量聚乳酸可用来做高机械强度的制品,如作为骨内固定材料;而药物传输系统载体——药物缓释剂,则需要低分子质量聚乳酸,所以在聚乳酸的可控聚合研究上需加强研究力度,通过对催化剂、引发剂、聚合时间和温度、溶剂等的选择,制备分子质量范围较窄并且分子质量可控的聚乳酸,以扩大并优化聚乳酸材料的应用
希望对你有点帮助!!!!!
a)羟基乙酸与碱反应生成羟基乙酸盐;
b)羟基乙酸盐与醇的金属盐反应生成羟基乙酸二价盐。
反应式如下:
hoch2cooh+mx→hoch2coom;
hoch2coom+rom'→m'och2coom+roh;
其中,mx为碱,所述碱可以为本领域技术人员熟知的碱性化合物,本发明优选为氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、碳酸氢钠或碳酸氢钾,更优选为氢氧化钠、碳酸钠或碳酸氢钠,最优选为氢氧化钠。
rom'为醇的金属盐,所述醇的金属盐优选为c1~8的醇的钾盐或钠盐,更优选为甲醇钠、甲醇钾、乙醇钠、乙醇钾、叔丁醇钠、叔丁醇钾、异辛醇钠或异辛醇钾。
步骤a)中,当碱为一元碱时,羟基乙酸与碱的摩尔比优选为1:(0.98~1.02),更优选为1:1;当碱为二元碱时,羟基乙酸与碱的摩尔比优选为1:(0.49~0.51),更优选为1:0.5。
羟基乙酸与碱的反应温度优选为20~60℃,更优选为20~40℃。所述反应的时间优选为0.2~1h,更优选为0.4~0.6h。
羟基乙酸与碱反应完毕,优选减压蒸出其中的水。本发明优选的,将反应液减压蒸干至水分≤0.3%。
步骤b)中,羟基乙酸盐与醇的金属盐的摩尔比优选为1:(1~1.2),更优选为1:(1~1.1),最优选为1:(1.02~1.04);羟基乙酸盐与醇的金属盐中的金属阳离子,即m和m',可以相同也可以不同,为便于生产处理通常选用相同的金属阳离子。
所述羟基乙酸盐与醇的金属盐的反应温度优选为20~60℃,更优选为20~40℃。所述反应的时间优选为0.5~1.5h。
然后将所述羟基乙酸二价盐与1,2,4-三氯苯在催化剂的作用下,进行反应,制备2,4-二氯苯氧乙酸盐,反应方程式如下:
所述催化剂优选为四丁基溴化铵、三辛基氯化铵、十六烷基三甲基溴化铵和三乙基苄基氯化铵中的一种或多种,更优选为三乙基苄基氯化铵。
所述1,2,4-三氯苯与羟基乙酸二价盐的摩尔比优选为1:(1~1.4),更优选为1:(1~1.1),最优选为1:(1.02~1.06)。
所述催化剂的用量优选为1,2,4-三氯苯重量的0.1%~1%。
所述1,2,4-三氯苯与羟基乙酸二价盐的反应温度优选为40~160℃,更优选为60~120℃。所述反应的时间优选为2~4h。
制备得到2,4-二氯苯氧乙酸盐后,对其进行酸化,即可得到2,4-二氯苯氧乙酸。
具体的,将2,4-二氯苯氧乙酸盐与酸反应即可。
所述酸可以为盐酸、硫酸、硝酸、甲酸等本领域常规酸性化合物,优选为盐酸或硫酸,最优选为硫酸。
所述酸化的温度优选为40~100℃,更优选60~80℃。
所述酸化中,反应液的ph值优选为0~2。
即加入酸至反应液ph值为0~2。
与现有技术相比,本发明提供了一种2,4-二氯苯氧乙酸的制备方法,包括以下步骤:a)式(ⅰ)所示的羟基乙酸二价盐与1,2,4-三氯苯在催化剂的作用下,反应生成式(ⅱ)所示的2,4-二氯苯氧乙酸盐;b)2,4-二氯苯氧乙酸盐酸化,得到2,4-二氯苯氧乙酸。本发明创造性的使用1,2,4-三氯苯代替苯酚和氯代苯酚,与羟基乙酸盐经过缩合反应,制得2,4-二氯苯氧乙酸盐,然后水解制得2,4-二氯苯氧乙酸,该方案有效避免了苯酚或氯代苯酚的使用,解决了操作场所和产出的三废存在的异味问题,大幅改善了生产场所的操作环境,具有良好的环保效益,同时反应具有较高的收率和纯度。
正解,望采纳!谢谢!