建材秒知道
登录
建材号 > 乙酸 > 正文

磷酰基乙酸三乙酯与醛反应吗

健忘的超短裙
整齐的黄豆
2022-12-21 23:09:15

磷酰基乙酸三乙酯与醛反应吗

最佳答案
饱满的枫叶
合适的冬日
2026-01-25 18:27:40

反应。在活性Ba(OH)2(C-200)催化下,醛与磷酰基乙酸三乙酯反应生成相应的3-取代的丙烯酸酯,常用于高位阻的醛反应。磷酰基乙酸三乙酯是一种化学物质,分子量为224.19,为无色油状液体,用于分子内heck型环化反应以及异构化反应等。

最新回答
羞涩的流沙
笨笨的八宝粥
2026-01-25 18:27:40

基本信息:

中文名称

2-氟代丙烯酸乙酯

中文别名

2-氟丙烯酸乙酯

英文名称

ethyl

2-fluoroprop-2-enoate

英文别名

ethyl

2-fluoranylprop-2-enoateethyl

2-fluoropropenoate2-fluoro-2-propenoic

acid

ethyl

esterEthyl

2-Fluoroacrylate

CAS号

760-80-5

上游原料

CAS号

中文名称

50-00-0

甲醛

111773-24-1

3-溴-2,2-二氟丙酸乙酯

2356-16-3

2-氟-2-磷酰基乙酸三乙酯

64-17-5

乙醇

16522-55-7

2-氟丙烯酰氯

109-94-4

甲酸乙酯

下游产品

CAS号

名称

760-80-5

2-氟代丙烯酸乙酯

1068-90-2

乙酰胺基丙二酸二乙酯

更多上下游产品参见:http://baike.molbase.cn/cidian/114161

儒雅的野狼
魁梧的含羞草
2026-01-25 18:27:40
基本信息:

中文名称

二乙基磷乙酸

中文别名

(二乙氧基膦基)乙酸

英文名称

2-diethoxyphosphorylacetic

acid

英文别名

(Diethoxyphosphinyl)acetic

acid

Diethyl

carboxymethylphosphonatediethyl

phosphonoacetic

acid2-(Diethoxyphosphoryl)acetic

acidDiethylphosphonoacetic

aciddiethyl

carboxymethylphosphonate

CAS号

3095-95-2

合成路线:

1.通过膦酰乙酸三乙酯合成二乙基磷乙酸,收率约93%;

2.通过二乙基膦酰基乙酸苄酯合成二乙基磷乙酸,收率约99%;

更多路线和参考文献可参考http://baike.molbase.cn/cidian/74

外向的星星
丰富的冬天
2026-01-25 18:27:40
基本信息:

中文名称

甲基(2E,4S)-(-)-4-(苯甲氧基)戊基-2-烯酸

英文名称

Methyl

(2E,4S)-4-(benzyloxy)-2-pentenoate

英文别名

2,4-Heptadienoic

acid,6-oxo-,methyl

ester,(Z,Z)Methyl-6-oxo-2,4-trans,trans-heptadienoatmethyl

(2E,4E)-6-oxohepta-2,4-dienoatemethyl

(2E)-(4S)-4-benzyloxypent-2-enoate2,4-Heptadienoic

acid,6-oxo-,methyl

ester,(E,Z)(E)-(S)-[MeCH(OCH2C6H5)CHCHCO2Me](2E,4E)-6-Oxohepta-2,4-diensaeure-methylestermethyl

6-oxo-2(E),4(E)-heptadienoate

CAS号

112489-57-3

上游原料

CAS号

中文名称

88738-78-7

O,O'-双(2,2,2-三氟乙基)磷乙酸甲酯

81445-44-5

(S)-2-苄氧基丙醛

1067-74-9

膦酰基乙酸甲酯二乙酯

5927-18-4

三甲基膦酰基乙酸酯

81927-55-1

2,2,2-三氯乙酰胺苄酯

867-13-0

膦酰乙酸三乙酯

75-05-8

乙腈

更多上下游产品参见:http://baike.molbase.cn/cidian/1600471

独特的冥王星
快乐的机器猫
2026-01-25 18:27:40

藏红花对心脏有一定保护作用;禁忌女性月经期间不宜服用。

藏红花萃取物对呼吸有兴奋作用,在常压缺氧的条件下,可增强细胞内的氧代谢功能,提高心脏的耐缺氧能力,在一定程度上减弱剧烈运动对心肌细胞的损伤,对心脏有一定保护作用。

免疫调节作用,临床上藏红花用于治疗人体多种慢性疾病,通过其活血化瘀、抗菌消炎的功效,增强机体耐力,增强淋巴细胞增殖反应,以此来提高机体细胞免疫和体液免疫,起到调整人体气机运行,平衡人体阴阳的作用。

女性月经期间不宜服用;溃疡主要是有胃溃疡,或者一些长期溃疡患者,不宜服用。所以,在服用藏红花之前应该要先多做了解哦。

扩展资料

藏红花其他作用

番红花其辛辣的金色柱头很名贵,用于食品调味和上色,又用作染料。《圣经·雅歌》第4章第14节中提到一些香草时包括番红花。带有强烈的独特香气和苦味。在地中海地区和东方菜肴以及英国、斯堪的那维亚和巴尔干的面包中作调色和调味佐料。

也是法式菜浓味炖鱼的重要成分。古代印度蒸馏番红花柱头得到一种金色水溶性布匹染料。在释迦牟尼去世後,其弟子以番红花为他们法衣的正式颜色。在几种文化中,王室服装均用这种染料染色。在希腊和罗马,番红花作为香料撒在会堂、宫廷、剧场和浴室。番红花与古希腊的艺妓关系密切。尼禄回罗马时,街道上洒满番红花。

参考资料来源:人民网—藏红花泡水的4大作用和禁忌

参考资料来源:百度百科—藏红花

潇洒的大米
神勇的母鸡
2026-01-25 18:27:40
二元羧酸二酯是指具有两个酯基的化合物,例如丙二酸二甲酯、马来酸二甲酯、丁二酸二甲酯等,在化工、医药、农药、食品等方面也有着比较广泛的用途。丙二酸及其酯主要用于香料、粘合剂、树脂添加剂、电镀抛光剂、爆炸控制剂、热焊接助熔添加剂等方面,在医药工业中用于生产鲁米那、巴比妥、维生素b1、维生素b2、维生素b6、苯基保泰松、氨基酸等。马来酸二甲酯可用于反应性增塑剂,马来酸二辛酯可用作合成香料、塑料助剂和色谱分析用试剂等。

3.在目前的工业生产中,二元羧酸二酯的合成一般采用以浓硫酸为催化剂的酯化合成方法,该法产率较高,但对设备腐蚀严重,且排放大量废酸污染环境,同时伴有较多副反应,后处理工艺复杂。为克服上述缺点,已开发出多种环境友好型催化剂,如酸性树脂、杂多酸、氯化铁、固体超强酸、生物酶等等,都取得了较好的酯化效果,但这些方法仍存在以下问题:酸性树脂活化和再生繁杂;杂多酸和固体超强酸制备复杂,且生产成本较高;氯化铁则易吸潮,不便于使用和储存;生物酶催化反应时间长等等;另外以上方法由于使用带水剂,虽然能达到较高的收率,但增加了原料消耗,繁化了生产过程,增加了生产成本。

技术实现要素:

4.本发明的目的是提供一种二元羧酸二酯类化合物的制备方法,本发明的制备方法反应条件温和,反应速度快,成本低,适合大规模工业化生产。

5.为实现上述目的,本发明采用以下技术方案:

6.本发明一实施例公开了一种二元羧酸二酯类化合物的制备方法:包括以下步骤:

7.将脂肪族或芳香族二元羧酸和一元醇在4-二甲氨基吡啶和催化剂的存在下进行催化酯化反应,制得二元羧酸二酯类化合物;

8.其中,所述酯化催化剂为钛催化剂。

9.在一实施例中,所述钛催化剂包括表面经改性剂改性的纳米二氧化锌以及负载在所述纳米二氧化锌上的钛化合物。

10.在一实施例中,所述钛化合物为钛酸异丁酯,钛酸乙酯和钛酸丁酯中的一种或多种组合。

11.在一实施例中,所述改性剂为含磷酸酯基团的钛酸酯偶联剂。

12.在一实施例中,所述制备方法的具体步骤为:

13.在惰性气体的环境中,将所述脂肪族或芳香族二元羧酸和一元醇混合后加热,维持温度在100-180℃,向其中加入4-二甲氨基吡啶和催化剂进行催化酯化反应30-50min。

14.在一实施例中,所述惰性气体选自空气、氮气、氦气、氩气、二氧化碳、一氧化碳、水

蒸气中的任意一种或其任意组合。

15.在一实施例中,所述催化酯化反应的反应温度为110-150℃,反应时间为35-45min。

16.在一实施例中,所述钛催化剂的质量为脂肪族或芳香族二元羧酸和一元醇总质量的0.08%-0.15%;4-二甲氨基吡啶和钛催化剂的质量比为1:(4.8-7.2)。

17.在一实施例中,所述脂肪族或芳香族二元羧酸为c

1-15

的脂肪族二元羧酸、对苯二乙酸、邻苯二乙酸或间苯二甲酸。

18.在一实施例中,所述一元醇为甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、叔丁醇、正戊醇、异戊醇或叔戊醇。

19.本发明具有以下有益效果,本技术采用4-二甲氨基吡啶和钛催化剂共同催化脂肪族或芳香族二元羧酸和一元醇进行反应。4-二甲氨基吡啶可以提高钛催化剂的催化效率,使得原料在较为温和的条件下就可以快速的进行酯化反应,提高了生产速度,并降低了生产成本。本技术通过一步法反应有效的提高了反应的进行效率,无需中间提纯步骤,操作简单,生产效率高,具有良好的工业化大规模生产前景。

具体实施方式

20.为了更好的理解本发明,下面通过实施例对本发明进一步说明,实施例只用于解释本发明,不会对本发明构成任何的限定。

21.本发明一实施例公开了一种二元羧酸二酯类化合物的制备方法:包括以下步骤:将脂肪族或芳香族二元羧酸和一元醇在4-二甲氨基吡啶和催化剂的存在下进行催化酯化反应,制得二元羧酸二酯类化合物;其中,所述酯化催化剂为钛催化剂。

22.在一实施例中,所述钛催化剂包括表面经改性剂改性的纳米二氧化锌以及负载在所述纳米二氧化锌上的钛化合物;所述钛化合物为钛酸异丁酯,钛酸乙酯和钛酸丁酯中的一种或多种组合。所述改性剂为含磷酸酯基团的钛酸酯偶联剂,具体的,改性剂为异丙基二甲基丙烯酰基二异辛基焦磷酰基钛酸酯、异丙基三(二异辛基焦磷酰基)钛酸酯、异丙基三(二异辛基磷酰基)钛酸酯、二乙酰基(二异辛基焦磷酰基)钛酸酯、二(二异辛基焦磷酰基)甲基羟乙酸钛酸酯、二(二异辛基磷酰基)钛酸乙二酯、二(二异辛基磷酰基)甲基羟乙酸钛酸酯和二(二异辛基焦磷酰基)钛酸二乙胺二乙酯中的一种或多种。

23.在一实施例中,所述制备方法的具体步骤为:在惰性气体的环境中,将所述脂肪族或芳香族二元羧酸和一元醇混合后加热,维持温度在100-180℃,向其中加入4-二甲氨基吡啶和催化剂进行催化酯化反应30-50min。优选的,所述催化酯化反应的反应温度为110-150℃,反应时间为35-45min。所述钛催化剂的质量为脂肪族或芳香族二元羧酸和一元醇总质量的0.08%-0.15%;4-二甲氨基吡啶和钛催化剂的质量比为1:(4.8-7.2)。

24.在一实施例中,所述惰性气体选自空气、氮气、氦气、氩气、二氧化碳、一氧化碳、水蒸气中的任意一种或其任意组合。

25.在一实施例中,所述脂肪族或芳香族二元羧酸为c

1-15

的脂肪族二元羧酸、对苯二乙酸、邻苯二乙酸或间苯二甲酸。具体的,c

1-15

的脂肪族二元羧酸可以包括乙二酸、丙二酸、丁二酸、戊二酸、已二酸、庚二酸、辛二酸、壬二酸、癸二酸或十二烷二酸。

26.在一实施例中,所述一元醇为甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、叔丁

醇、正戊醇、异戊醇或叔戊醇。

27.实施例1

28.在惰性气体的环境中,将己二酸和叔丁醇混合后加热,维持温度在110℃,向其中加入4-二甲氨基吡啶和催化剂进行催化酯化反应35min,制得己二酸二丁酯。所述催化剂的质量为脂肪族或芳香族二元羧酸和一元醇总质量的0.08%;4-二甲氨基吡啶和钛催化剂的质量比为1:4.8。

29.制备得到的己二酸二丁酯的收率为98.7%,纯度为99.7%。

30.实施例2

31.在惰性气体的环境中,将己二酸和叔丁醇混合后加热,维持温度在150℃,向其中加入4-二甲氨基吡啶和催化剂进行催化酯化反应45min,制得己二酸二丁酯。所述催化剂的质量为脂肪族或芳香族二元羧酸和一元醇总质量的0.15%;4-二甲氨基吡啶和钛催化剂的质量比为1:7.2。

32.制备得到的己二酸二丁酯的收率为98.9%,纯度为99.8%。

33.实施例3

34.在惰性气体的环境中,将丙二酸和乙醇混合后加热,维持温度在110℃,向其中加入4-二甲氨基吡啶和催化剂进行催化酯化反应35min,制得丙二酸二乙酯。所述催化剂的质量为脂肪族或芳香族二元羧酸和一元醇总质量的0.08%;4-二甲氨基吡啶和钛催化剂的质量比为1:4.8。

35.制备得到的丙二酸二乙酯的收率为97.9%,纯度为99.5%。

36.实施例4

37.在惰性气体的环境中,将丙二酸和乙醇混合后加热,维持温度在150℃,向其中加入4-二甲氨基吡啶和催化剂进行催化酯化反应45min,制得丙二酸二乙酯。所述催化剂的质量为脂肪族或芳香族二元羧酸和一元醇总质量的0.15%;4-二甲氨基吡啶和钛催化剂的质量比为1:7.2。

38.制备得到的丙二酸二乙酯的收率为98.9%,纯度为99.9%。

耍酷的红牛
犹豫的豌豆
2026-01-25 18:27:40
氨基保护方法胺类化合物对氧化和取代等反应都很敏感,为了使分子其它部位进行反应时氨基保持不变,通常需要用易于脱去的基团对氨基进行保护。例如,在肽和蛋白质的合成中常用氨基甲酸酯法保护氨基,而在生物碱及核苷酸的合成中用酰胺法保护含氮碱基。化学家们在肽的合成领域内,对已知保护基的相对优劣进行了比较并在继续寻找更有效的新保护基。除了肽的合成外,这些保护基在其它方面也有很多重要应用.下面介绍保护氨基的一些主要方法和基团。1  形成酰胺法将胺变成取代酰胺是一个简便而应用非常广泛的氨基保护法。单酰基往往足以保护一级胺的氨基,使其在氧化、烷基化等反应中保持不变,但更完全的保护则是与二元酸形成的环状双酰化衍生物。常用的简单酰胺类化合物其稳定性大小顺序为甲酰基<乙酰基<苯甲酰基.酰胺易于从胺和酰氯或酸酐制备,并且比较稳定,传统上是通过在强酸性或碱性溶液中加热来实现保护基的脱除.由于若干基质,包括肽类、核苷酸和氨基糖,对这类脱除条件不稳定,故又研究出了一些其他脱除方法,其中有甲酰衍生物的还原法,甲酰基以及对羟苯基丙酰基衍生物的氧化法,苯酰基和对羟苯基丙酰基衍生物的电解法,卤代酰基、乙酰代乙酰基以及邻硝基、氨基、偶氮基或苄基衍生物等“辅助脱除法”,等等。为了保护氨基,已经制备了很多N2酰基衍生物,上述的简单酰胺最常用,卤代乙酰基衍生物也常用。这些化合物对于温和的酸水解反应的活性随取代程度的增加而增加:乙酰基〈 氯代乙酰基〈 二氯乙酰基〈 三氯乙酰基<三氟乙酰基。此外,在核苷酸合成的磷酸化反应中,胞嘧啶、腺嘌呤和鸟嘌呤中的氨基是分别由对甲氧苯酰基、苯酰基和异丁酰或甲基丁酰基予以保护的,这些保护基是通过氨解脱除的.另外,伯胺能以酰胺的形式加以保护,这就防止了活化的N2乙酰氨基酸经过内酯中间体发生外消旋化。111  甲酰衍生物胺类化合物很容易进行甲酰化反应,常常仅用胺和98 %的甲酸制备。甲酸乙酸酐也是一个有用的甲酰化试剂。对于某些容易发生消旋化的氨基酸可用甲酸和N ,N′2双环己基碳二亚胺(DCC) 在0 ℃时进行甲酰化反应,也可用酯类进行氨解。

甲酰胺类是相当稳定的化合物,因此广泛应用于肽的合成。甲酰基的脱除也有很多方法,氧化或还原法脱酰反应均可被采用。N2甲酰衍生物用15 %过氧化氢水溶液处理,可以顺利地进行氧化脱解。用氢化钠在二甲氧基乙烷中回流可以代替用酸或碱水解去除酰基。112  乙酰基及其衍生物胺类化合物的乙酰化或取代乙酰衍生物是用酰氯、酸酐进行酰化或在二环己基碳二亚胺(DCC) 或焦亚磷酸四乙基酯存在下,直接与酸综合加以制备,有时也可用酯或硫酯氨解的方法制备乙酰胺另一好的方法是用胺和乙烯酮〔15〕或异丙烯乙酸酯反应。如果用双烯酮〔17〕反应,则得到的是乙酰乙酰基衍生物。用乙酰基保护氨基比用其他保护基要多。由于它比甲酰基更稳定,因此,在进行亲电取代、硝化、卤代等反应时常选择乙酰基来保护芳香胺。乙酰胺丙二酸酯也可用于合成α2氨基酸,但在脱乙酰基时所需的酸或碱性条件,可使分子内其他部位受影响.在脱去氨基糖上的乙酰基时,也可用肼解反应代替碱性水溶液。近年来用卤代乙酰基尤其是三氟乙酰基保护N —H 键越来越得到重视,这个保护基可在温和的碱性条件下水解去掉,如用氨水、碱性离子交换树脂等,肽类上的三氯乙酰或三氟乙酰均可用硼氢化钠还原去掉。三氟乙酰基不仅用于肽的合成,而且也用于氨基糖类的保护。在甾体、苷类合成中也有一些应用三氟乙酰基的重要实例,它既可以保护甾体上的氨基,也可以保护糖上的氨基。113  苯甲酰基及有关衍生物胺的苯甲酰化和取代苯甲酰衍生物常用酰氨Schotten — Baumann 反应制备,用焦亚磷酸四乙基酯进行混合酸酐法也可得到非常好的结果。其它都是用酸或碱水解脱除。用苯甲酰类作保护基,一般不及用甲酰、乙酰保护方便,除非是苯甲酰类对水解稳定,而其某些优越之处在于核苷酸类保护基上的应用。114  环状酰亚胺衍生物环状酰亚胺衍生物非常稳定, 很宜用于保护一级胺和氨, 但非环状的酰亚胺已证明过分活泼而不宜用作保护基。在环状酰亚胺衍生物中, 琥珀酰胺衍生物的应用较有限, 仅用于青霉素的合成和芳香胺的硝化。现最受重视的还是邻苯二甲酰亚胺, 用邻苯二甲酰亚胺的钾盐进行烷基化以制备纯的一级胺, 是应用已久的著名的Gabriel 氏合成法, 不过, 现对此法已做了许多改进.

为了保护一级胺, 可将胺和丁二酸酐或邻苯二甲酸酐在150~200 ℃共热, 引进丁二酰基或邻苯二甲酰基, 在不太强烈的条件下形成非环的单酰胺(酰胺酸) , 用混合的脱水剂, 如乙酰氯或亚硫酰氯处理时, 通常可转化成环状酰胺.另外, 也可将胺与酸酐在苯或甲苯中与三乙胺回流, 反应过程中生成的水用共沸蒸馏除去。21 形成氨基甲酸酯和尿素型化合物的保护法211  氨基甲酸酯型衍生物在肽合成中, 将氨基甲酸酯用作氨基酸的保护基, 从而将外消旋化抑制到最低限度。为最大限度抑制外消旋化, 可使用非极性溶剂, 此外使用尽量少的碱和低的反应温度以及使用氨基甲酸酯保护基(R = O2烷基和O2芳基) , 都是有效的措施.通常采用胺和氯代甲酸酯或重氮甲酸酯进行反应制备氨基甲酸酯.它们的稳定性有着很大的差异, 因此, 当需要选择性地脱去保护基时, 用此类基团对氨基进行保护很为适宜, 其中最有用的几种氨基甲酸酯有: 特丁酯(BOC) 容易通过酸性水解反应脱除苄酯(CBZ) 通过催化氢解反应脱除; 2 , 42二氯苄酯能在氨基甲酸苄酯和特丁酯的酸催化水解条件下保持稳定22 (联苯基) 异丙酯比氨基甲酸特丁酯更容易为稀醋酸所脱除92芴甲基酯在碱存在下经由β2消除反应裂解; 异烟基酯在醋酸中用锌还原裂解; 12金刚烷基酯易被三氟乙酸裂解22苯基异丙酯对酸性水解的稳定性比氨基甲酸特丁酯稍强。但应该注意, 叠氮甲酸特丁酯由于对热和振动敏感, 故有一定的危险性, 只要有可能, 叠氮甲酸酯应避免使用.氨基甲酸酯类物质很多, 还有其取代衍生物及其它类型的氨基甲酸酯都可作为氨基的保护基, 在合成反应上, 特别是在肽的合成中应用广泛, 这里不再一一举例了.212  尿素型化合物将胺做成尿素型化合物加以保护比将氨基做成氨基甲酸酯加以保护较为少见。在合成磺胺时, 用N , N′2二苯基尿素作为原料, 可代替苯胺的酰基衍生物。近年来常采用哌啶羰基保护组氨酸中咪唑环上的N2H 键。这个保护基的用途在于, 它可以提高含组氨酸的较大肽类的溶解度, 并对酸水解、氢解以及对合成肽类常用的其它试剂都比较稳定, 还可用N2氯甲酰哌啶在无水吡啶中于65 ℃时引进哌啶羰基, 并可经肼处理除去之。

N′2对甲苯磺酰胺羰基衍生物(R1R2NCONHSO2C6H42P2CH3) 也是尿素型衍生物, 由氨基酸与异氰酸对甲苯磺酰酯制得, 收率20 %~80 % , 用醇类裂解(95 %EtOH 水溶液, n2PrOH 或n2BuOH , 100 ℃, 1h , 收率95 %) 。它对于稀碱、酸(HBr/ HOAc 或冷的CF3COOH) 以及肼都是稳定的 。3  形成N2烷基衍生物的保护法用烷基保护氨基主要是用苄基或三苯甲基, 这些基团特别是三苯甲基的空间位阻作用对氨基可以起到很好的保护作用, 并且很容易除去。311  苄基衍生物单和双苄基衍生物通常是用胺和苄氯在碱存在下进行制备。用选择性的催化加氢法可将双苄基变成单苄基衍生物, 一级胺的苄叉衍生物进行部分氢化反应是一个制备烷基苄基胺或芳香苄胺的常用方法。用苄胺进行亲核取代反应, 可引入一个氨基(保护形式) , 然后在反应后期去掉苄基.合成维生物H (生物素biotion) 中就是用上述类似方法制备了一个关键中间体.化学家们研究了各种取代的苄基和有关的基团在催化加氢时脱去的难易, 发现对位取代基更不容易进行氢解, 而二苯甲基、12和22萘甲基以及92芴基等均不如苄基稳定.312  三苯甲基衍生物三苯甲基衍生物如单苄基衍生物一样, 可用三苯甲基溴化物或氯代物在碱性存在下与胺进行反应制备, 也可用催化剂加氢还原脱掉三苯甲基与苄基不同在于, 它可以在温和的酸性条件下脱去, 这方面双2 (对甲氧基苯基) 2甲基有类似情况, 单2对甲氧基代三苯甲基则对酸更不稳定。在肽的合成和青霉素的合成中用三苯甲基保护α2氨基酸是很有价值的。由于其体积大, 不仅可保护氨基, 还可对氨基的α2位基团有一定的保护作用。313  烯丙基衍生物烯丙基胺用于保护咪唑环上的N2H 键。在K2CO3 存在下腺嘌呤和62羟基嘌呤与烯丙基溴在N , N2二甲基乙酰胺中可得92烯丙基衍生物, 而在碱性条件下, 可将保护基氧化除去。

4  形成C = N 键保护氨基酮或醛与一级胺反应生成甲亚胺, 通称Schiff 碱。如果是芳香胺, 则有时称缩苯胺(Anil) 。由芳香醛、酮和脂肪酮形成的Schiff 碱是稳定的, 但脂肪醛与胺形成的Schiff 碱, 往往发生羟醛缩合反应而不适用于作保护基。由于芳亚甲基衍生物容易形成而且稳定, 因此是应用最广的保护方法。烷基化后可以生成不稳定的季铵盐, 由此可得到收率高的纯二级胺.α2氨基酸酯容易形成苯亚甲基衍生物, 但从游离酸形成的衍生物是不稳定的。当醛基的邻位有羟基存在时, 由于形成氢键而使衍生物更加稳定。芳香亚甲基可以在极其温和的酸性条件下进行水解脱去, 且在反应过程中不致发生消旋。可是, 由于在某些情况下偶合不成功, 致使该方法在应用中有一定的局限性.L2赖氨酸中的α2氨基可生成稳定的单苯亚甲基衍生物,利用这一现象可以制备L2赖氨酸的α2苄氧羰基氨基衍生物。5  质子化反应和熬合反应对氨基的保护511  质子化反应从理论上讲, 对氨基最简单的保护方法是使氨基完全质子化, 即占据氮原子上的孤电子对, 以阻止取代反应的发生, 但实际上在使氨基完全质子化所需的酸性条件下, 可以进行的合成反应很少, 所以, 这种方法仅曾用于防止氨基的氧化.然而游离胺在浓硫酸中低温(约0 ℃) 进行硝化时, 则不必先酰化, 因其质子化作用已足以保护氨基不致被氧化。氨基质子化后使芳香环的活泼性减弱, 还改变取代反应的定位效应。例如2 , 22二氨基取代苯在硫酸中硝化时得到42硝基衍生物, 但是用二氨基的双酰化物(如丁酰胺) 进行硝化时, 却主要得到32和52位硝基取代物。也可用形成季铵盐的方法来保护氨基.季铵盐通常用于氧化反应中保护叔胺.上述反应条件能够在羟基或酚基的存在下, 由伯、仲、叔胺(包括氨基酸) 形成季铵盐 。512  螯合反应一个与质子化相似而有效的保护方法是, 利用氮原子上的孤电子对形成熬合物,例如α2和β2氨基酸可与过渡金属形成稳定的配合物。应用络氨酸铜配合物, 苯乙酰化反应只在酚基上发生, 不在氨基上发生反应.二元氨基酸也可选择地只在一个氨基上进行酰化反应。复合物用硫化氢处理很容易得到酰化物。

6  用含磷有机物保护氨基611  二烷基磷酰基作为氨基保护基[46] .在合成肽时, 用磷酰基作为氨基保护基, 对碱较稳定, 对酸则敏感易脱去, 可与苄氧羰基媲美。例如由O, O2二烷基2N2取代苯乙基磷酰胺3a~c 合成了N , N2二烷基磷酰基2N2取代苯乙基甘氨酸衍生物4a~e , 在Lewis 酸催化下成功地进行了Freidel2Crafts 反应得到相应的分子内环化产物苯并232氮杂环庚酮212衍生物, 并在温和条件下脱保护基。在合成苯并232氮杂环庚酮类(6a 、6b) 化合物时, 以二异丙基磷酰基作为氨基保护基, 具有易除去、不脱羰的优点, 这是磺酰基、烷氧羰基所不及的, 在一般有机合成中作为氨基保护基是大有潜力的。612  亚磷酸二乙酯作为α2氨基酸中α2氨基的保护基[48 ]目前在多肽合成中常用的α2氨基保护基大多属于烷氧羰基型(R2O2CO2) , 如BOC、Z、PMZ 等, 这些保护基对碱稳定对酸敏感, 易于在酸性条件下脱除, 但相应的试剂在制备时需使用剧毒的光气, 这无论对实验室制备或工业生产都会带来很多不便, 因此, 需要寻找能替代它们的价廉易得、稳定且低毒的新α2氨基保护试剂.以亚磷酸二乙酯为试剂, 由引入O , O’2二乙基磷酰基(DEPP) 作为α2氨基酸的α2氨基保护基, 采用相转移催化法不仅合成了N2 (DEPP) 2α2氨基酸甲酯衍生物, 还合成了含有游离羟基的N2 (DEPP) 2α2氨基酸, 并由叠氮法制得了两种模型二肽.对一些DEPP 保护的氨基酸衍生物作了在酸、碱及水合肼中稳定性的研究, 用4 mol/ L HCL及TFA 作了脱保护基条件的试验。在各项考察的基础上, 对亚磷酸二乙酯作为α2氨基酸的α2氨基保护试剂在肽合成上应用的可行性作评价。亚磷酸二乙酯制备简单、低廉、低毒且相当稳定, 试验表明, 用它作试剂在温和条件下不仅能与α2氨基酸酯类反应生成N2DEPP 衍生物, 而且还能使α2氨基酸四烷铵盐N2DEPP 化, 然后较易得到N2DEPP2α2氨基酸.这N2DEPP2衍生物在碱中稳定, 通常在弱酸性条件下也很稳定。虽然在2mol/ L NaOH 和85 %水合肼中观察到有微弱副反应发生, 但它不是保护基的脱除反应。用DEPP2氨基酸衍生物合成的两种模型二肽, 无论在氨基酸分析上, 还是在层析行为上都与标准二肽相同, 这说明以亚磷酸二乙酯为试剂引入DEPP 为α2氨基酸的α2氨基保护基是行之有效的, 可用于肽的合成。然而以DEPP 为α2氨基酸的α2氨基保护基虽然在试剂方面有其优越性, 但DEPP 保护基也有不可忽视的缺点 , 这项工作还有待于进一步研究。

总之, 氨基的保护方法和保护基都很多, 上面介绍的是比较重要而又实用的方法和基团。化学家们至今还在寻求有关更好的方法及更有效的保护基, 研究工作仍在继续.氨基保护在有机合成中的应用将会越来越广泛.1  C B Reese。 Tetrahedron , 1978 , 34 : 31432  V Amarnath and A D Broom。 Chem Rev , 1977 , 77 : 1833  R S Goody and R T Walker. Tetrahedron Lett , 1967 , 2894  C B Reese. Tetrahedron , 1978 , 34 : 3143~31795  T O Thomas. Tetrahedron Letters , 1967 , 3356  KOkawa and S Hase。 Bull Chem Soc Japan , 1963 , 36 : 7547  J C Sheehan and D D H Yang。 J Am Chem Soc , 1985 , 80 : 11548  M Waki and TMeienhofer。 J Org Chem , 1977 , 42 : 20199  F M F Chen and N L Benoiton , Synthesis , 1979 , 70910  K Hofmann , E Stutz , G Spuhler , et al。 J Amer Chem Soc , 1960 , 82 : 372711  T S Meek. S Minkowitz , and M M Miller , J Org Chem , 1959 , 24 : 13912  A Galat. Ind and Eng Chem , 1944 , 36 : 19213  GLosse and W Zonnchen. Annalen , 1960 , 636 : 140

14  A R Battersby and T P Edwards. J Chem Soc , 1960 , 121415  J Blodinger and GW Anderson. J Amer Chem Soc , 1952 , 74 : 55416  G Ruadbeck。 Amgew Chem , 1956 , 68 : 36917  H J Hagemeyer and D C Hull. Ind and Eng Chem , 1949 , 41 : 292018  F Dangeli , F Filira , and E Scoffone. Tetrahedron Lett , 1965 , 60519  L Kisfaludy , TMohacsi , MLow , et al. J Org Chem , 1979 , 44 : 65420  A GM Barrett and J C A Lana. J Chem Soc , Chem Commun , 1978 , 47121  A S Steinfeld , F Naider , and J M Becker。 J Chem Res , Synop , 1979 , 12922  R A Olofson and R V Kendall. J Org Chem , 1970 , 35 : 224623  E E Schallenberg and M Calvin。 J Amer Chem Soc , 1955 , 77 : 277924  F Weygand and E Frauendorfer。 Chem Ber , 1970 , 103 : 243725  ML Wolfrom and H B Bhat。 J Org Chem , 1967 , 32 : 192126  R A Lugas , D F Dickel , R L Uziemian. et al. J Amer Chem Soc , 1960 , 82 : 5688

27  H Newman。 J Org Chem , 1965 , 30 : 128728  TJ Curphey. J Org Chem , 1979 , 44 : 280529  A GM Barrett and J C A Lana。 J Chem Soc , Chem Commun , 1978 , 47130  L horner and H Neumann。 Chem Ber , 1965 , 98 : 346231  E Whit。 Org Synth , Collect 1973 , Vol V: 33632  A GM Barrett and J C A Lana。 J Chem Soc , Chem Commun , 1978 , 47133  A Holy and M Soucek。 Tetrahedron Lett , 1971 , 18534  N Ishikawa and S Shin2Ya。 Chem Lett , 1976 , 67335  A S Steinfeld , F Naider , and J M Becker。 J Chem Res , Synop , 1979 , 12936  L F Fieser。 Org Experiments , D C Heath Boston , 1964 , 11737  T Sasaki , KMinamoto , and H Itok。 J Org Chem , 1978 , 43 : 2320第1期 高旭红等:有机合成中的氨基保护及应用(综述) 85© 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved。38  D A Hoogwater , D N Reinhoudt , T S Lie , et al. Rell Trav Chim Pays2Bas , 1973 , 92 : 819

39  G H L Nefkens , G I Tesser , and R T F Nivard。 Red Trav Chim Pays2Bas , 1960 , 79 : 68840  GJager , R Geiger , and W Siedel. Chem Ber , 1968 , 101 : 353741  B Weinstein , T N S Ho R T Fukura , and E C Angell。 Synth Commun , 1976 , 61742  M Gerecke , T P Zimmerman , and W Aschwanden。 Helv Chim Acta , 1970 , 53 : 99143  L Zervas and D M Theodoropoulos。 J Amer Chem Soc , 1956 , 78 : 135944  J A Montgomery and H J Thomas. J Org Chem , 1965 , 30 : 323545  B Bezas and L Zervas。 J Amer Chem Soc , 1961 , 83 : 71946  F C M Chen and N L Benoiton. Can J Chem , 1976 , 54 : 331047  赵玉芬, 奚士庚, 古改姣, 等1Acta Chimica sinica , 1984 , 42 (4) : 35848  P D Carpenter and MLennon. J Chem Soc , Chem Commun , 1973 , 66449  王宗睦, 李 惟, 高光杰, 等1α2氨基酸α2氨基保护试剂亚磷酸二乙酯的研究. 吉林大学自然科学学报. 1989 , (3) : 85

5.9

百度文库VIP限时优惠现在开通,立享6亿+VIP内容

立即获取

氨基保护方法

氨基保护方法

胺类化合物对氧化和取代等反应都很敏感,为了使分子其它部位进行反应时氨基保持不变,通常需要用易于脱去的基团对氨基进行保护。例如,在肽和蛋白质的合成中常用氨基甲酸酯法保护氨基,而在生物碱及核苷酸的合成中用酰胺法保护含氮碱基。化学家们在肽的合成领域内,对已知保护基的相对优劣进行了比较并在继续寻找更有效的新保护基。除了肽的合成外,这些保护基在其它方面也有很多重要应用.

下面介绍保护氨基的一些主要方法和基团。

第 1 页

1  形成酰胺法

将胺变成取代酰胺是一个简便而应用非常广泛的氨基保护法。单酰基往往足以保护一级胺的氨基,使其在氧化、烷基化等反应中保持不变,但更完全的保护则是与二元酸形成的环状双酰化衍生物。常用的简单酰胺类化合物其稳定性大小顺序为甲酰基<乙酰基<苯甲酰基.

酰胺易于从胺和酰氯或酸酐制备,并且比较稳定,传统上是通过在强酸性或碱性溶液中加热来实现保护基的脱除.由于若干基质,包括肽类、核苷酸和氨基糖,对这类脱除条件不稳定,故又研究出了一些其他脱除方法,其中有甲酰衍生物的还原法,甲酰基以及对羟苯基丙酰基衍生物的氧化法,苯酰基和对羟苯基丙酰基衍生物的电解法,卤代酰基、乙酰代乙酰基以及邻硝基、氨基、偶氮基或苄基衍生物等“辅助脱除法”,等等。

第 2 页

为了保护氨基,已经制备了很多N2酰基衍生物,上述的简单酰胺最常用,卤代乙酰基衍生物也常用。这些化合物对于温和的酸水解反应的活性随取代程度的增加而增加:乙酰基〈 氯代乙酰基〈 二氯乙酰基〈 三氯乙酰基<三氟乙酰基。此外,在核苷酸合成的磷酸化反应中,胞嘧啶、腺嘌呤和鸟嘌呤中的氨基是分别由对甲氧苯酰基、苯酰基和异丁酰或甲基丁酰基予以保护的,这些保护基是通过氨解脱除的.另外,伯胺能以酰胺的形式加以保护,这就防止了活化的N2乙酰氨基酸经过内酯中间体发生外消旋化。

第 3 页

111  甲酰衍生物

胺类化合物很容易进行甲酰化反应,常常仅用胺和98 %的甲酸制备。甲酸乙酸酐也是一个有用的甲酰化试剂。对于某些容易发生消旋化的氨基酸可用甲酸和N ,N′2双环己基碳二亚胺(DCC) 在0 ℃时进行甲酰化反应,也可用酯类进行氨解。

甲酰胺类是相当稳定的化合物,因此广泛应用于肽的合成。甲酰基的脱除也有很多方法,氧化或还原法脱酰反应均可被采用。N2甲酰衍生物用15 %过氧化氢水溶液处理,可以顺利地进行氧化脱解。用氢化钠在二甲氧基乙烷中回流可以代替用酸或碱水解去除酰基。

第 4 页

112  乙酰基及其衍生物

胺类化合物的乙酰化或取代乙酰衍生物是用酰氯、酸酐进行酰化或在二环己基碳二亚胺(DCC) 或焦亚磷酸四乙基酯存在下,直接与酸综合加以制备,有时也可用酯或硫酯氨解的方法制备乙酰胺另一好的方法是用胺和乙烯酮〔15〕或异丙烯乙酸酯反应。如果用双烯酮〔17〕反应,则得到的是乙酰乙酰基衍生物。

用乙酰基保护氨基比用其他保护基要多。由于它比甲酰基更稳定,因此,在进行亲电取代、硝化、卤代等反应时常选择乙酰基来保护芳香胺。乙酰胺丙二酸酯也可用于合成α2氨基酸,但在脱乙酰基时所需的酸或碱性条件,可使分子内其他部位受影响.在脱去氨基糖上的乙酰基时,也可用肼解反应代替碱性水溶液。

第 5 页

近年来用卤代乙酰基尤其是三氟乙酰基保护N —H 键越来越得到重视,这个保护基可在温和的碱性条件下水解去掉,如用氨水、碱性离子交换树脂等,肽类上的三氯乙酰或三氟乙酰均可用硼氢化钠还原去掉。三氟乙酰基不仅用于肽的合成,而且也用于氨基糖类的保护。

在甾体、苷类合成中也有一些应用三氟乙酰基的重要实例,它既可以保护甾体上的氨基,也可以保护糖上的氨基。

怕孤独的发箍
神勇的洋葱
2026-01-25 18:27:40
基本信息:

中文名称

N-CBZ-(二乙氧基磷酸基)氨基酸甲酯

中文别名

cbz-氨基(二乙氧基膦)乙酸甲酯甲基2-(苄氧基羰基氨基)-2-(二乙氧基磷酰基)乙酸酯

英文名称

Methyl

2-(((benzyloxy)carbonyl)amino)-2-(diethoxyphosphoryl)acetate

英文别名

methyl

2-diethoxyphosphoryl-2-(phenylmethoxycarbonylamino)acetate

CAS号

114684-69-4

合成路线:

1.通过亚磷酸三乙酯合成N-CBZ-(二乙氧基磷酸基)氨基酸甲酯,收率约88%;

2.通过二乙基三甲基硅基亚磷酸酯合成N-CBZ-(二乙氧基磷酸基)氨基酸甲酯,收率约39%;

更多路线和参考文献可参考http://baike.molbase.cn/cidian/492877

无奈的雨
聪明的睫毛膏
2026-01-25 18:27:40
二氯化汞是就是氯化汞,可以看看下面的资料:

1.物质的理化常数:

国标编号 61030

CAS号 7487-94-7

中文名称 氯化汞

英文名称 mercuric chloride;mercury bichloride

别 名 氯化高汞;二氯化汞;升汞

分子式 HgCl2 外观与性状 无色或白色结晶性粉末,常温下微量挥发

分子量 271.50 蒸汽压 0.13kPa(136.2℃)

熔 点 276℃ 沸点:302℃ 溶解性 溶于水、乙醇、乙醚、乙酸乙酯,不溶于二硫化碳

密 度 相对密度(水=1)5.44 稳定性 稳定

危险标记 13(剧毒品) 主要用途 用作有机合成的催化剂、防腐剂、消毒剂和分析试剂

2.对环境的影响:

一、健康危害

侵入途径:吸入、食入、经皮吸收。

健康危害:汞离子可使含巯基的酶丧失活性,失去功能;还能与酶中的氨基、二巯基、羧基、羟基以及细胞内的磷酰基结合,引起相应的损害。

急性中毒:有头痛、头晕、乏力、失眠、多梦、口腔炎、发热等全身症状。可有食欲不振、恶心、腹痛、腹泻等。部分患都皮肤出现红色斑丘疹。严重者发生间质性肺炎及肾损害。口服可发生急性腐蚀性胃肠炎,严重者昏迷、休克,甚至发生坏死性肾病致急性肾功能衰竭。对眼有刺激性。可致皮炎。

慢性中毒:表现有神经衰弱综合征;易兴奋症;精神情绪障碍,如胆怯、害羞、易怒、爱哭等;汞毒性震颤;口腔炎。少数病例有肝、肾损伤。

二、毒理学资料及环境行为

毒性:高毒类。

急性毒性:LD501mg/kg(大鼠经口);41mg/kg(兔经皮)

亚急性和慢性毒性:动物慢性中毒的主要表现有行为改变,神经系统功能障碍,血液改变,以及肝肾损害。

致突变性:DNA修复:枯草菌50mmol/L。姊妹染色单体交换:仓鼠卵巢细胞3200nmol/L。

危险特性:与碱金属能发生剧烈反应。

燃烧(分解)产物:氯化物、氧化汞。

3.现场应急监测方法:

4.实验室监测方法:

冷原子吸收光谱法《作业环境空气中有毒物质检测方法》,陈安之主编

双硫腙比色法《作业环境空气中有毒物质检测方法》,陈安之主编

5.环境标准:

中国(TJ36-79) 车间空气中有害物质的最高容许浓度 0.1mg/m3

前苏联 地面水中最高容许浓度 5μg/L

前苏联(1975) 污水排放标准 0.01mg/L[以Hg2+计]

6.应急处理处置方法:

一、泄漏应急处理

隔离泄漏污染区,限制出入。建议应急处理人员戴自给式呼吸器,穿防毒服。不要直接接触泄漏物。小量泄漏:避免扬尘,用洁净的铲子收集于干燥、洁净、有盖的容器中。大量泄漏:用塑料布、帆布覆盖,减少飞散。然后收集、回收或运至废物处理场所处置。

二、防护措施

呼吸系统防护:作业工人应该佩戴头罩型电动送风过滤式防尘呼吸器。必要时,佩戴隔离式呼吸器。

眼睛防护:戴化学安全防护眼镜。

身体防护:穿连衣式胶布防毒衣。

手防护:戴橡胶手套。

其它:工作现场禁止吸烟、进食和饮水。工作毕,淋浴更衣。单独存放被毒物污染的衣服,洗后备用。保持良好的卫生习惯。

三、急救措施

皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。

眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

食入:误服者用水漱口,给饮牛奶或蛋清。就医。

灭火方法:本品不燃。消防人员必须穿戴全身防火防毒服。灭火剂:砂土、水。