建材秒知道
登录
建材号 > 乙醇 > 正文

燃料乙醇

虚幻的柚子
无聊的雨
2022-12-21 22:43:26

燃料乙醇

最佳答案
哭泣的毛豆
鳗鱼灯泡
2026-01-25 11:20:24

燃料乙醇,又叫生物乙醇,是指通过生物处理过程得到的乙醇。如今乙醇已有95%是生物乙醇,只有5%是由原油、天然气或煤炭生产的。目前,乙醇生产主要以淀粉类(粮食作物为主,如玉米、木薯等)和糖类(如甘蔗、甜菜等)作为发酵原料,采用微生物法发酵生产乙醇技术已成熟,但是高昂的原料成本使粮食发酵生产乙醇的工业应用受到限制,同时存在与人争粮或与粮争地等弊端,因此寻找新的原料势在必行。

纤维素(cellulose)是地球上最丰富的可再生资源,据测算年总产量高达1500×108t,其中蕴储着巨大的生物质能。我国每年作物秸秆(如稻草、麦秆等)的产量可达7×108t左右(相当于5×108t标煤)。纤维素是一种多糖物质,每个纤维素大分子是由n个葡萄糖残基(葡萄糖酐),彼此以1-4甙键(氧桥)联结而形成的。如图16.1所示。

图16.1 纤维素结构示意

纤维素在常温下不发生水解,高温下水解也很缓慢。只有在催化剂的作用下,纤维素的水解反应才显著进行,常用的催化剂是无机酸或纤维素酶。纤维素酶在生物乙醇转化过程中起着非常重要的作用,可将纤维素、半纤维素水解成葡萄糖,为转化为乙醇提供丰富的底物;自然界中的酵母和少数细菌能够在厌氧条件下发酵葡萄糖生成乙醇。其中,纤维素酶水解方程式如下(牟晓红,2009):

木霉生物学

利用纤维素酶将天然纤维素降解成葡萄糖的过程中,必须依靠纤维素酶的3种组分协同作用完成,即纤维素大分子首先在内切型-β-葡聚糖酶(EC3.2.1.4,也称Cx酶、CMC酶、EG)和外切型-β-葡聚糖酶(EC3.2.1.91,也称Cl酶、纤维二糖水解酶或CBH)的作用下降解成纤维二糖,再进一步在纤维二糖酶(EC3.2.1.21,也称β-葡萄糖苷酶或CB)作用下生成葡萄糖。

目前,国内外以植物纤维素为原料生产燃料乙醇的各种工艺中,主要有四种糖化发酵工艺,分别是分段糖化与发酵(SHF)、同步糖化发酵(SSF)、同步糖化共发酵(SSCF)和联合生物加工工艺(CBP)。SSCF工艺可以在同一发酵罐中同时进行纤维素酶水解和C5糖和C6糖的发酵,该工艺不仅有利于缓解葡萄糖对纤维素酶的反馈抑制作用,节省设备投资,还有利于发酵液中乙醇的积累,提高发酵液中最终的乙醇浓度,降低乙醇回收单元中乙醇蒸馏的能耗,大幅度降低生产成本。利用纤维素生产生物乙醇的同步糖化共发酵过程图如图16.2(Carlos Sáez,2000)。

许多微生物都会产生纤维素酶,但最适合于水解纤维素的酶来自于木霉。T.reesei是世界上研究和应用最广泛的纤维素酶工业微生物,它的优点在于它的酶系纤维素酶活性高并且能生产大量的胞外蛋白,它的酶系中60%以上的蛋白是外切酶(CBH),对于结晶性纤维素有很强的降解能力。

图16.2 纤维素原料生产乙醇示意

1998年,南京林业大学在黑龙江建成了完整的植物纤维生产燃料乙醇中试生产线,该生产线日处理农林植物纤维5t(日产乙醇0.8t)。风干植物纤维经蒸汽爆破预处理,纤维素酶制备所用菌株是T.reesei和酵母菌NL05,纤维素酶的制备在20m3的生物反应器中进行,T.reesei以汽喷料为碳源,在一定的搅拌速度和通风量下合成纤维素酶,完成一个产酶周期后酶液用于剩余汽喷料的水解。植物纤维的酶水解在2台32m3的反应器中进行,每天取汽喷料的10%用于纤维素酶的制备,产生的纤维素酶酶解剩余90%的汽喷料。酶解温度(50±1)℃、酶解初始 pH 值4.80。戊糖己糖同步乙醇发酵菌株是毕赤酵母NL02,酶水解液的乙醇发酵在一台5m3的发酵罐中进行。植物纤维汽喷料在纤维素酶的作用下降解成单糖后,经过压滤和洗涤得到一定浓度的水解糖液,水解糖液中的戊糖和己糖被酵母在限制性供氧条件下同步发酵成乙醇。

美国能源部与诺维信合作,投资3000万美元进行纤维素水解酶的开发,研究将玉米秸酶解成糖,再发酵制乙醇;还与DOE合作建设年处理玉米秸200t、生产燃料乙醇6900gal的中试装置,其生产技术分以下几步:先将玉米秸粉碎,用1.1%硫酸预处理;然后加木霉纤维素酶糖化36 h,使纤维素90%转化成葡萄糖;将糖浆冷却至41℃,连续发酵得到浓度为7.5%的乙醇;经蒸馏分子筛吸附脱水,生成99.5%乙醇,废渣经干燥用作燃料。

另外,Stevenson等(2002)报道了利用木霉直接发酵纤维素生产乙醇的方法,这更扩展了木霉发酵生产乙醇的途径。他们从牛粪中分离到一株木霉菌A10,该菌株在厌氧条件下可以将纤维素或者糖类物质直接转化为乙醇,在纤维素含量为50g/L的MM培养基中厌氧培养,乙醇产量为0.4mg/L,通过优化培养条件,采取分阶段预培养和深层厌氧培养后乙醇产量可达2g/L,以葡萄糖作为碳源乙醇产量最高可达5g/L,但以木糖作为碳源,乙醇产量最低。

最新回答
笑点低的丝袜
魁梧的白开水
2026-01-25 11:20:24

年长1万吨无水乙醇的生产工艺及设备方案【摘要】【关键词】燃料乙醇 生产工艺 物料衡算 设备选型【正文】1、前言 无水乙醇是一种应用很广泛的有机溶剂,是一种可再生的生物能源。其中燃料乙醇被认为是替代和节约汽油的最佳原料之一,能和汽油以一定的比例混配成一种车用原料。乙醇的生产有化学合成法和生物发酵法,随着全球石油的缩减,化学合成已受限制,生物发酵生产乙醇受各方推崇和应用。生物发酵法是利用淀粉质原料或糖质原料,在微生物作用下生成乙醇的方法。淀粉质原料生产乙醇过程包括:原料粉碎、蒸煮糖化、酒母制备、发酵及蒸馏精制等工序。2、燃料乙醇2.1乙醇性质 酒精是一种无色透明、易挥发,易燃烧,不导电的液体。有酒的气味和刺激的辛辣滋味,微甘。学名是乙醇, 分子式C2H6O,(酒精燃烧C2H5OH+3O2=2CO2↑+3H2O)因为它的化学分子式中含有羟基,所以叫做乙醇,比重0.7893(20/4°)。 乙醇的分子量:46

外观与性状: 无色液体,有酒香。

燃点:75℃ 熔点:-114.1℃ 沸点(一标准大气压下): 78.3 ℃

相对密度(水=1): 0.79 相对蒸气密度(空气=1): 1.59 饱和蒸气压(kPa): 5.33(19℃)

燃烧热(kJ/mol): 1365.5

临界温度(℃): 243.1临界压力(MPa): 6.38

辛醇/水分配系数的对数值: 0.32闪点(℃): 12

引燃温度(℃): 363

爆炸上限%(V/V): 19.0爆炸下限%(V/V): 3.3 2.2类别和主产品 工业乙醇(该方案的产品是燃料乙醇)工业酒精含乙醇96%以上,还含少量甲醇和其他物质。 甲醇是有害的。它可以挥发,对呼吸系统有害。有人用工业酒精(含甲醇的乙醇)做酒,饮用后可导致失明。 食用乙醇:食用酒精使用粮食和酵母菌在发酵罐里经过发酵后,经过过滤、精馏来得到的产品,通常为乙醇的水溶液,或者说是水和乙醇的互溶体,食用酒精里不含有对人体有毒的苯类和甲醇。 药用乙醇:乙醇含量在75%左右无水乙醇:无水乙醇的酒精含量极高,分为化学纯和分析纯,化学纯的含量大于等于99.5%,分析纯的含量在99.9%以上。 燃料乙醇是指未加变性剂的、可作为燃料用的无水乙醇。燃料乙醇可缓解能源紧张,减少环境污染,促进农业发展。3、生产工艺3.1总流程双酶糖化间歇(或连续)发教酒精流程示意图a-淀粉酶 糖化酶 ↓ ↓薯干→粉碎机→调浆罐→连续蒸煮器→蒸煮醪→糖化锅 废槽 ↖ ↓酒精←分子筛脱水 ← 蒸馏←成熟发酵醪←发酵醪←糖化醪杂醇油 ↙↙ ↓ ↙ ↓ 酵母种→斜面试管→摇瓶培养→小酒母罐→大酒母罐↑ ↗↓ 空气→空压机→过滤器→无菌空气 酒母醪3.2原料及原料预处理3.2.1原料 薯干:含淀粉68%,水分13%,直接从市场购买。水:包括粉料液化糖化用水、发酵用水、蒸馏车间用水和清洗用水等,都利用城市自来水或是自来水经过一系列灭菌消毒的无菌水。淀粉酶和糖化酶:a-淀粉酶用量为8u/g原料,糖化酶用量为100u/g原料,酒母糖化醪用糖化酶量200u/g原料。硫酸和硫酸铵等:硫酸铵用量8kg/t(酒精),硫酸用量(调pH用)5.5kg/t(酒精)。乙醇酵母:发酵用的菌种,将糖化醪发酵产生乙醇、CO2和其他副产物。3.2.2原料预处理 薯干预处理示意图原料薯干→筛选→浮选→磁选→破碎→制浆→液化(糊化) ↓ ↓ ↘↓纤维、泥沙 石块、砖块 铁杂糖化 ← 冷却 ↑ 糖化酶3.2.2.1原料除杂和粉碎(1)淀粉质原料在收集时,会混进沙土、杂物,甚至金属夹杂物等。一般采用先振动筛筛选,再磁力除铁器磁选以除去杂质。(2)淀粉质原料中淀粉颗粒常以颗粒状态储存于细胞中,不宜被直接利用。粉碎后有利于增加原料表面积,加快吸水速度,缩短水热处理时间;有利于淀粉酶的作用,提高淀粉的转化率,同时有利于原料在生产过程中的输送。粉碎方法有干式粉碎和湿式粉碎,此次采用湿式粉碎进行生产(3)由粉尘损失造成的淀粉损失率约为0.40%。3.2.2.2水热处理(液化)和连续蒸煮糖化(1)淀粉的液化:是利用淀粉液化酶使糊化的淀粉黏度降低,并水解成糊精和低聚糖的过程。 使用耐高温的a-淀粉酶,采用95℃的处理温度,使用普通a-淀粉酶,采用85℃处理温度。现采用低压喷射液化器来完成淀粉的液化。调浆温度为50℃,喷射液化器使粉浆迅速升温至105 ℃,进入维持管保温液化5~8min,真空闪急蒸发冷却至95 ℃进入液化罐反应约60min后,进真空冷却器冷却至63 ℃后糖化30min。低压喷射液化处理工艺粉料→加水制浆→喷射液化→保温液化→冷却糖化 ↑ ↑ a-淀粉酶蒸汽 (2)淀粉的糖化:是利用糖化酶将淀粉液化的产物进一步水解成葡萄糖的的过程,并为发酵提供含糖适量并保持一定酶活力的无菌或极少杂菌的醪液。 糖化温度一般根据糖化酶的最适作用温度进行控制,即58~60℃为宜,糖化酶作用的最适pH为4.2~5.0。醪液的pH太高或太低都将破坏酶的活力,不利于糖化。 糖化酶用量一般为每克淀粉使用80~150U,视原料品种、糖化方式等定量。 糖化时间不宜过长,一般在15~25min的范围,也可以根据糖化醪进行调控,即以产生25%~35%的还原糖的时间为宜。蒸煮糖化中由于淀粉残留及糖分破坏造成的淀粉损失约为0.40%。3.2.2.3乙醇酵母的培养 麦芽汁 麦芽汁 麦芽汁 糖化醪琼脂 →↓ ↓ ↓ ↓酵母→斜面试管→液体试管→三角瓶培养→卡氏罐培养→小酒母罐培养→大酒母罐培养→发酵罐 ↖ ↗糖化醪 乙醇酵母的培养(酒母1:10扩大培养)(1)原菌种斜面培养:麦芽汁琼脂,25~30℃培养3~5天(冰箱4℃保存备用)。(2)液体试管:10°Bx麦芽汁,灭菌冷却至25~30℃,无菌接种置25~30℃培养20h。(3)三角瓶培养:1/3麦芽汁和2/3糖化醪, 25~30℃培养12~14h,pH4~6(4)卡式罐培养:糖化醪,25~30℃培养12~14h,pH4~6(5)小酒母罐、大酒母罐培养:糖化醪,25~30℃培养12~14h,pH4~63.3乙醇发酵 ——菌种:乙醇酵母;培养基:薯干糖化醪→发酵醪;pH:4.2~4.5(1)前发酵期:醪液中酵母密度小,酵母进行适应,发酵作用不强。实际生产时,酒母量在10%左右,前发酵期时间为6~8h,连续发酵时,前发酵期基本不存在。(2)主发酵期:酵母不再大量繁殖,而主要进行乙醇发酵,发酵作用强烈,糖分消耗迅速,乙醇逐渐增加。主发酵温度控制在30~34℃ 不得高于34~35℃,发酵时间一般为12~15小时。(3)后发酵期:醪液中的糖分已大部分被发酵,但醪液中残存的糊精等多糖成分继续被转化为可发酵性糖,酵母把它转化为乙醇。后糖化作用速度比糖发酵速度要慢得多,乙醇和CO2生产量减少,表观看来气泡不断产生,但醪液不再翻动。后发酵期一般需40小时左右才能完成,保持醪液温度在30℃±1℃ 。(4)发酵过程中的淀粉损失率:发酵残糖——1.3%巴斯德效应——4.0%酒气自然蒸发与被CO2带走——0.30% (若有酒精捕捉器,损失为0.30%)3.4分离纯化和蒸馏精制分离纯化工艺流程图发酵罐→泵→醪塔→浓缩塔→粗酒精→分子筛塔A、B→冷凝↖ ↗ ↑ ↓蒸汽 蒸汽无水乙醇过程中的淀粉损失率:(1)废槽带走等——1.60%

(2)脱水损失——1.0%3.5副产品利用和废水废渣处理酒精槽→固液分离→滤液→处理→澄清液→回用及生物处理 ↓ ↓ 滤渣→饲料 ← 泥浆4、物料衡算(1)生产方法:双酶糖化、间歇发酵、塔蒸馏。(2)生产天数:每年300d。 (3)燃料酒精日产量:344t。(4)燃料酒精年产量:100200t。(5)产品质量:国际燃料酒精,乙醇含量99.5%以上(体积分数)(6)主原料:薯干原料含淀粉68%,水分13%。(7)酶用量:a-淀粉酶用量为8u/g原料,糖化酶用量为100u/g原料,酒母糖化醪用糖化酶量200u/g原料。(8)硫酸铵用量8kg/t(酒精),硫酸用量(调pH用)5.5kg/t(酒精)。一 、原料计算①糖化:(C6H12O5)n + nH2O → n C6H12O6 (1-1) 16218 180发酵:C6H12O6 → 2 C2H5OH + 2CO2 (1-2)180 46×2 44×2②生产1000kg燃料酒精的理论淀粉消耗量由(1-1)和(1-2)求得:1000×99.18%×162÷92=1746.5(kg)燃料酒精体积分数99.5%换算成质量分数为99.18%。③生产1000kg燃料酒精的实际淀粉消耗量表(3-1) 生产过程各阶段淀粉损失率生产过程损失原因淀粉损失率%备注原料处理粉尘损失0.40蒸煮糖化淀粉残留及糖分坏0.40发酵发酵残糖1.3发酵巴斯德效应4.0发酵酒气自然蒸发与被CO2带走0.30加酒精捕集器0.30%蒸馏废槽带走等1.60脱水脱水损失1.0总计损失9.01746.5÷(100%-9.0%)=1919.2(kg)④生产1000kg燃料酒精的薯干原料消耗量薯干原料含淀粉68%,水分13%1919.2÷68%=2822.4(kg)⑤a-淀粉酶消耗量应用酶活力为20000u/g的a-淀粉酶液化酶用量:2822.4×1000×8÷20000=1.29(kg)⑥糖化酶耗量糖化酶活力为100000u/g。使用量为100u/g原料2822.4×1000×100÷100000=2.82(kg)此外,酒母糖化酶用量按200u/g(原料)计,且酒母用量为10%2822.4×10%×70%×200÷100000=0.395(kg)式中70%为酒母的糖化液占70%。其余为稀释水与糖化剂。两项合计,糖化酶用量为3.215kg。⑦硫酸铵耗用量作为补充氮源,其用量为酒母用量的0.1%。二、蒸煮醪量的计算淀粉原料连续蒸煮的粉料加水为1:2,故粉浆量为:2822.4×(1+2)=8467.2(kg)经喷射液化连续蒸煮,最终蒸煮醪液量为8597.4kg。三、糖化醪与发酵醪量的计算设发酵结束后成熟醪量含酒精10%(体积分数),相当于8.01%(质量分数)。并设蒸馏效率为98.4%,而且发酵罐酒精捕集器回收酒精洗水和洗罐用水分别为成熟醪液的5%和1%,则生产1000kg99.18%(质量分数)酒精成品计算如下:① 需蒸馏的成熟发酵醪量为:F=1000×99.18%÷98.4%÷8.01%×(100+5+1)÷100=13338.4(kg)② 若不计酒精捕集器和洗罐用水,则成熟发酵醪量为:13338.4÷106%=12583.4(kg)③ 入蒸馏塔的成熟醪乙醇浓度为:1000÷98.4%÷13338.4=7.62%(质量分数)④ 相应发酵过程放出CO2总量为991.8÷98.4%×44÷46=964.1(kg)⑤接种量按10%计,则酒母醪量为m:(2583.4+964.1)÷【(100+10)÷100】×10%=1231.6(kg)⑥酒母醪的70%是糖化醪,其余为糖化剂和稀释水,则糖化醪量为:(2583.4+964.1)÷【(100+10)÷100】+1231.6×70%=13178.0(kg)四、10000t/a薯干原料酒精厂总物料衡算① 酒精成品日产燃料酒精量为:10000÷300=33.3(t),取整数位34t/d实际年燃料酒精总产量为:34×300=10020(t/a)② 主要原料薯干用量日耗量为:2822.4×34=95961.6(kg/d)年耗量为:95961.6×300=2.879×106(kg)=282885(t/a)表(4-1)10000t/a薯干原料酒精厂物料衡算表物料﹨数量生产1000kg燃料酒精物料量/kg每天数量/t每年数量/t燃料酒精10003410020薯干原料2822.495.961628788.48a-淀粉酶1.1290.0383911.5158糖化酶3.2150.1093132.793硫酸铵1.2320.0418912.5664硫酸5.50.18756.1蒸煮粉浆8467.2287.88586365.44成熟蒸煮醪8597.4292.31287693.48糖化醪13178448.052134415.6酒母醪1231.641.874412562.32蒸馏发酵醪13338453.506136051.7二氧化碳964.132.77949833.82废醪13550460.697138209

忧伤的手套
感动的狗
2026-01-25 11:20:24

工业上一般用淀粉发酵法或乙烯直接水化法制取乙醇:

1、发酵法

糖质原料(如糖蜜、亚硫酸废液等)和淀粉原料(如甘薯、玉米、高梁等)发酵;

发酵法制乙醇是在酿酒的基础上发展起来的,在相当长的历史时期内,曾是生产乙醇的唯一工业方法。

发酵法的原料可以是含淀粉的农产品,如谷类、薯类或野生植物果实等;也可用制糖厂的废糖蜜;或者用含纤维素的木屑、植物茎秆等。这些物质经一定的预处理后,经水解(用废蜜糖作原料不经这一步)、发酵,即可制得乙醇。

发酵液中的质量分数约为6%~10%,并含有其他一些有机杂质,经精馏可得95%的工业乙醇。

2、乙烯水化法

乙烯直接或间接水合。

乙烯直接水化法,就是在加热、加压和有催化剂存在的条件下,是乙烯与水直接反应,生产乙醇:

(catalyst是催化剂,pressure是加压)

此法中的原料—乙烯可大量取自石油裂解气,成本低,产量大,这样能节约大量粮食,因此发展很快。

扩展资料:

乙醇储存方法:

螺纹口玻璃瓶、铁盖压口玻璃瓶、塑料瓶或金属桶(罐)外普通木箱;螺纹口玻璃瓶、塑料瓶或镀锡薄钢板桶(罐)外满底板花格箱、纤维板箱或胶合板箱。

小开口钢桶;小开口铝桶;螺纹口玻璃瓶、铁盖压口玻璃瓶、塑料瓶或金属桶(罐)外木板箱。

包装类别:O53;Ⅱ类

包装标志:易燃品;7

乙醇运输方法

铁路运输时应严格按照铁道部《危险货物运输规则》中的危险货物配装表进行配装。运输时单独装运,运输过程中要确保容器不泄漏、不倒塌、不坠落、不损坏。运输时运输车辆应配备相应品种和数量的消防器材。

严禁与酸类、易燃物、有机物、氧化剂、自燃物品、遇湿易燃物品等并车混运。运输时车速不宜过快,不得强行超车。运输车辆装卸前后,均应彻底清扫、洗净,严禁混入有机物。储存于阴凉、通风的库房。远离火种、热源。

库温不超过30℃,相对湿度不超过80%。包装要求密封,不可与空气接触。应与还原剂、活性金属粉末、酸类、食用化学品分开存放,切忌混储。储区应备有合适的材料收容泄漏物。

储存于阴凉、通风仓间内。远离火种、热源。仓内温度不宜超过30℃。防止阳光直射。保持容器密封。应与氧化剂分开存放。储存间内的照明、通风等设施应采用防爆型,开关设在仓外。配备相应品种和数量的消防器材。

桶装堆垛不可过大,应留墙距、顶距、柱距及必要的防火检查走道。储罐时要有防火防爆技术措施。露天储罐夏季要有降温措施。禁止使用易产生火花的机械设备和工具。灌装时应注意流速(不超过3m/s),且有接地装置,防止静电积聚。

参考资料:

百度百科-乙醇

动人的金毛
虚拟的板栗
2026-01-25 11:20:24

制造燃料乙醇的原料分为三种:

1、玉米、小麦等粮食作物;

2、红薯、木薯、甜高粱等非粮作物;

3、农作物秸秆、林业加工废料、甘蔗渣及城市垃圾中所含的废弃物。

燃料乙醇的主要原料有雅津甜高粱、玉米、木薯、海藻、雅津糖芋、苦配巴树等。

扩展资料:

燃料乙醇拥有清洁、可再生等特点,可以降低汽车尾气中一氧化碳和碳氢化合物的排放。未来我国燃料乙醇行业的重点是降低生产成本、减少政府补贴。

为此制定生物燃料乙醇生产过程的消耗控制规范,及产品质量技术标准,统一燃料乙醇生产消耗定额标准,包括物耗、水耗、能耗等,是降本增效的有力手段。

参考资料来源:

百度百科-燃料乙醇

慈祥的篮球
醉熏的蜜粉
2026-01-25 11:20:24
酒精是一种重要的工业原料,广泛应用于食品,化工、

医药等领域,而且可以部分或全部替代汽油,具有安全、清

洁、可再生等优点。传统的酒精生产主要以糖蜜、薯类、谷物

为原料发酵而成。近年来,随着人口增长和经济的发展以及

可利用耕地面积的减少使得酒精生产成本日趋增高,利用

丰富、廉价的玉米秸秆为原料生产酒精已成为必然趋势。我

国是一个农业大国,各种纤维素原料资源非常丰富,仅玉米

秸秆年产量大约2亿吨。目前,玉米秸秆除了少部分被利用

外,大部分以堆积、焚烧等形式直接倾入环境,极大地污染

了环境,也是一种资源浪费。如果将玉米秸秆经过预处理后

水解,其所含的纤维素和半纤维素可分解成糖,经发酵可转

化为酒精,转热效率可达30%以上。这样不但缓解人类所面

临的食物短缺,环境污染、资源危机等一系列问题,而且还

能实现人类的可持续发展,因而近年来玉米秸秆成为生物

能源领域的研究热点。

1玉米秸秆简介

玉米秸秆主要由植物细胞壁组成,基本成分为纤维素、

半纤维素和木质素等。木质素将纤维素和半纤维素层层包

围。纤维素是一种直链多糖,多个分子平行排列成丝状不溶

性微小纤维,半纤维素主要由木糖、少量阿拉伯糖、半乳糖、

甘露糖组成,木质素是以苯丙烷及衍生物为基本单位组成

的高分子芳香族化合物。其中,木质素是一种燃料,半纤维

素可水解为五碳糖,而纤维素水解为六碳糖比较困难。

2玉米秸秆预处理

由于玉米秸秆结构复杂,不仅纤维素、半纤维素被木质

素包裹,而且半纤维素部分共价和木质素结合,同时纤维素

具有高度有序晶体结构。因此必须经过预处理,使得纤维

素、半纤维素、木质素分离开,切断它们的氢键,破坏晶体结

构,降低聚合度。常见预处理方法有物理法、化学法、物理化

学法和微生物法等。

2.1挤压膨化法

该方法属于物理处理法,是将原料粉碎后调节至一定

水分,加入挤压机内,物料在螺杆的旋转推动下向前运动,

同时被剪切、挤压。并且在摩擦热的作用下温度可接近

140℃然后从挤压机中喷出,物料的压力突然降低、体积迅

速膨胀,纤维素晶体结构被破坏,从而为纤维素的酶解处理

创造条件。这种预处理方法生产过程连续,不需要消耗蒸

汽,而且具有灭菌效果。

2.2湿氧化法

湿氧化法属于化学处理法,是指在加温加压条件下,水

和氧气共同参加的反应。湿氧化法对玉米秸秆处理效果很

好,纤维素遇碱,只引起纤维素膨胀,形成了碱化纤维素,但

能保持原来骨架,加入Na2CO3后起缓和作用,能防止纤维

素被破坏,使木质素和半纤维素溶解于碱液中而与纤维素

分离。这样得到的纤维素纯度较高,且副产物很少。匈牙利

Eniko等人采用湿氧化法在195℃,15min,1 200千帕O2,

Na2CO32g/L条件下,对60g/L玉米秸秆进行预处理。其中

60%半纤维素、30%木质素被溶解,90%纤维素呈固态分离出

来,纤维素酶解转化率(ECC)达85%左右。

2.3酸处理法

酸处理法也是一种化学处理法,这种方法可追溯到

1980年,而在德国可能更早。该法是采用硫酸、硝酸、盐酸、

磷酸等对纤维素原料进行预处理,其中以硫酸研究和应用

的最多。处理后,半纤维素首先水解得到无碳糖,纤维素的

结晶结构被破坏,原料疏松,可发酵性强。但水解前必须将

pH值调整到中性,还应该注意反应器的耐酸性。

2.4蒸汽爆破法

蒸汽爆破法属于物理处理化学法,是用蒸汽将原料加

热至180~200℃,维持5~30min,也可加热到245℃,维持

0.5~2.0min。高温高压造成木质素的软化,然后迅速使原料

减压,造成纤维素晶体和纤维束的爆裂,使木质素和纤维素

分离。该法成本较高,在我国可采用北京林业大学赖文衡教

授研究的间歇蒸汽汽爆器对玉米秸秆进行爆破处理,经这

种爆破器爆破的玉米秸秆,纤维素水解转化率(ECC)可达

70%以上。

2.5生物方法

生物处理方法具有节约化工原料、能源和减轻环境污

染等方面的优点。有许多微生物能产生木质素分解酶,如白

腐菌,其分解木质素的能力较强,但活性较低,而且微生物

处理周期长、菌体会破坏部分纤维素和半纤维素,降低纤维

素的水解率,因此难以得到利用。瑞典等北欧国家则利用无

纤维素酶的担子菌突变株对纤维素材料进行脱木质素处

理,取得了一定的效果。

玉米秸秆发酵生产燃料酒精研究现状及前景

武秀琴1,2马灿玲3

(1天津科技大学,中国天津3002222河南工程学院环境工程系3郑州师范高等专科学校生物系)

摘要玉米秸秆是一种丰富的再生资源,主要由纤维素、半纤维素、木质素组成。经过预处理、水解、发酵可生产酒精。预处理方法主要

有物理法、化学法、物理化学法及生物处理法水解主要有酸水解法和酶水解法发酵主要有直接发酵法、间接发酵法、同步糖化发酵法等。

介绍了玉米秸秆生产乙醇的关键技术进展情况。

关键词秸秆酒精预处理研究进展

中图分类号TS262.2文献标识码A文章编号1007-5739(2008)13-0240-02

收稿日期2008-05-07

240现代农业科技》2008年第13期

3水解工艺

玉米秸秆进行预处理后,纤维素水解只有在催化剂存

在的情况下才能显著进行。常用催化剂是无机酸和酶,由此

分别形成了酸水解工艺和酶水解工艺,酸水解工艺又分为

稀酸水解和浓酸水解。水解主要是破坏纤维素、半纤维素的

氢键,使之转化为发酵的单糖。

3.1浓酸水解

用70%的硫酸50℃下在反应器中反应2~6h,半纤维素

首先被降解,溶解在水里的物质经过几次浓缩沥干后得到

糖,半纤维素水解后的固体残渣经过脱水后,在30%~40%的

硫酸中浸泡1~4h。溶液再经脱水和干燥后,在70%的硫酸下

反应1~4h,回收的糖和酸溶液经过离子交换,分离出的酸在

高效蒸发器中重新浓缩,剩余的固体残渣则再循环利用到

下一次的水解中。浓酸水解过程的主要优点是糖的回收率

高,大约有90%的半纤维素和纤维素转化的糖被回收。但浓

硫酸腐蚀性强,而且从经济方面考虑必须回收浓硫酸,增加

了工艺的复杂程度。

3.2稀酸水解

为了解决浓酸水解法存在的问题,一般采用稀硫酸

(0.2%~0.5%),在较温和条件下进行。此时水解一般分2个

阶段:第1阶段为低温操作,从半纤维素获得最大糖产量

第2阶段采用高温操作使纤维素水解为六碳糖,糖的转化

率一般为50%左右。但稀酸水解容易产生大量副产物。

3.3酶水解

酶水解是利用产纤维素酶的微生物或者纤维素酶制

品,直接将半纤维素、纤维素水解成可发酵糖。与酸水解相

比,它可在常压下进行,反应条件温和、效率高、能耗低、选

择性强、环保效果好,显示出良好的应用价值和前景。水解

后可形成单一产物,产率较高(>95%)。匈牙利Eniko等人采

用NovoYm188等水解经湿氧化处理的玉米秸秆,酶解纤维

素转化率(ECC)高达85%。

该法的关键在于纤维素酶的获得和利用,同时要考虑

纤维素酶的成本。丹麦诺维信公司曾经宣布其纤维素酶生

产成本已比当初降低了12倍,现在该公司又取得了重大进

展,纤维素酶生产成本已比最初降低了20倍,生产lL燃料

级乙醇所需纤维素酶的成本已低于6.6美分。这极大地推进

了燃料乙醇的商业化进程。

4发酵工艺

由于农作物秸秆的相当部分由半纤维素构成,其水解

产物为以木糖为主的五碳糖,还有相当量的阿拉伯糖生成

(可占五碳糖的10%~20%),故五碳糖的发酵效率是决定过

程经济性的重要因素。木糖的存在对纤维素酶水解起抑制

作用,将木糖及时转化为酒精对玉米秸秆的高效率酒精发

酵是非常重要的。目前人们研究最多且最有工业应用前景

的木糖发酵产乙醇的微生物有3种酵母菌种,即管囊酵母、

树干毕赤酵母和体哈塔假丝酵母,主要的发酵方法有以下

几种。

4.1直接发酵法

直接发酵法是基于纤维分解细菌直接发酵纤维素生产

乙醇,不需要经过酸水解或酶水解前处理过程。一般利用混

合菌直接发酵,例如热纤梭菌(Clostridium thermoceUum)能

分解纤维素,但乙醇产率较低(50%),热硫化氢梭菌(Col-

stridium thermohydz)不能利用纤维素,但乙醇产率相当高,

如果进行混合发酵,产率可达70%。吕福英介绍了热纤梭菌

的生理生化特性及发酵生产的研究进展,并对热纤梭菌发

酵生产乙醇的因素以及乙醇等发酵产物对热纤梭菌的抑制

作用作了概述。但热纤梭菌产生乙醇也存在以下问题:发酵

不完全、发酵速度慢、终产物乙醇和有机酸对细胞有相当大

的毒性,需要进一步改进。

4.2间接发酵法

间接发酵是目前研究最多的一种方法。使用纤维素酶

水解纤维素,收集酶解后的糖液作为酵母发酵的碳源,先用

纤维素酶水解纤维素,酶解后的糖液作为发酵碳源。但是受

末端产物抑制,低细胞浓度以及底物基质抑制作用影响乙

醇产量。因此可采取的方法有:减压发酵法和阿尔法—拉伐

公司的Bi-otile法,还可以通过筛选在高糖浓度下存活并能

利用高糖的微生物突变菌株来克服基质抑制。

4.3同步糖化发酵法(SSF法)

这种方法的原理和间接发酵法相同,是为了克服反馈

抑制作用,由Gauss等提出的在同一反应器中糖化和发酵同

步进行。这样纤维素酶对纤维素的酶水解和发酵糖化过程

在同一装置内连续进行。水解产物葡萄糖由于菌体的不断

发酵而被利用,消除了葡萄糖因基质浓度对纤维素酶的反

馈抑制作用。在工艺上采用一步发酵法,简化了设备,节约

了总生产时间,提高了生产效率。当然也存在一些抑制因

素,如木糖的抑制作用,糖化和发酵温度不协调。张继泉在

这方面进行了大量的实验研究,并取得了一定的进展。

4.4固定化细胞发酵

固定化细胞发酵能使发酵罐内细胞浓度提高,细胞可

连续使用,使最终发酵液酒精浓度得以提高。常用的固定化

载体有海藻酸钠、卡拉胶、多孔玻璃等。固定化细胞的新动

向是混合固定细胞发酵,如酵母与纤维二糖酶一起固定化。

将纤维二糖基质转化成乙醇,被看作是玉米秸秆生产乙醇

的重要方法。

5结论与展望

今后,玉米秸秆生产酒精的研究方向将主要集中在以

下几个方面。

5.1预处理方法

单纯的物理法和化学法不足以破坏纤维素晶体结构以

及去除半纤维素和木质素,应综合运用物理法与化学法,一

步完成预处理和水解2个阶段,有效提高纤维素的水解率。

5.2糖化工艺

发酵过程的酒精产率受许多因素影响,其中主要是水

解效率和单糖产量。比较而言,酶水解较酸水解有较大的优

越性,将成为今后糖化工艺的主要发展方向。

(下转第243页)

大田农艺

241现代农业科技》2008年第13期

区,在生产中培育优质高产栽培典型,将优良品种、生产技

术传授给农民,提高生产水平,从而自觉地实行生产操作规

程。为此,课题组要求各县(市)区狠抓园区建设工作,3年总

计建设20个千亩以上园区,均收到了良好的效果。在新品

种引进种植展示园和绿色有机杂粮规范化种植展示园方

面,通过实地技术操作和展示效果验证,产生了较强的辐

射带动作用。

2.7为确保实现标准化生产,在栽培管理上大力推选“九

改”集成技术

实现了从基地到餐桌全过程质量控制,涌现出许多谷

物优质高产典型。如2005年北票市北四家子乡南四家子村

集中连片种植朝新谷5号33hm2,平均产量7 740kg/hm2,最

高产量达到9 780kg/hm2。

2.8兴建龙头企业,培育绿色有机杂粮市场,延长产业链,

提高产品附加值

“辽西绿色有机杂粮生产基地建设与食品开发”项目实

施3年,累计建设杂粮生产基地5.33万公顷以上,其中绿色

有机杂粮生产基地2.16万公顷,从而形成了规模效应,为农

产品加工业提供了可靠的优质原料保障。目前全市共有各

类杂粮加工企业743个,年生产加工销售能力100万吨,其

中绿色有机杂粮6万吨,实现销售收入4.5亿元。同时,杂粮

基地规模化也带动了当地的杂粮市场建设。东北最大的杂

粮集散地建平朱碌科,建起25 000m2的杂粮交易批发市场,

绿色有机杂粮收购、加工、销售“十里长街”已初具规模,产

品主要销往国内大中城市并出口日本、韩国、德国、新西兰

等国家。

3项目成效

3.1规模大、有特色

建设绿色有机杂粮生产基地与食品开发,认证标识累

计规模为2.16万公顷,占全省认证总面积的60%,具有先进

农业区域经济与外向型经济的特色。经国内同行专家验收

一致认为:该项目产业化规模和技术水平在我国同类地区

具有领先地位。

3.2为旱作农业开辟了一条新路

针对辽西干旱地区的自然地理条件的特点,科学地开

发利用有限的耕地,实施绿色、有机杂粮标准认证,提高了

农产品的质量,创造了农业干旱地区增产增收的新途径。

3.3创出一条“科研+公司+农户+生产基地”四位一体的新

模式

形成产、加、销良性循环,拉动绿色有机杂粮加工业的

发展,实施农业名牌战略,提高了绿色有机杂粮食品的市场

占有率。3年累计出口创汇1.37亿元,促进了外向型经济的

迅猛发展。

3.4提高了农产品的附加值

3年中,绿色A级杂粮平均产值为1.92万元/hm2,平均

效益为1.60万元/hm2有机食品产值2.79万元/hm2,效益为

2.41万元/hm2。绿色、有机杂粮平均效益为2.03万元/hm2,比

项目区外杂粮对照平均效益增收1.03万元/hm2。

3.5改善了农业生态环境

绿色、有机农业就是生态农业。通过该项目的实施,在

认证的区域范围内,从根本上改变了农业的耕作方式,保护

了生态体系及周围环境生物的多样性,有效地减少和治理

了环境污染,不仅提供了安全的食品,而且促进了人与自然

的和谐。

通过3年绿色有机杂粮生产基地建设项目的实施,极

大地推进了科技产业化进程,推动了外向型经济的快速发

展,促进了第二、第三产业的繁荣,加速了杂粮新品种的更

新换代。由于推广粮草兼用型朝新谷5号新品种粮草比为

1∶1.3,不仅促进了农业的二元结构向三元结构的转移,而且

还带动了辽西畜牧业的发展。实践证明:干旱地区建设绿色

有机杂粮生产基地,在科技产业化中发挥了重要的作用,具

有广阔的前景。

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

(上接第241页)

5.3发酵菌株

菌种是发酵工业的灵魂,在玉米秆原料生产酒精过程

中,运用现代的育种技术培育出高效的直接发酵菌株,在适

应特殊基质条件、简化生产工艺等方面将会有所突破。若能

筛选到抗高浓度糖的基因突变菌株则可以克服纤维素原料

水解过程的抑制效应,提高发酵效率。

5.4发酵工艺

可以采用一定的技术手段,将发酵过程产生的乙醇不

断抽出,使发酵罐中的乙醇浓度≤10%,减轻乙醇对菌株生

长及乙醇生成的抑制作用,降低生产成本。

以玉米秸秆等纤维素生产酒精技术是世界各国研究的

热点,与其他生物能源、替代能技术相比,无论是在经济合

理性、技术可行性方面,还是在资源可持续性和环境协调性

方面都具有明显的优势,而且还可解决我国的石油资源短

缺和环境污染问题,有利于保证国家能源安全和社会协调

发展。

明理的菠萝
等待的溪流
2026-01-25 11:20:24

1、特点不同:乙醇汽油采用燃料乙醇作为汽油添加剂,环保、清洁、可再生。而普通车用汽油则是使用化学制剂MTBE等为原料作为汽油添加剂,对环境有较大污染,许多国家已经相继禁用MTBE等添加剂。

2、蒸发潜力不同:乙醇的蒸发潜力更大,可以说汽油的2倍,就这一大特点就可以提高发动机热效率以及冷却发动机的有利因素。

3、优点不同:热值更低,相比普通汽油,乙醇汽油的热值只有61%,行驶同样的路程所需的燃料比普通燃油更多,尽管热值比汽油小很多,理论上混合气热值与汽油是很接近的,因此乙醇是可以作为汽油机燃料使用的。

4、缺点不同:容易产生气阻,如果使用乙醇汽油,在车辆发动机正常工作温度情况下,很容易产生气阻,因为乙醇的沸点比普通汽油更低,只有78摄氏度左右,这就使得燃料供给量容易降低,甚至是中途就断油。

参考资料来源:

百度百科-乙醇汽油

百度百科-汽油