建材秒知道
登录
建材号 > 乙二醇 > 正文

聚乙二醇可以与磷脂双分子层相互作用吗

自觉的金毛
大意的白云
2022-12-21 22:37:42

聚乙二醇可以与磷脂双分子层相互作用吗

最佳答案
外向的台灯
灵巧的故事
2026-01-25 10:13:18

晚上好,可以的。如果你说的是大豆磷脂或者卵磷脂的话,PEG可以与它们协同形成高效的增溶和乳化体系(胶束),也由于两者都有润滑特性,PEG可以与磷脂层形成超低表面张力,便于材料之间的脱模防止粘连,请参考。

最新回答
标致的胡萝卜
潇洒的吐司
2026-01-25 10:13:18

在自发或人工诱导下,两个不同基因型的细胞或原生质体融合形成一个杂种细胞。基本过程包括细胞融合形成异核体、异核体通过细胞有丝分裂进行核融合、最终形成单核的杂种细胞。有性繁殖时发生的精卵结合是正常的细胞融合,即由两个配子融合形成一个新的二倍体。

自发的动物细胞融合概率很低,1962年Okada和Tadokoro发现灭活的仙台病毒有促进细胞融合的作用。这是由于病毒的磷脂外衣与动物细胞的膜十分相似的缘故。病毒外壳上的某些糖蛋白可能还有促进细胞融合的功能。此外,用聚乙二醇作为细胞融合剂,它可引起邻近的细胞膜的粘合,继而使细胞融合成为一个细胞。

细胞融合,即在自然条件下或用人工方法(生物的、物理的、化学的)使两个或两个以上的细胞合并形成一个细胞的过程。人工诱导的细胞融合,在20世纪60年代作为一门新兴技术而发展起来。由于它不仅能产生同种细胞融合,也能产生种间细胞的融合,因此细胞融合技术目前被广泛应用于细胞生物学和医学研究的各个领域。

细胞融合的诱导物种类很多,常用的主要诱导物有灭活的仙台病毒、化学法如用聚乙二醇和物理法如电脉冲。目前应用最广泛的是聚乙二醇,因为它易得、简便且融合效果稳定。PEG的促融机制尚不完全清楚,它可能引起细胞膜中磷脂的酰键及极性基团发生结构重排。动植物细胞融合方法不同,生物法利用灭活仙台病毒是动物细胞融合所特有的。

自发条件下或人工诱导下, 两个不同基因型的细胞或原生质体融合形成一个杂种细胞。基本过程包括细胞融合导致异核体的形成, 异核体通过细胞有丝分裂导致核的融合, 形成单核的杂种细胞。有性生殖时发生正常的细胞融合, 即由两个配子融合成一个合子。

人、鼠细胞融合实验分三步进行:首先,用荧光染料标记抗体。将小鼠的抗体与发绿色荧光的荧光素结合, 人的抗体与发红色荧光的罗丹明结合;第二步是将小鼠细胞和人细胞在灭活的仙台病毒的诱导下进行融合;最后一步将标记的抗体加入到融合的人、鼠细胞中,让这些标记抗体同融合细胞膜上相应的抗原结合。开始,融合的细胞一半是红色, 一半是绿色。在37 ℃下40分钟后, 两种颜色的荧光在融合的杂种细胞表面呈均匀分布,这说明抗原蛋白在膜平面内经扩散运动而重新分布,这种过程不需要ATP。如果将对照实验的融合细胞置于低温(1 ℃)下培育, 则抗原蛋白基本停止运动。这一实验结果令人信服地证明了膜整合蛋白的侧向扩散运动。

通过培养和诱导,两个或多个细胞合并成一个双核或多核细胞的过程称为细胞融合或细胞杂交。 基因型相同的细胞融合成的杂交细胞称为同核体;来自不同基因型的杂交细胞则称为异核体。 同种细胞在培养时两个靠在一起的细胞自发合并,称自发融合;异种间的细胞必须经诱导剂处理才能融合,称诱发融合。 诱导细胞融合的方法有3种:生物方法(病毒)、化学方法(聚乙二醇PEG)、物理方法(电击和激光)。某些病毒如仙台病毒、副流感病毒和新城鸡瘟病毒的被膜中有融合蛋白,可介导病毒同宿主细胞融合,也可介导细胞与细胞的融合,因此可以用紫外线灭活的此类病毒诱导细胞融合。化学和物理方法可造成膜脂分子排列的改变,去掉作用因素之后,质膜恢复原有的有序结构,在恢复过程中便可诱导相接触的细胞发生融合。

细胞融合不仅可用于基础研究,而且还有重要的应用价值,在植物育种方面已经成功的有萝卜+甘蓝、粉蓝烟草+郎氏烟草、番茄+马铃薯等等。

畅快的早晨
坦率的小松鼠
2026-01-25 10:13:18

早上好,如果蜂胶的主要成份是纯蜂蜡,白色固体的PEG-4000不能和其互溶而且也难溶于其他脂肪酸及脂肪酸酯请酌情参考(即使加热溶化也不溶解会明显分层)。PEG一般是在保健食品中与适量蜂胶以及淀粉、糖等其他辅料在卵磷脂或者大豆磷脂存在做乳化时才能形成均匀的固体颗粒。

称心的豆芽
强健的战斗机
2026-01-25 10:13:18
秘密花园玫瑰精粹系列

【名 称】:清透净肤洁面乳

【净 含 量】:100g

【产品说明】:富含丰富的玫瑰果油,能温和深入肌肤底层清洁污垢及老化角质令肌肤水嫩不紧绷,配合天然植物养肤成分,能深入呵护肌肤,使灰暗肌肤焕然一新,清新、柔润不紧绷,令肌肤出水芙蓉般焕发透润动人光采。

【使用方法】:将洁面乳置于湿润的掌心揉搓至丰富泡沫,将泡沫涂抹整个面部,尤其注意T区部位,适度按摩1分钟,再以清水洗净。

【全 成 分】:

水、甘油、棕榈酸、肉豆蔻酸、氢氧化钾、月桂酸、硬脂酸、月桂醇磷酸酯钾、乙二醇二硬脂酸酯、PEG-160

失水山梨醇三异硬脂酸酯、鲸蜡醇聚醚-20、油醇聚醚-20、硬脂醇聚醚-20、狗牙蔷薇(ROSA CANINA)果油、突厥蔷薇(ROSA

DAMASCENA)花水、马齿苋(PORTULACA OLERACEA)提取物、库拉索芦荟(ALOE

BARBADENSIS)叶提取物、丁二醇、EDTA 二钠、DMDM 乙内酰脲

【名 称】:舒盈保湿喷雾

【净 含 量】:50ml

【产

品说明】:蕴藏天然的玫瑰纯露及多种植物精华,能迅速渗透肌底,实时为干燥肌肤保湿,维持水油平衡,有效缓和肌肤不适,令肌肤柔软、细嫩;小巧玲珑的包装

方便携带,随时随地或上妆后使用,瞬间为皮肤提供前所未有的紧急保湿功能,带来意想不到的滋润效果,并在肌肤表层形成一层保护膜,锁住水分使妆容持久自

然,充满光泽。

【使用方法】:洁肤后喷于面、颈部,让其自然吸收。喷洒时请闭上眼睛,于脸部保持约25公分距离使用。本品可随身携带,感觉干燥时可随时喷于面部,及时补充皮肤所需水份。

【全 成 分】:

突厥蔷薇(ROSA DAMASCENA)花水、水、高山玫瑰杜鹃花(RHODODENDRON

FERRUGINEUM)提取物、马齿苋(PORTULACA OLERACEA)提取物、乙酰壳糖胺、突厥蔷薇(ROSA

DAMASCENA)花油、丁二醇、PPG-26-丁醇聚醚-26、异麦芽、磷脂、PEG-40 氢化蓖麻油、乙基己基甘油、苯氧乙醇、EDTA

二钠、甲基异噻唑啉酮

【名 称】:水嫩修护眼唇霜

【净 含 量】:15g

【产

品说明】:特含天然玫瑰精油和玫瑰果油等多种植物精萃,专为修护眼部和唇部纤细肌肤精心配制,不仅有效保持眼唇肌肤的含水量,从而减淡细纹和皱纹,抚褪并

改善眼唇部特别细腻纤薄的肌肤;同时打造良好的眼部和唇部线条轮廓,提供玫瑰花般长效呵护,使肌肤获得前所未有的深度滋养,一个凝时、一个微笑,都变得光

彩耀人。

【使用方法】:早晚洁肤后,挤出适量眼唇霜,用指腹轻轻拍打按摩眼周及唇部直至吸收即可。

【全 成 分】:

水、突厥蔷薇(ROSA

DAMASCENA)花水、氢化聚异丁烯、聚二甲基硅氧烷、丁二醇、甘油、鲸蜡硬脂醇、鲸蜡硬脂醇橄榄油酸酯、山梨坦橄榄油酸酯、环五聚二甲基硅氧烷、聚

二甲基硅氧烷/乙烯基聚二甲基硅氧烷交联聚合物、狗牙蔷薇(ROSA CANINA)果油、刺阿干树(ARGANIA

SPINOSA)仁油、生育酚乙酸酯、鲸蜡醇棕榈酸酯、山梨坦棕榈酸酯、高山玫瑰杜鹃花(RHODODENDRON

FERRUGINEUM)提取物、棕榈酰寡肽、棕榈酰四肽-7、橙皮苷甲基查尔酮、二肽-2、马齿苋(PORTULACA

OLERACEA)提取物、β-葡聚糖、白茅(IMPERATA CYLINDRICA)根提取物、银耳(TREMELLA

FUCIFORMIS)提取物、透明质酸钠、突厥蔷薇(ROSA

DAMASCENA)花油、聚乙二醇-8、丙烯酸钠/丙烯酰二甲基牛磺酸钠共聚物、异麦芽、磷脂、尿囊素、聚山梨醇酯-20、硬脂醇聚醚-20、山梨坦油

酸酯、异十六烷、聚山梨醇酯-80、黄原胶、卡波姆、EDTA 二钠、乙基己基甘油、羟苯甲酯、羟苯丙酯、苯氧乙醇

【名 称】:莹润亮采精华液

【净 含 量】:30ml

【产品说明】:蕴藏名贵的玫瑰养肤成分,可提供给肌肤所需的水分和养分,令肌肤由内到外感受丰盈的张力和润滑感,使肌肤呈现水嫩鲜活的魅力状态有效提升肌肤明亮度配合多种天然植物精华,使肌肤紧致有弹性、靓丽润泽,散发滢润光采。

【使用方法】:使用爽肤水后,取适量的精华轻轻涂抹于面部上及颈上,并适当按摩帮助吸收。适合早晚使用。

【全 成 分】:

水、甘油、丁二醇、甜菜碱 、海藻糖 、透明质酸钠、乙酰壳糖胺、马齿苋(PORTULACA

OLERACEA)提取物、糖基海藻糖、氢化淀粉水解物、双-PEG-18 甲基醚二甲基硅烷、聚甘油-10

肉豆蔻酸酯、苯基聚甲基硅氧烷、甘油三(乙基己酸)酯、烟酰胺、刺阿干树(ARGANIA SPINOSA)仁油、澳洲坚果(MACADAMIA

TERNIFOLIA)籽油、狗牙蔷薇(ROSA CANINA)果油、突厥蔷薇(ROSA DAMASCENA)花水、突厥蔷薇(ROSA

DAMASCENA)花油、丙烯酸(酯)类/C10-30 烷醇丙烯酸酯交联聚合物、精氨酸、黄原胶、PPG-26-丁醇聚醚-26、PEG-40

氢化蓖麻油、甘草酸二钾、EDTA 二钠、苯氧乙醇、乙基己基甘油、甲基异噻唑啉酮

【名 称】:亮颜活力霜

【净 含 量】:50g

【产

品说明】:蕴含稀有的玫瑰精油、玫瑰果油等多种玫瑰护肤成分,为肌肤补充足够的水分和养分,修护干燥粗糙肌肤,延缓肌肤衰老,帮助肌肤保持青春的光泽。轻

柔细致质地,易吸收,特别添加多种天然植物精华,减少肌肤水分流失,深入滋润,时刻保持细润柔滑质感,给肌肤温柔呵护,绽放迷人光彩。

【使用方法】:早晚洁面爽肤后,取适量本品轻轻涂抹于脸部,并适当按摩帮助吸收。

【全 成 分】:

水、甘油、角鲨烷、双-PEG-18

甲基醚二甲基硅烷、环五聚二甲基硅氧烷、环己硅氧烷、辛酸/癸酸甘油三酯、尿素、二聚季戊四醇五异壬酸酯、聚甘油-3

甲基葡糖二硬脂酸酯、十三烷醇偏苯三酸酯、鲸蜡硬脂醇、甘油硬脂酸酯、透明质酸钠、刺阿干树(ARGANIA

SPINOSA)仁油、澳洲坚果(MACADAMIA TERNIFOLIA)籽油、PEG-100

硬脂酸酯、聚乙二醇-8、尿囊素、乙酰壳糖胺、泛醇、生育酚乙酸酯、丙烯酸(酯)类/C10-30 烷醇丙烯酸酯交联聚合物、狗牙蔷薇(ROSA

CANINA)果油、突厥蔷薇(ROSA DAMASCENA)花水、突厥蔷薇(ROSA

DAMASCENA)花油、卡波姆、三乙醇胺、黄原胶、羟苯甲酯、羟苯丙酯、EDTA 二钠、苯氧乙醇

老迟到的高山
追寻的乐曲
2026-01-25 10:13:18

表面活性剂(surfactant),是指是能使目标溶液 表面张力 显著下降的物质。具有固定的亲水亲油基团,在溶液的表面能定向排列。表面活性剂的分子结构具有两性:一端为 亲水基团 ,另一端为 疏水基团 ;亲水基团常为 极性基团 ,如羧酸、磺酸、硫酸、氨基或胺基及其盐,羟基、酰胺基、醚键等也可作为极性亲水基团;而疏水基团常为非极性烃链,如8个碳原子以上烃链。表面活性剂分为 离子型表面活性剂 (包括 阳离子表面活性剂 与 阴离子表面活性剂 )、 非离子型表面活性剂 、 两性表面活性剂 、复配表面活性剂、其他表面活性剂等。

表面活性剂(surfactant),是指加入少量能使其溶液体系的界面状态发生明显变化的物质。具有固定的亲水亲油基团,在溶液的表面能定向排列。表面活性剂的分子结构具有两亲性:一端为 亲水基团 ,另一端为 疏水基团 ;亲水基团常为极性基团,如 羧酸 、 磺酸 、 硫酸 、 氨基 或胺基及其盐, 羟基 、 酰胺 基、醚键等也可作为极性亲水基团;而疏水基团常为非极性烃链,如8个碳原子以上烃链。表面活性剂分为 离子型表面活性剂 (包括 阳离子表面活性剂 与 阴离子表面活性剂 )、 非离子型表面活性剂 、 两性表面活性剂 、复配表面活性剂、其他表面活性剂等。

[编辑](javascript:)[ 语音](javascript:)

①公元前2500年——1850年羊油和草木灰制造肥皂

羊油——三羧酸酯简称三甘酯,经碱水解→ 羧酸盐 + 单甘酯 +二甘酯+ 甘油

19世纪中叶

一方面肥皂开始实现工业化大生产,另一方面,也出现了化学合成的表面活性剂。

② 土耳其红油 的出现:

土耳其红油即蓖麻油与硫酸反应的产物,蓖麻油为蓖麻油酸的三甘酯,深度磺化,耐酸耐硬水

③19世纪初,矿物原料制备洗涤剂

石油工业的发展→石油硫酸(绿油)。蜡和茶的磺化混合物,溶于酸中,呈绿黑色,用碱中和制得。石油磺酸皂具有良好的水溶性,称绿钠(第一个矿物原料制得的洗涤剂)。第一次世界大战期间,油脂出现,煤炭产量→煤化工业发→短链烷基、奈磺酸盐类表面活性剂,如丙基奈磺酸盐、丁基奈磺酸盐

1920-1930脂肪醇硫酸化→烷基硫酸盐。20世纪30年代,长链烷基、苯基出现于美国。第一次世界大战后,德国开发乙二醇衍生物,如聚乙二醇 衍生物产品,聚乙二醇与各种有机化合物(包括醇、酸、酯、胺、酰胺)等结合,形成多种优良性能的非离子表面活性剂。

表面活性剂和 合成洗涤剂 形成一门工业得追溯到20世纪30年代,以石油化工原料衍生的合成表面活性剂和洗涤剂打破了肥皂一统天下的局面。经过60余年的发展,1995年世界洗涤剂总产量达到4300万吨,其中肥皂900万吨。据专家预测,全世界人口从2000年到2050年将翻一番,洗涤剂总量将从5000万吨增加到12000万吨,净增1.4培,这是一个令人鼓舞的数字。

中国的表面活性剂和合成 洗涤剂工业 起始于50年代,尽管起步较晚,但发展较快。1995年 洗涤用品 总量已达到310万吨,仅次于美国,排名世界第二位。其中合成洗涤剂的生产量从1980年的40万吨上升到1995年的230万吨,净增4.7倍,并以年平均增长率大于10%的速度增长。据中国权威部门预测,2000年洗涤用品总量将达到360万吨,其中合成洗涤剂将达到65.5万吨。其中产量超万吨的表面活性剂品种计有:直链烷基 苯磺酸钠 (LAS)、 脂肪醇聚氧乙烯醚硫酸钠 (AES)、 脂肪醇聚氧乙烯醚硫酸铵 (AESA)、 月桂醇硫酸钠 (SDS)、 月桂酰谷氨酸 、 壬基酚聚氧乙烯醚 (TX-10)、 平平加O 、硬脂酸甘油单酯、 木质素磺酸盐 、重烷基苯磺酸盐、烷基磺酸盐( 石油磺酸盐 )、扩散剂NNO、扩散剂MF、烷基聚醚(PO-EO共聚物)、 脂肪醇聚氧乙烯醚 (AEO-3)等。

[编辑](javascript:)[ 语音](javascript:)

凡是溶于水能够显著降低水的表面能的物质称为表面活性剂(surface active agent,SAA)或表面活性物质。

传统观念上认为,表面活性剂是一类即使在很低浓度时也能显著降低表(界)面张力的物质。随着对表面活性剂研究的深入,一般认为只要在较低浓度下能显著改变表(界)面性质或与此相关、由此派生的性质的物质,都可以划归表面活性剂范畴。

表面活性剂有天然的,如 磷脂 、胆碱、蛋白质等,但更多的是人工合成的,如十八烷基硫酸钠C 18 H 37 SO 4 Na、硬脂酸钠C 17 H 35 COONa等 [1] 。表面活性剂范围十分广泛( 阳离子 、 阴离子 、非离子及两性),为具体应用提供多种功能,包括发泡效果,表面改性,清洁,乳液, 流变学 ,环境和健康保护。

[编辑](javascript:)[ 语音](javascript:)

表面活性剂分子具有独特的两亲性:一端为亲水的极性基团,简称亲水基,也称为疏油基或憎油基,有时形象地称为亲水头,如-OH、-COOH、-SO 3 H、-NH 2 ;另一端为亲油的 非极性基团 ,简称亲油基,也称为疏水基或憎水基,如R-( 烷基 )、 Ar -( 芳基 )。两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以 化学键 相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,但又不是整体亲水或亲油的特性。表面活性剂的这种特有结构通常称之为“双亲结构”(amphiphilic structure),表面活性剂分子因而也常被称作“双亲分子”。 [2]

为了方便,常用符号长方形加一个圆圈表示表面活性剂分子,如右图所示。其中长方形代表亲油基,而圆圈代表亲水基。

表面活性剂要呈现特有的界面活性,必须使疏水基和亲水基之间有一定的平衡。 亲水亲油平衡值 (Hydrophile-Lipophile Balance),简称 HLB值 ,表示表面活性剂的亲水疏水性能,如 石蜡 HLB值=0(无亲水基) 聚乙二醇 HLB值=20(完全亲水)。对 阴离子表面活性剂 ,可通过乳化标准油来确定HLB值。HLB值可作为选用表面活性剂的参考依据。

|

HLB值

|

15~18

|

13~15

|

8~16

|

7~9

|

3.5~6

|

1.5~3

|

|

用途

|

增溶剂

|

洗涤剂

|

油/水型乳化剂

|

润湿剂

|

水/油乳化剂

|

消泡剂

|

末端:净洗作用强,润湿性差;中间:相反。

当HLB值、亲水基、疏水基相同,分子量小,润湿作用好,去污力差;分子量大,润湿作用差,去污力好。

对非离子表面活性剂来说,亲水性取决于醚键的多少,醚与水分子的结合是放热反应。

当温度上升,水分子逐渐脱离醚键,而出现混浊现象,刚刚出现混浊时的温度称浊点。此时表面活性剂失去作用。浊点越高,使用的温度范围广。

[编辑](javascript:)[ 语音](javascript:)

表面活性剂通过在气液两相界面吸附降低水的表面张力,也可以通过吸附在液体界面间来降低油水界面张力。许多表面活性剂也能在本体溶液中聚集成为 聚集体 。

囊泡 和 胶束 都是此类聚集体。表面活性剂开始形成胶束的浓度叫做 临界胶束浓度 或 CMC 。当胶束在水中形成,胶束的尾形成能够包裹油滴的核,而它们的(离子/极性)头能够形成一个外壳,保持与水接触。表面活性剂在油中聚集,聚集体指的是 反胶束 。在反胶束中,头在核,尾保持与油的充分接触。表面活性剂通常分为四大类:阴离子,阳离子,非离子和两性离子(双电子)。表面活性剂系统的热动力学很重要,不论是理论上还是实践上。因为表面活性剂系统代表的是介于有序和无序物质状态之间的系统。表面活性剂溶液可能含有 有序相 (胶束)和无序相(自由表面活性剂分子和/或离子)。 胶束 ——表面活性剂分子的亲脂尾端聚于胶束内部,避免与极性的水分子接触;分子的极性亲水头端则露于外部,与极性的水分子发生作用,并对胶束内部的憎水基团产生保护作用。形成胶束的化合物一般为两亲分子,因此一般胶束除可溶于水等极性溶剂以外,还能以反胶束的形式溶于非极性溶剂中。

比如,常用的洗涤剂能够提高水在土壤中的渗透能力,但是效果仅仅持续数日(许多标准洗衣粉含有一定量的化学品,比如钠和溴,由于它们会破坏植物,不适于土壤)。商业土壤润湿剂会持续起效果一段时间,最终还是会被微生物降解。然而,有一些会对水生物的生物循环产生影响,因此必须小心防止这些产品流入地表径流,过量产品不应该洗消。

吸附性

溶液中的正吸附:增加润湿性、乳化性、起泡性;

固体表面的吸附:非极性固体表面单层吸附,极性固体表面可发生多层吸附。

[编辑](javascript:)[ 语音](javascript:)

通过分子中不同部分分别对于两相的亲和,使两相均将其看作本相的成分,分子排列在两相之间,使两相的表面相当于转入分子内部。从而降低表面张力。由于两相都将其看作本相的一个组分,就相当于两个相与表面活性剂分子都没有形成界面,就相当于通过这种方式部分的消灭了两个相的界面,就降低了 表面张力 和 表面自由能 。

[编辑](javascript:)[ 语音](javascript:)

根据所需要的性质和具体应用场合不同,有时要求表面活性剂具有不同的亲水亲油结构和相对密度。通过变换 亲水基 或亲油基种类、所占份额及在分子结构中的位置,可以达到所需 亲水亲油平衡 的目的。经过多年研究和生产,已派生出许多表面活性剂种类,每一种类又包含众多品种,给识别和挑选某个具体品种带来困难。因此,必须对成千上万种表面活性剂作一科学分类,才有利于进一步研究和生产新品种,并为筛选、应用表面活性剂提供便利。

表面活性剂的分类方法很多,根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等;根据亲水基进行分类,分为羧酸盐、硫酸盐、 季铵盐 、PEO衍生物、 内酯 等;有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重叠。

人们一般都认为按照它的化学结构来分比较合适。即当表面活性剂溶解于水后,根据是否生成离子及其电性,分为 离子型表面活性剂 和 非离子型表面活性剂 。

按极性基团的解离性质分类

1. 阴离子表面活性剂 : 硬脂酸 , 十二烷基苯磺酸钠

2. 阳离子表面活性剂 :季铵化物。

3. 两性离子表面活性剂 : 卵磷脂 ,氨基酸型,甜菜碱型。

4. 非离子表面活性剂 :烷基葡糖苷(APG), 脂肪酸甘油酯 ,脂肪酸山梨坦( 司盘 ), 聚山梨酯 (吐温)。

1.肥皂类

系高级脂肪酸的盐,通式: (RCOO) n M。脂肪酸烃R一般为11~17个碳的长链,常见有 硬脂酸 、 油酸 、 月桂酸 。根据M代表的物质不同,又可分为碱金属皂、碱土金属皂和有机胺皂。它们均有良好的乳化性能和分散油的能力。但易被破坏,碱金属皂还可被钙、镁盐破坏,电解质亦可使之盐析。

碱金属皂:O/W

碱土金属皂:W/O

有机胺皂:三乙醇胺皂

**2.硫酸化物 **RO-SO 3 -M

主要是 硫酸化油 和 高级脂肪醇 硫酸酯类。脂肪烃链R在12~18个碳之间。硫酸化油的代表是 硫酸化蓖麻油 ,俗称 土耳其红油 。高级脂肪醇硫酸酯类有 十二烷基硫酸钠 (SDS、 月桂醇硫酸钠 ),乳化性很强,且较稳定,较耐酸和钙、镁盐。在 药剂学 上可与一些高分子阳离子药物产生沉淀,对粘膜有一定刺激性,用作外用软膏的乳化剂,也用于片剂等固体制剂的润湿或增溶。

**3.磺酸化物 **R-SO 3 -M

属于这类的有脂肪族磺酸化物、烷基芳基磺酸化物和烷基萘磺酸化物。它们的水溶性和耐酸耐钙、镁盐性比硫酸化物稍差,但在酸性溶液中不易水解。

常用品种有:二辛基琥珀酸磺酸钠(阿洛索-OT), 十二烷基苯磺酸钠 ,甘胆酸钠。

该类表面活性剂起作用的部分是阳离子,因此称为阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。

常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。

这类表面活性剂的分子结构中同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。

1.卵磷脂 :是制备注射用乳剂及脂质微粒制剂的主要辅料

2.氨基酸型和甜菜碱型 :

氨基酸型:R-NH+CH 2 CH 2 COO-

甜菜碱型:R-N+2-(CH 3 ) 2 COO-

在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用;在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。

非离子表面活性剂

1.烷基葡糖苷

一种新型的非离子表面活性剂,常见的有 椰油基葡糖苷 、 月桂基葡糖苷 、 鲸蜡硬脂基葡糖苷 等。

2.脂肪酸甘油酯 : 单硬脂酸甘油酯 ;

HLB为3~4,主要用作W/O型乳剂辅助 乳化剂 。

3. 多元醇

蔗糖酯 :HLB(5~13)O/W乳化剂、 分散剂

脂肪酸山梨坦(Span) :W/O乳化剂

聚山梨酯(Tween) :O/W乳化剂

3.聚氧乙烯型 :Myrij(卖泽类,长链脂肪酸酯);Brij (脂肪醇酯)

4.聚氧乙烯-聚氧丙烯共聚物 :Poloxamer

能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂

[编辑](javascript:)[ 语音](javascript:)

表面活性剂由于具有润湿或抗粘、乳化或破乳、起泡或消泡以及增溶、分散、洗涤、防腐、抗静电等一系列物理化学作用及相应的实际应用,成为一类灵活多样、用途广泛的精细化工产品。表面活性剂除了在日常生活中作为洗涤剂,其他应用几乎可以覆盖所有的精细化工领域。

1.增溶

要求:C>CMC ( HLB13~18)

临界胶束浓度(CMC): 表面活性剂分子缔合形成胶束的最低浓度。当其浓度高于CMC值时,表面活性剂的排列成球状、棒状、束状、层状/板状等结构。

增溶体系为热力学平衡体系;

CMC 越低、缔合数越大,增溶量(MAC)就越高;

温度对增溶的影响:温度影响胶束的形成,影响增溶质的溶解,影响表面活性剂的溶解度

Krafft点 : 离子型表面活性剂 的溶解度随温度增加而急剧增大这一温度称为Krafft点, Krafft点越高,其临界胶束浓度越小

昙点 :对于 聚氧乙烯 型非离子表面活性剂,温度升高到一定程度时,溶解度急剧下降并析出,溶液出现混浊,这一现象称为 起昙 ,此温度称为昙点。这是因为聚氧乙烯与水之间的 氢键 断裂,当温度上升到一定温度时,聚氧乙烯可发生强烈脱水和收缩,使增溶空间减小, 增溶 能力下降。 [3] 在聚氧乙烯链相同时,碳氢链越长,浊点越低;在碳氢链相同时,聚氧乙烯链越长则 浊点 越高。

2.乳化作用

亲水亲油平衡值 (HLB):表面活性剂分子中亲水和亲油基团对油或水的综合亲合力。根据经验,将表面活性剂的 HLB值 范围限定在0-40,非离子型的HLB值在0-20。

混合加和性:HLB=(HLBa Wa+HLBb /Wb)/ (Wa+Wb)

理论计算:HLB=∑(亲水基团HLB值)+∑(亲油基团HLB)-7

HLB:3-8 W /O型乳化剂:Span;二价皂

HLB:8-16 O/W型乳化剂:Tween;一价皂

3.润湿作用

要求:HLB:7-9。

使用表面活性剂可以控制液、固之间的润湿程度。农药行业中在粒剂及供喷粉用的粉剂中,有的也含有一定量的表面活性剂,其目的是为了提高药剂在受药表面的附着性和沉积量,提高有效成分在有水分条件下的释放速度和扩展面积,提高防病、治病效果。

在化妆品行业中,做为 乳化剂 是乳霜、乳液、洁面、卸妆等护肤产品中不可或缺的成分。

4.助悬作用

在农药行业,可湿性粉剂、乳油及浓乳剂都需要有一定量的表面活性剂,如可湿性粉剂中原药多为有机化合物,具有憎水性,只有在表面活性剂存在的条件下,降低水的表面张力,药粒才有可能被水所润湿,形成水悬液;

5.起泡和消泡作用

表面活性剂在医药行业也有广泛应用。在药剂中,一些挥发油脂溶性纤维素、甾体激素等许多难溶性药物利用表面活性剂的增溶作用可形成透明溶液及增加浓度;药剂制备过程中,它是不可缺少的乳化剂、润湿剂、助悬剂、起泡剂和消泡剂等。

6.消毒、杀菌

在医药行业中可作为 杀菌剂 和 消毒剂 使用,其杀菌和消毒作用归结于它们与细菌生物膜蛋白质的强烈相互作用使之变性或失去功能,这些消毒剂在水中都有比较大的溶解度,根据使用浓度,可用于手术前皮肤消毒、伤口或粘膜消毒、器械消毒和环境消毒;

7.抗硬水性

甜菜碱表面活性剂对钙、镁离子均表现出非常好的稳定性,即自身对钙、镁硬离子的耐受能力以及对钙皂的分散力。在使用过程中防止钙皂的沉淀,提高使用效果。

8.增粘性及增泡性

表面活性剂有对改变溶液体系的作用,增大粘度变稠或增大体系的泡沫,在一些特除的清洗、开采行业有广泛的应用。

9.去垢、洗涤作用

去除油脂污垢是一个比较复杂的过程,它与上面提到的润湿、起泡等作用均有关。

最后要说明的是,表面活性剂起作用,并不单单是因为某一方面的作用,很多情况下是多种因素共同作用。如在造纸工业中可以用作蒸煮剂、废纸 脱墨剂 、施胶剂、树脂障碍控制剂、 消泡剂 、 柔软剂 、 抗静电剂 、 阻垢剂 、 软化剂 、 除油剂 、 杀菌灭藻剂 、 缓蚀剂 等。

表面活性剂在许多行业配方中被用作性能添加剂,如个人和家庭护理,以及无数的工业应用中:金属处理、工业清洗、石油开采、农药等。

[编辑](javascript:)[ 语音](javascript:)

表面活性剂是从20 世纪50 年代开始随着石油化工业的飞速发展而兴起的一种新型化学品,是精细化工的重要产品,享有“ 工业味精 ”的美称。它几乎渗透到一切技术经济部门。当今,表面活性剂产量大,品种逾万种。随着世界经济的发展以及科学技术领域的开拓,表面活性剂的发展更加迅猛,其应用领域从日用化学工业发展到石油、食品、农业、卫生、环境、新型材料等技术部门。但在表面活性剂给人们生活、给工农业生产带来极大方便的同时,也给环境带来了污染,因此,研究表面活性剂发展及其趋势,对表面活性剂工业,乃至我国整体工业经济有着非常重要作用和意义。

[编辑](javascript:)[ 语音](javascript:)

1.烷基磷羧酸盐(AEC)工业化制造

表面活性剂应人类要求正向着温和、易生物降解和多功能性,强调使用安全、生态保护和提高效率的方向发展。例如:烷基醇醚羧酸盐(AEC)是8O年代以来,发达国家积极研究开发的优质表面活性剂热点品种,它与 烷基多苷 和醇醚磷酸单酯同被称为“表面活性剂90年代的绿色品种”。

生物降解性能优异。烷基醚羧酸盐国内的应用市场还远远落后于发达国家,随着环保意识的不断加强和人民物质文化水平的不断提高,这类集温和、易生物降解和多功能性于一身的表面活性剂,在金属加工领域内,将发挥更大作用。

2.新一代表面活性剂Gemini

现已经合成的低聚表面活性剂有二聚体、三聚体和四聚体等,其中最引人注目的是二聚体,二聚表面活性剂最早被合成于1971年,后因其结构上的特点而被形象地命名为Gemini(英文是双子星之意)表面活性剂。

表面活性剂Gemini(或称dimeric)提高了表面活性。与当前为提高表面活性而进行的大量尝试,如添加盐类、提高温度或将阴离子表面活性剂与阴离子表面活性剂混合相比较,Gemini表面活性剂是概念上的突破,因而被誉为新一代的表面括性剂。

离子相当紧密的连接,致使其碳氢链间更容易产生强相互作用,即加强了碳氢链间的疏水结合力,而且离子头基间的排斥倾向受制于化学键力而被大大削弱,这就是Gemlrd表面活性剂和单链单头基表面括性剂相比较,具有高表面括性的根本原因。另一方面。在两个离子头基问的化学键联接不破坏其亲水性,从而为高表面活性的C~mini表面活性剂的广泛应用提供了基础。通过化学键联接方法提高表面活性和以往通常应用的物理方法不同,在概念上是一个突破。Genfini表面活性剂的优良性质:

离子型Gemini表面活性剂的特征性质:

(1)更易吸附在气/液表面,从而更有效地降低水溶液表面张力。

(2)更易聚集生成胶团。

(3)Gemini降低水溶液表面张力的倾向远大于聚集生成胶团的倾向,降低水溶液表面张力的效率是相当突出的。

(4)具有很低的Krat~相转移点。

(5)对水溶液表面张力的降低能力和降低效率而言,Gemini和普通表面活性剂尤其是和非离子表面活性剂的复配能产生更大的协同效应。

(6)具有良好的钙皂分散性质。

(7

腼腆的玉米
认真的早晨
2026-01-25 10:13:18
细胞主要是由各种有机化合物组成的,化学元素当然可以合成细胞啦!在高中的生物必修1中的第一章中有过相关的讨论,在人的尿道中有一中很原始的原核细胞,基因的数量相对其他生物来说比较少,有科学家曾经尝试逐个破坏他的基因,看该种细胞的哪种基因的必须的,结果筛选出100来个必需的基因,当时人们认为,只要讲这些基因组成的DNA放到一个原核细胞中,该细胞可以生存和繁殖就证明人来可以合成细胞了,但怎么包裹磷脂双分子膜(细胞膜)是一个问题。到目前为止,人类已经熟悉了DNA,核糖体,和磷脂双分子层等各种生物分子的的的化学组成,理论上是可以人工合成细胞的,但就上述“包裹”的问题还没有解决,还有,我们还不清楚那筛选出来的大部分基因的具体作用,所以目前还没有成功人工合成细胞。好像听说过有,但没有生物活性。

威武的枫叶
默默的大白
2026-01-25 10:13:18
(一)水溶液提取法

稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解.提取的温度要视有效成份性质而定.一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间.但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作.为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等).

下面着重讨论提取液的pH值和盐浓度的选择.

1、pH值

蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH

范围内.用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液.

2、盐浓度

稀浓度可促进蛋白质的溶,称为盐溶作用.同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以0.15摩尔.升浓度为宜.缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液.

(二)有机溶剂提取法

一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液.但必须在低温下操作.丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活.另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料.

二、蛋白质的分离纯化

蛋白质的分离纯化方法很多,主要有:

(一)根据蛋白质溶解度不同的分离方法

1、蛋白质的盐析

中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出.盐析时若溶液pH在蛋白质等电点则效果更好.由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀.

影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行.一般温度低蛋白质溶介度降低.但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析.(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低.(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象).因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%.

蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等.

其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性.硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节.

蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行.此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短.

2、等电点沉淀法

蛋白质在静电状态时颗粒之间的静电斥力最小,因而溶解度也最小,各种蛋白质的等电点有差别,可利用调节溶液的pH达到某一蛋白质的等电点使之沉淀,但此法很少单独使用,可与盐析法结合用.

3、低温有机溶剂沉淀法

用与水可混溶的有机溶剂,甲醇,乙醇或丙酮,可使多数蛋白质溶解度降低并析出,此法分辨力比盐析高,但蛋白质较易变性,应在低温下进行.

(二)根据蛋白质分子大小的差别的分离方法

1、透析与超滤

透析法是利用半透膜将分子大小不同的蛋白质分开.

超滤法是利用高压力或离心力,强使水和其他小的溶质分子通过半透膜,而蛋白质留在膜上,可选择不同孔径的泸膜截留不同分子量的蛋白质.

2、凝胶过滤法

也称分子排阻层析或分子筛层析,这是根据分子大小分离蛋白质混合物最有效的方法之一.柱中最常用的填充材料是葡萄糖凝胶(Sephadex

ged)和琼脂糖凝胶(agarose gel).

(三)根据蛋白质带电性质进行分离

蛋白质在不同pH环境中带电性质和电荷数量不同,可将其分开.

1、电泳法

各种蛋白质在同一pH条件下,因分子量和电荷数量不同而在电场中的迁移率不同而得以分开.值得重视的是等电聚焦电泳,这是利用一种两性电解质作为载体,电泳时两性电解质形成一个由正极到负极逐渐增加的pH梯度,当带一定电荷的蛋白质在其中泳动时,到达各自等电点的pH位置就停止,此法可用于分析和制备各种蛋白质.

2、离子交换层析法

离子交换剂有阳离子交换剂(如:羧甲基纤维素;CM-纤维素)和阴离子交换剂(二乙氨基乙基纤维素;DEAE?FONT

FACE="宋体"

LANG="ZH-CN">纤维素),当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂相反电荷的蛋白质被吸附在离子交换剂上,随后用改变pH或离子强度办法将吸附的蛋白质洗脱下来.(详见层析技术章)

(四)根据配体特异性的分离方法-亲和色谱法

亲和层析法(aflinity

chromatography)是分离蛋白质的一种极为有效的方法,它经常只需经过一步处理即可使某种待提纯的蛋白质从很复杂的蛋白质混合物中分离出来,而且纯度很高.这种方法是根据某些蛋白质与另一种称为配体(Ligand)的分子能特异而非共价地结合.其基本原理:蛋白质在组织或细胞中是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质,因此蛋白质的分离(Separation),提纯(Purification)

和鉴定(Characterization)是生物化学中的重要的一部分,至今还没的单独或一套现成的方法能移把任何一种蛋白质从复杂的混合蛋白质中提取出来,因此往往采取几种方法联合使用.

细胞的破碎

1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度.此法适用于动物内脏组织、植物肉质种子等.

2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织.

3、超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施.对超声波敏感和核酸应慎用.

4、反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎.

5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好.

无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酥活力,但不是全部,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取.

浓缩、干燥及保存

一、样品的浓缩

生物大分子在制备过程中由于过柱纯化而样品变得很稀,为了保存和鉴定的目的,往往需要进行浓缩.常用的浓缩方法的:

1、减压加温蒸发浓缩

通过降低液面压力使液体沸点降低,减压的真空度愈高,液体沸点降得愈低,蒸发愈快,此法适用于一些不耐热的生物大分子的浓缩.

2、空气流动蒸发浓缩

空气的流动可使液体加速蒸发,铺成薄层的溶液,表面不断通过空气流;或将生物大分子溶液装入透析袋内置于冷室,用电扇对准吹风,使透过膜外的溶剂不沁蒸发,而达到浓缩目的,此法浓缩速度慢,不适于大量溶液的浓缩.

3、冰冻法

生物大分子在低温结成冰,盐类及生物大分子不进入冰内而留在液相中,操作时先将待浓缩的溶液冷却使之变成固体,然后缓慢地融解,利用溶剂与溶质融点介点的差别而达到除去大部分溶剂的目的.如蛋白质和酶的盐溶液用此法浓缩时,不含蛋白质和酶的纯冰结晶浮于液面,蛋白质和酶则集中于下层溶液中,移去上层冰块,可得蛋白质和酶的浓缩液.

4、吸收法

通过吸收剂直接收除去溶液中溶液分子使之浓缩.所用的吸收剂必需与溶液不起化学反应,对生物大分子不吸附,易与溶液分开.常用的吸收剂有聚乙二醇,聚乙稀吡咯酮、蔗糖和凝胶等,使用聚乙二醇吸收剂时,先将生物大分子溶液装入半透膜的袋里,外加聚乙二醇复盖置于4度下,袋内溶剂渗出即被聚乙二醇迅速吸去,聚乙二醇被水饱和后要更换新的直至达到所需要的体积.

5、超滤法

超滤法是使用一种特别的薄膜对溶液中各种溶质分子进行选择性过滤的方法,不液体在一定压力下(氮气压或真空泵压)通过膜时,溶剂和小分子透过,大分子受阻保留,这是近年来发展起来的新方法,最适于生物大分子尤其是蛋白质和酶的浓缩或脱盐,并具有成本低,操作方便,条件温和,能较好地保持生物大分子的活性,回收率高等优点.应用超滤法关键在于膜的选择,不同类型和规格的膜,水的流速,分子量截止值(即大体上能被膜保留分子最小分子量值)等参数均不同,必须根据工作需要来选用.另外,超滤装置形式,溶质成份及性质、溶液浓度等都对超滤效果的一定影响.Diaflo

超滤膜的分子量截留值:

膜名称分子量截留值孔的大的平均直径

XM-300300,000140

XM-200100,00055

XM-5050,00030

PM-30 30,00022

UM-2020,00018

PM-1010,00015

UM-21,00012

UM05500 10

用上面的超滤膜制成空心的纤维管,将很多根这样的管拢成一束,管的两端与低离子强度的缓冲液相连,使缓冲液不断地在管中流动.然后将纤维管浸入待透析的蛋白质溶液中.当缓冲液流过纤维管时,则小分子很易透过膜而扩散,大分子则不能.这就是纤维过滤秀析法,由于透析面积增大,因而使透析时间缩短10倍.

二、干燥

生物大分子制备得到产品,为防止变质,易于保存,常需要干燥处理,最常用的方法是冷冻干燥和真空干燥.真空干燥适用于不耐高温,易于氧化物质的干燥和保存,整个装置包括干燥器、冷凝器及真空干燥原理外,同时增加了温度因素.在相同压力下,水蒸汽压随温度下降而下降,故在低温低压下,冰很易升华为气体.操作时一般先将待干燥的液体冷冻到冰点以下使之变成固体,然后在低温低压下将溶剂变成气体而除去.此法干后的产品具有疏松、溶解度好、保持天然结构等优点,适用于各类生物大分子的干燥保存.

三、贮存

生物大分子的稳定性与保存方法的很大关系.干燥的制品一般比较稳定,在低温情况下其活性可在数日甚至数年无明显变化,贮藏要求简单,只要将干燥的样品置于干燥器内(内装有干燥剂)密封,保持0-4度冰箱即可,液态贮藏时应注意以下几点.

1、样品不能太稀,必须浓缩到一定浓度才能封装贮藏,样品太稀易使生物大分子变性.

2、一般需加入防腐剂和稳定剂,常用的防腐剂有甲苯、苯甲酸、氯仿、百里酚等.蛋白质和酶常用的稳定剂有硫酸铵糊、蔗糖、甘油等,如酶也可加入底物和辅酶以提高其稳定性.此外,钙、锌、硼酸等溶液对某些酶也有一定保护作用.核酸大分子一般保存在氯化钠或柠檬酸钠的标准缓冲液中.

3、贮藏温度要求低,大多数在0度左右冰箱保存,有的则要求更低,应视不同物质而定.