硫酸铵的结晶,那种工艺好?
选用何种结晶方式,取决于你的原料的质量状况以及对产品质量的要求,影响硫酸铵结晶的主要影响因素有:1、PH的影响 pH数值对硫酸铵晶形影响较大,在强酸溶液中生成碎小的针状晶体,在中性的碱性溶液中晶体的直径减小,在pH5~6时弱酸性介质中生成比较大的晶体。2、杂质的影响 杂质对硫酸铵晶形的影响:Fe+3会减速结晶的速度,在溶液中的浓度到0.1%会促使硫酸铵晶体变长,而在较高的浓度时生成针状晶体;Pb+2会促使大粒硫酸铵晶体析出,并生成;Mn+2会促进晶核生成,有它们存在的时候硫酸铵结晶为粗大的片状晶体;Zn离子也能促使生成比较完善的硫酸铵晶体,颗粒较圆,尺寸增大; 最后,制取的硫酸中不可避免的也含有一部分的杂志,它们对产品结晶也会产生影响,杂质铁和铵因为生成胶态氢氧化物,从而附着于硫酸铵晶体表面上,它们在结晶器里促使结晶的过程变的复杂。
可以
(1)物料加热、蒸发:
物料通过进料泵经过进料流量计计量后进预热器预热,利用蒸发器二次蒸汽冷凝下来的凝结水,将物料预热到80度以上,然后进强制循环泵的入口和结晶器出来的液体混合。经强制循环泵的输送,进入加热蒸发器,物料经过蒸发器壳程蒸汽的间接加热,吸收热量后温度升到108°C,然后进入DTB结晶器的闪蒸室,由于闪蒸室内为负压,物料进来后瞬间进行蒸发,大部分水变成温度为90°C的二次蒸汽,由二次蒸汽出口进入MVR蒸汽压缩机,蒸汽经压缩后蒸汽的压力提高,同时温度也升高到110°C,满足物料闪蒸脱水加热温度的要求。水蒸气经冷凝后成冷凝水排出,进入下道工序的处理。
(2)结晶
进入结晶器中的物料在螺旋桨的推动下,通过导流筒快速上升至液体表层,由于设备内为负压,部分水瞬间产生蒸发成为蒸汽后有顶部出口排出再利用,没有蒸发的物料沿导流筒与挡板之间的环形通道流至器底,重又被吸入导流筒的下端,形成了内循环通道,以较高速率反复循环,使料液充分混合,保证了器内各处的过饱和度比较均匀,极大地强化了结晶器的生产能力。
圆筒形挡板将结晶器分隔为晶体生长区和澄清区。澄清区的物料溢流后和母液混合后经循环泵输送加热器循环加热。
结晶器内的物料经设备内混合区、养晶区后晶体颗粒很快的长大,颗粒大晶体由于沉降速度大于悬浮速度,在结晶器的底部会形成一个悬浮密度稳定的晶浆区,通过密度的自动控制,利用晶浆泵的输送,将含晶体30%~40%的晶浆送往离心机进行分离。得到颗粒较大的硫酸铵晶体。
母液经处理将剩余的产品提出后返回系统重新蒸发提纯。
2、设备情况介绍:
(1)加热蒸发器
换热面积为200m2,管程介质为饱和硫酸铵溶液,壳程介质为水蒸气,管程介质为:316L,壳程介质为碳钢。设备形式为卧式双回程。外形尺寸为:¢1100*~5500.
该设备是将物料进行加热,提供物料的温度,为物料蒸发提供热能。
(2)DTB蒸发结晶器
设备容积为6.0m3的DTB结晶器,材质为316L不锈钢,设备分混合区、晶浆区、澄清区等区域,结晶室是通过大流量的内循环,将过饱和产生的晶体相互撞击形成大颗粒,向底部移动,可以在底部形成晶体浓度较高的晶浆区,通过内部的特殊结构使饱和溶液进入澄清区,经溢流口进入蒸发器再加热、蒸发。设备带内循环推进装置,功率为5.5Kw。
(3)MVR蒸气压缩机
机械式蒸汽压缩机,轴功率为~55KW,该设备的目的是将结晶器产生的二次蒸汽再压缩,提高蒸汽的温度,重新利用,蒸汽进口温度为90°C,出口温度为110°C,蒸汽流量为2400Kg/h。
(4)强制循环泵
口径为DN300,材质为316L不锈钢的轴流泵,电机功率为30KW,流量为200m3/h.
(5)仪表自动化控制
对系统内的流量、温度、压力、液位都采用PLC自动化控制,PLC采用”西门子公司” 的产品,传感器和变送器:采用“上海望源公司“产品。控制阀等执行机构:采用”杭州良工阀门公司“产品,
(6)电器控制:
电器元件采用施耐德公司的产品,电缆采用江苏远东公司产品,
(7)其他
在制造厂进行预组装,及冷模试车,然后进行拆卸、表面处理、及装箱发运,具体材质根据工艺要求确定。
七、本工艺的优点:
(1)选用DTB型式的结晶器有利于得到分布均匀和粒度较大的晶体,有利于后续的过滤和干燥,可以大大降低后续过程的能耗。
(2)结晶器的设计既要考虑过饱和溶液中形成晶核,又需要顾及这些晶核微粒长大到所需产品粒度的范围。我们在结晶器设计中,依靠计算流体力学工具,综合考虑停留时间、流速、设备表面特性、pH值等因素对结晶过程的影响,对结晶器的结构进行优化,为晶体的生长提供良好的条件。
(3)选用卧式加热器采用双回程列管,物料在管内流速大大提高,更利于对饱和溶液的无机盐物料的蒸发,不容易结疤,结垢,使得系统更加稳定。
(4)采用MVR蒸汽压缩技术,蒸汽的热效率相当于二十效蒸发器的效能,正常运行蒸汽消耗为“零”消耗。 同时大大的缩短了工艺流程,节能效果十分的明显.
(4)占地面积小、操作人员少;配套的公用工程项目少。
(5) 采用全自动化控制,操作更加稳定可靠。
(6)无需采用真空泵,节省电耗.
(7)蒸发系统产生的二次蒸汽经压缩后再利用,省掉了蒸汽冷凝器,同时也节省了冷凝水的消耗,更加节能.
- 本文出自马后炮化工论坛,原文地址:http://bbs.mahoupao.net/thread-74922-1-1.html
由于此前从未尝试制作晶体,笔者从零开始学习此方面内容。而当我的制作过程渐入佳境时,学校开始军训了。当军训于24日结束时,我发现预先静置于培养皿中的单晶变成了大饼。。。我只好从预先确定的长方体硫酸铜单晶的培养更换至对大尺寸硫酸铜单晶的培养。然而,由于操作不慎,不小心将唯一一块大尺寸硫酸铜单晶(与https://www.kechuang.org/t/84561中的参赛作品大小相近)放入了未饱和溶液,一晚上完全溶解了。。。。。。。。把剩余的一颗可以参赛的晶体上传时,还忘了上传过程图
在悲伤之余我发现自己在参赛以前连硫酸铜单晶都没有做出过,现在却可以做出一些像样的作品,说明这一过程中我并非毫无收获,以下我想向大家分享讨论其一 。
以下正文内容
原理
作为一个晶体制作小白,我在参赛之前所认为的单晶硫酸铜都得长成这样:
(图片来自网络)
硫酸铜晶体属于三斜晶系
(图片来自网络)
之后我在百度晶化吧中看到一个帖子(链接http://tieba.baidu.com/p/5610814291?pn=1),看到长成这样的硫酸铜晶体,起初有些人可能认为是硫酸铜和硫酸铝钾形成了混晶。但首先理论上来说,硫酸铜晶体和硫酸铝钾晶体并没有相同的晶胞形状,并非像硫酸铝钾和硫酸铬钾一样是类质同晶的,它们不易形成混晶。再之,在晶化吧另一帖子(http://tieba.baidu.com/p/6202087992)中,对方形硫酸铜晶体进行了EDS检测,结果如下:
(图片来自百度晶体化学吧)
上图为硫酸铜晶体(0.2mol/L硫酸铝钾)的检测结果
饱和器的温度制度是为维持饱和器内的水平衡而制定的,母液温度过高或过低都不利于结晶的成长。饱和器在酸洗和水洗时形成的母液量,对其温度制度影响最大。母液温度过高时,母液的黏度降低,硫铵分子向晶体表面的扩散速度加快而有利于晶体长大,但同时也易因温度波动而造成局部过饱和现象,也促成大量的晶核生成,因而得不到大颗粒的硫铵。母液温度过低时,可以限制晶核的大量生成,但降低了传质速度,同样得不到大颗粒的硫铵结晶。在不同的温度下,硫铵具有不同的溶解度,当饱和器内母液的各部位出现不同温度时,硫铵的浓度也随之改变。生产实践表明,饱和器的母液温度稳定在40~42℃范围内,对生产大颗粒结晶最为适宜。母液中结晶含量――晶比要控制适当,晶比太大时,相对减少了氨与硫酸反应的容积,不利于氨的吸收,并使母液搅拌的阻力增大,导致母液搅拌不良,也易造成饱和器的堵塞。
经过我们长期从事硫铵工作的实践总结分析,影响硫铵饱和器的温度一般有以下几个方面:煤气在鼓风机内温升产生温度、预热器后的煤气温度、饱和器加酸放热产生的温度、大气温度以及蒸氨系统蒸氨而产生的氨气温度等。
2.预热器后的煤气温度、母液温度
预热器后煤气温度是保持饱和器内的水平衡,以防止母液被稀释,其与初冷器后煤气温度、煤气在鼓风机内的温升以及向硫酸铵生产系统补入的水量等有关。为了蒸发饱和器中多余的水分,进入饱和器的煤气必须进行预热,为不使预热温度过高,影响硫酸铵的质量,除降低初冷器后煤气温度外,必须严格控制进入饱和器的水量,如冲洗饱和器、除酸器以及离心机内洗涤硫酸铵的用量水等带入的水。一般情况下,预热器后煤气温度控制在50~60℃范围内。
2.1饱和器的温度制度是依据饱和器的水平衡制定的。饱和器应在保证母液不被稀释的条件下,采用较低的适宜温度操作,并使其保持稳定。饱和器的母液温度一般保持在40~42℃范围内,对生产大颗粒结晶最为适宜,使硫铵生产更加稳定。因此,煤气预热器是为母液提供热量的,只要母液温度适合晶比的生成和晶比的长大,加上受大气温度、饱和器加酸放热产生的温度、以及蒸氨系统蒸氨而产生的氨气温度等的影响,我们对煤气预热器温度没有要求,在2010年公司技术处组织的工艺指标评定会上得到了公司有关部门的认可。
2.2下面就我公司焦化二厂硫铵车间日常工作中总结出的经验谈一谈温度对硫铵结晶的影响。根据我公司生产实际和饱和器类型的不同,对母液温度的要求也不同。2005年5月以前我公司采用的是鼓泡式饱和器,母液温度要求48~50℃可以得到大颗粒结晶硫酸铵,而且生产稳定,产量高。到2005年5月以后更换为喷淋式饱和器以后,母液温度在48~50℃就有些高了,生产出硫铵铵颗粒小、难放料,经常造成饱和器阻力增大,系统阻力大、煤气输出不畅,生产不稳定,结晶泵和结晶槽经常堵塞,使生产处于半停产状态,经过我们的不断摸索和实践重新制定母液温度,发现母液温度45~48℃最为适宜。
2.3生产实例 陕焦公司焦化二厂在硫铵开工初期,我们严格执行操作规程,仍然遵照以前的加酸制度和操作方法,母液温度控制在45~48℃,大家精心操作,硫铵结晶也正常形成,料白、晶比大,领导和员工都很高兴,半年多的辛勤劳动没有白废,大量的改造工作终于有了结果。当晶比达到放料要求后及时开机放料,这时问题出来了,晶比虽然很大、很白,但颗粒太小,离心机筛网根本就挂不住料,离心机推料难,晶比愈来愈大,颗粒长不大,24小时不停放料仍然解决不了问题,整个饱和器、满流槽、结晶槽母液晶比几乎占据一半,最后被迫停产。经过我们多次调节研究分析,发现是母液温度太高,不能再用以前的温度控制点,于是依次降低母液温度,使其控制到40~42℃后硫铵颗粒变大了放料也正常了离心机筛网也能挂料了,每班放料时间能控制在2―3小时,饱和器、满流槽、结晶槽母液晶比达到了正常要求,班产量在15吨以上,彻底解决了生产难问题。
2.4分析原因
2.4.1母液温度过高时,母液的黏度降低,硫铵分子向晶体表面的扩散速度加快而有利于晶体长大,但也促成大量的晶核生成,因而得不到大颗粒的硫铵。
2.4.2饱和器母液温度的控制不是一成不变的,理论上要求的工艺指标和以前的经验也因时间和环境的不同而发生变化。
2.4.3饱和器母液温度也不能调节的太频繁,要有一个稳定的过程,因为频繁调节母液温度破坏了饱和器的母液稳定性、均匀性,破坏了饱和器水平衡。
2.4.4饱和器放料也不能连续时间太长,不给晶比一个成长机会,晶核之间相互碰幢造成饱和器的母液晶比颗粒更小,难以放料。
3.蒸氨后的氨汽直接进入饱和器对母液温度的影响
3.1焦化生产中,会产生10%~14%的剩余氨水,剩余氨水的加工和煤气中氨的回收是焦化厂化产回收的重要环节,目前采用饱和器生产硫铵的焦化厂,均将剩余氨水在蒸氨塔中汽提成10%~12%的氨汽全部回收进入硫铵饱和器。蒸氨后的氨汽直接进入饱和器,硫铵产量增加10%以上。但在实际生产中,存在氨汽进入硫铵饱和器造成母液温度偏高,母液的黏度降低,难以形成大颗粒硫酸铵,这就要求我们要控制冷却后的氨气温度在合适的范围,不能使进入饱和器的氨汽中带有大量蒸汽, 造成硫铵母液温度偏高, 部分焦油溶解 而使母液颜色变黑。另外氨气从饱和器煤气进口进入,煤气温度升高,硫铵结晶变细小,因此在蒸氨气进入系统后,需降低煤气预热器温度,增加大母液循环泵流量,控制好蒸氨塔分缩器温度在一定范围内,尽量使进入饱和器的氨气纯氨气,来保证饱和器母液温度在40~42℃之间。
3.1结果分析
我陕焦公司焦化二厂化产车间硫铵系统,在一段时间蒸氨后的氨汽直接进入饱和器,造成饱和器的母液温度高,母液的黏度降低,难以形成大颗粒硫酸铵,离心机筛网不能挂料,生产处于不正常状态,从此蒸氨后的氨汽再也没有进入饱和器。依据我任硫铵工段段长多年和硫铵工作的经验,饱和器的母液温度高不是由于蒸氨后的氨汽造成,虽然蒸氨后的氨汽温度一般在80~90℃,但它进入饱和器只占煤气量的很小一部分,不会影响饱和器的母液温度。影响饱和器母液温度的是和蒸氨后的氨汽一块进入饱和器的蒸汽,它是造成饱和器的母液温度偏高的主要原因。
3.3合理化建议
在今后蒸氨生产中,尽量使蒸氨塔顶出纯氨汽,不要夹杂太多的蒸汽,这就要求我们在平时生产中注意调节好蒸氨塔分缩器温度,来保证蒸氨塔顶氨汽的纯度,只有这样才能氨汽进入饱和器,生产更多的硫酸铵,也为环保工作作出贡献。
1.鼓泡式饱和法
由鼓风机来的焦炉煤气,经电捕焦油器后进入煤气预热器。在预热器内用间接蒸汽加热煤气到60~70℃或更高的温度,目的是为了使煤气进入鼓泡式饱和器蒸发饱和器内多余的水分,保持饱和器内的水平衡。预热后的煤气沿饱和器中央煤气管进入饱和器,经泡沸伞从酸性母液中鼓泡而出,同时煤气中的氨被硫酸所吸收。煤气出饱和器后进入除酸器,捕集其夹带的酸雾后,被送往粗苯工段。鼓泡式饱和器后煤气含氨一般小于0.03g/m3。冷凝工段的剩余氨水经蒸氨后得到的氨气,在不生产吡啶时,直接进入饱和器;当生产吡啶时将此氨气通入吡啶中和器。氨在中和器内与母液中的游离酸及硫酸吡啶作用,生成硫酸铵,又随中和器回流母液返回饱和器。
饱和器母液中不断有硫酸铵生成,在硫酸铵含量高于其溶解度时,就析出结晶,并沉淀于饱和器底部。其底部结晶被抽送到结晶槽,在结晶槽内使结晶长大并沉淀于底部。结晶槽底部硫酸铵结晶放到离心机内进行离心分离,滤除母液,并用热水洗涤结晶,以减少硫酸铵表面上的游离酸和杂质。离心分离的母液与结晶槽满流出的母液一同自流回饱和器中。从离心机分离出的硫酸铵结晶经螺旋输送机,送入沸腾干燥器内,用热空气干燥后送入硫酸氨储斗,经称量包装入成品库。
为了使饱和器内煤气与母液接触充分,必须使煤气泡沸伞在母液中有一定的液封高度,并保证饱和器内液面稳定,为此在饱和器上还设有满流口,从满流口溢出的母液经插入液封内的满流管流入满流槽,以防止煤气逸出。满流槽下部与循环泵链接,将母液不断地抽送到饱和器底部的喷射器。因而一定的喷射速度,故饱和器内母液被不断循环搅动,以改善结晶过程。
煤气带入饱和器的煤焦油雾,在饱和器内与硫酸作用生成所谓的酸煤焦油,泡沫状酸煤焦油漂浮在母液面上,并与母液一起流入满流槽。漂浮于满流槽液面上的酸煤焦油应及时捞出,或引入一分离处理装置与母液分离,以回收母液。饱和器内所需补充的硫酸,由硫酸仓库送至高置槽,再自流入饱和器,正常生产时,应保持母液酸度为4%~6%,硫酸加入量为中氨的需要量;当不生产粗轻吡啶时,硫酸加入量要大一些,还要中和随氨气进入饱和器的氨。
饱和器在操作一定时间后,由于结晶的沉积将使其阻力增加,严重时会造成饱和器的堵塞。所以操作中必须定期进行酸洗和水洗。当定期大加酸、补水、用水冲洗饱和器及除酸器时,所形成的大量母液有漫流槽满流至母液储槽。在正常生产时又将这些母液抽回饱和器以作补充。饱和器是周期性连续操作设备,为了防止结晶堵塞,定期大加酸和水洗,从而破坏了结晶生成的正常条件,加之结晶在饱和器底部停留时间短,因而结晶颗粒较小,平均直径在0.5mm。这些都是鼓泡式饱和器存在的缺点。
2.喷淋式饱和器法
喷淋式饱和器分为上段和下段,上段为吸收室,下段为结晶室。
由脱硫工序来的煤气经煤气预热器预热至60~70℃或更高温度,目的是为了保持饱和器水平衡。煤气预热后,进入喷淋式饱和器的上段,分成两股沿饱和器水平方向沿环形室做环形流动,每股煤气均经过数个喷头用含游离酸量3.5%~4%的循环母液喷洒,以吸收煤气中的氨,然后两股煤气汇成一股进入饱和器的后室,用来自小母液循环泵(也称二次喷洒泵)的母液进行二次喷洒,以进一步除去煤气中的氨。煤气再以切线方向进入饱和器内的除酸器,除去煤气中夹带的酸雾液滴,从上部中心出口管离开饱和器再经捕雾器捕集下煤气中的微量酸雾后到终冷洗苯工段。喷淋式饱和器后煤气含氨一般小于0.05g/m3。
饱和器的上段和下段以降液管联通。喷洒吸收氨后的母液从降液观念流到结晶室的底部,在此结晶核被饱和母液推动向上运动,不断地搅拌母液,使硫酸铵晶核长大,并引起颗粒分级。用结晶泵将其底部的浆液送至结晶槽.含有小颗粒的母液上升至结晶室的上部,母液循环泵从结晶室上部将母液抽出,送往饱和器上段两组喷洒箱内进行循环喷洒,使母液在上段与下段之间不断循环。
饱和器的上段设满流管,保持液面并封住煤气,使煤气不能进入下段。满流管插入漫流槽7中也封住煤气,使煤气不能外逸。饱和器满流口溢出的母液流入漫流槽内的液封槽,再溢流到满流槽,然后用小母液泵送至饱和器的后室喷洒。冲洗和加酸时,母液经漫流槽至母液储槽,再用小母液泵送至饱和器。此外,母液储槽还可供饱和器检修时储存母液之用。
结晶槽的浆液经静置分层,底部的结晶排入到离心机,经分离和水洗的硫酸铵晶体由胶带输送机送至振动式流化床干燥器,并用被空气热风机加热的空气干燥,再经冷风冷却后进入硫酸铵储斗。然后称量、包装送入成品库。离心机滤出的母液与结晶槽满流出来的母液一同自流回饱和器的下段。干燥硫酸铵的尾气经旋风除尘器后由排风机排放至大气。
为了保证循环母液一定的酸度,连续丛母液循环泵入口管或满流管处加入质量分数为90%~93%的浓硫酸,维持正常母液酸度。
由油库送来的硫酸送至硫酸储槽,再经硫酸泵抽出送到硫酸高置槽内,然后自流到满流槽。
喷淋式饱和器生产硫酸铵工艺,采用的喷流式饱和器,材质为不锈钢,设备使用寿命长,集酸洗吸收、结晶、除酸、蒸发为一体,具有煤气系统阻力小,结晶颗粒较大,平均直径0.7mm,硫酸铵质量好,工艺流程短,易操作等特点。新建改建焦化厂多采用此工艺回收煤气中的氨
以及烧结机烟气脱硫工艺选择
氨法脱硫以其脱硫效率高,副产物硫酸铵能有效利用,运行费用低,无废水、废渣,符合循环经济理念等优点被业内看好。但是,根据当前市场已投入运行的某些氨法脱硫装置实际情况来看,存在颇多问题,其工艺技术的可靠性和成熟度愈来愈引起人们的质疑和关注。
一、 存在的问题
1、氨逃逸,脱硫现场氨味浓厚、刺鼻。
2、脱硫剂—液氨用量大,其利用率不足30~40%,损耗达60~70%以上,氨硫比只有1:1左右(理论上有1:3.88T/T),浪费十分严重。
3、脱硫尾气烟雾浓厚,烟尾长达数公里不散,视觉感观很差,且伴有硫酸雨(严重气溶胶)。
4、脱硫设备表面及其周边设备腐蚀严重。
5、脱硫副产物硫酸铵也带有强烈的刺鼻熏味,氨味浓烈。
6、人们担心,烧结烟气脱硫副产物硫酸铵中重金属和二恶英严重超标,不能作为农用化肥使用。
针对上述实际存在的问题和人们的担心,我公司多次派员深入烟气脱硫现场进行调研和采样分析。我们认为:造成上述问题发生的根本原因是工程设计部门对化学工艺的不理解而致。氨法脱硫技术在学术上属于化学工程,尤其是化学反应工程的尖端课题,它集中了几乎所有化学工程设备的属性,是一个典型的化学吸收过程和典型的化学系统工程,属于国际化学工程科学与工程学术领域的前沿, 而非化学方程式那么简单。
二、 问题剖析和解决方法
1、关于氨逃逸问题
氨,作为脱硫剂在常温常压下是气体,极易挥发。因此,氨法脱硫的首要问
题是围绕如何控制氨的易挥发性,防止氨随脱硫尾气溢出和损失,造成对环境的污染。
烟气脱硫是典型的化学吸收过程,其原理是:①气相中的SO 2进入液相,与液相中的亚硫酸二铵反应,生成亚硫酸一铵;②气相中SO 2和NH 3浓度决定于液相中的平衡浓度。根据我公司的基础研究,SO 2浓度与亚硫酸一铵浓度平方成正比,与亚硫酸二铵浓度呈反比;NH 3浓度与总铵和亚硫酸二铵浓度成正比,与亚硫酸一铵浓度成反比。
因此,实际设计中,应充分考虑优化设计这些浓度,使得在满足脱硫效率的情况下,氨的平衡浓度小于1mg/Nm3。实际设计和运行中,氧化和循环量是决定因素,吸收液循环量十分重要,选择不当,要么能耗过大,要么导致氨逃逸无法控制,要么带来严重的气溶胶污染,脱硫效率和氨的利用率无法得到保障等。
申川氨法拥有的氨回收段的逆流脱硫工艺和并流脱硫塔工艺技术,具有克服氨挥发损失的优点,氨溢出量不超过1mg/Nm3,能够确保优良的氨逃逸控制性能。
2、关于亚硫酸铵的氧化问题
由于亚硫酸铵是反应中间产物,其特性可逆不稳定,常温下易分解与还原,产生NH 3和SO 2,使得脱硫效率低下,NH 3和SO 2又随脱硫烟气逃逸。脱硫现场和脱硫烟气所到之处,之所以散发氨气异味就是由此原因,同样脱硫副产物硫酸铵中如有浓烈的刺鼻氨味,也是由于硫酸铵中大量夹带亚硫酸铵水溶液挥发而致。解决问题的关键就是必须强制对亚硫酸铵的氧化,才能避免氨法脱硫尾气对周边环境的影响;只有深度氧化,才能使硫酸铵中不含亚硫酸铵溶液;由于不产生任何异味,才能确保副产物存放环境的安全。
申川氨法技术亚硫酸铵氧化效率其保证值控制在95~99%以上,因此,在包头东方希望铝业2x350MW 机组烟气脱硫现场和副产物硫酸铵中都无异味产生。某钢厂烧结氨法脱硫其现场和副产物硫酸铵中散发浓烈的氨水异味,就是因为氧化率低或没有氧化,致使硫酸铵中夹带大量亚硫酸溶液挥发所为。
3、关于气溶胶逃逸问题
气溶胶的产生和逃逸,也是脱硫现场及其脱硫烟雾所到之处具有强烈刺鼻氨味,影响环境造成二次污染的罪魁祸首之一。
气溶胶的表现形式为:脱硫尾气烟气浓厚,犹如一条绵延数公里的白龙(也
称为白烟或蓝烟),硫铵雨严重(象雨滴一样),不仅严重影响了企业的环保形象,而且威胁着周边居民的生活质量和身体健康,民怨很大;同时对脱硫装置本身腐蚀严重,也腐蚀着周边其他设备。
自有氨法脱硫以来,由于人们对气溶胶产生的机理不理解,所以一直被忽视。何谓气溶胶?即在气相形成亚硫酸氢铵的固体,即气相沉淀。最初形成的固体呈现为超细粉末,在微米级别,称为气溶胶。由于在脱硫过程中,热烟气与水溶液接触,在液体表面饱和水蒸气向气相传递,超细的固体颗粒会成为水蒸气冷凝结霜的核心或晶种,在晴天阳光照射下发光反射。
因此,关键是要防止以下反应的发生:
NH 3(g)+SO2(g)+H2O=NH4HSO 3(g)
实际上有两类气溶胶,一是弱酸气溶胶(即以上所说),二是强酸气溶胶。对于烟气中特别是烧结烟气,SO 3含量等强酸性气体含量高的情况,更容易出现。
气溶胶的逃逸,除前面所说表象外,而且还使得脱硫剂使用量大增。这里一边是增加了液氨的使用量,同时液氨的利用率极为低下,损耗量增高,造成氨硫比失衡等诸多问题的发生。
下表是我公司对某钢厂360m3烧结机氨法脱硫2010年9月和2010年10月运行情况的分析:
分析表明:实际脱硫效率仅有20%,氨损耗60~70%,利用率仅为30~40%,氨硫比为1:1,不仅浪费惊人,而且造成的二次污染也十分严重。某钢厂提供脱硫效率与检测仪表误差有关。
气溶胶的生成逃逸是一道世界性的难题。我公司技术总监、上海交通大学特聘教授、教育部长江学者、化学工程专家肖文德先生经过多年的实践摸索,攻克了这一堡垒,解决了这道世界难题(目前世界范围内只有申川氨法解决了这一难题)。
a) 对于气溶胶。将气溶胶分解为强酸气溶胶和弱酸气溶胶,提出了不同的技术,尤其针对前者的技术,纠正了以往强调功能一体耦合的问题,需要有恰当的功能分解,区别对待弱酸性物质,设置对应的功能区分。申川氨法特别设计了带有洗涤段的脱硫塔,具有清除此类强酸气溶胶的功能。
b) 对于“硫酸雨”。采用循环吸收液低浓度化的方法和净化烟气进一步净化的方法,极为彻底地消除了硫酸雨的问题。申川氨法气溶胶控制技术其控制效率高,工程业绩中硫酸铵的产出率达到3.5~3.8t/T,接近理论数据,而且现场空气中没有氨的气味,烟囱排出的烟羽既细又短,扩散非常之快(不足50米),环境效果十分明显。
4、关于脱硫设备腐蚀性问题
造成设备表面腐蚀和周边设备腐蚀的根本原因是由于氨逃逸和气溶胶逃逸而为。某钢厂氨法脱硫出现上述问题其根源就是逃逸所致。申川氨法技术很好的解决了上述问题,因此没有腐蚀现象存在。
5、关于副产物硫酸铵品质问题
从现有的烧结机烟气副产物硫酸铵品质来看,除夹带亚硫酸铵溶液、有严重刺鼻气味,色相略差以外,其各项指标均满足GB535-1995国标标准。据湖北出入境检验检疫局技术中心和华中科技大学煤燃烧国家重点实验室,对烧结脱硫副产物硫酸铵重金属含量检测结果与国家GB15618-1995土壤标准实验结果表明,均符合要求。
中科院水生物研究所对烧结脱硫副产物硫酸铵含二恶英检测结果表明(平均值仅0.0034ngPEQ/gdw),远低于日本环境署对土壤的要求,甚至更低于欧盟食品法规对肉食品中二恶英含量限制指标要求。
此检测结果足以证明,产品硫酸铵满足国家标准,重金属和二恶英含量远低
于国家标准(0.05ngPEQ/gdw)。不会对农作物及其土壤造成安全隐患,可以消除人们的担忧。
三、 烧结机机烟气特点和主要设计思路
1、烧结机烟气特点:
a) 烧结烟气量大,烟气波动大,阵发性强;
b) 烧结烟气SO 2浓度变化大;
c) 烧结烟气成份复杂,含重金属元素较多;
d) 烧结烟气温度变化大。
因此说烧结烟气不同于燃煤电厂烟气,不能简单地把电厂烟气脱硫技术搬到烧结烟气中来,必须根据其特点,选用适合的脱硫的工艺。氨法脱硫技术其最大特点之一为适应性强,可以适应各种大烟气量变化和SO 2浓度的变化,针对烧结烟气的特点,在技术和设计上,申川公司都将采取不同的措施作出调整,以适应烧结烟气脱硫工艺技术的需要。
2、主要设计思路
针对现有烧结机氨法烟气脱硫技术中存在的问题,我们前述有针对性的解决方法外,还要注重:
① 根据正常烟气量来计算,设计脱硫塔的直径,以满足烟气量负荷的需要。 ② 根据烟气中SO 2含量最高值和95%以上的脱硫效率指标,设计塔高,以满足脱硫效率要求。
③ 塔内构件及塔外辅机参数将根据烟气量和SO 2含量最大及最小的范围设计,使之既能在负荷最小状态下操作,又能满足最大负荷。即设置多层塔内循环喷淋,氧化管网系统,配套多台循环泵及氧化风机,使这些内构件及其辅机参数与烟气量及其SO 2含量的最大值与最小值相匹配,系统在较大的变化范围内都能满足脱硫效率,氨逃逸、气溶胶控制等脱硫指标。
④ 根据宁钢烧结机面积大、现场布置面积有限、紧邻居民区、环境要求高等特点,申川氨法将选用逆流方式双塔脱硫技术(所谓双塔是指一为脱硫塔,二为氧化净化塔工艺),有效解决亚硫酸铵氧化问题,绝对防止对周边环境的二次污染,保障周边居民的正常生活不受影响。
⑤ 根据宁钢烧结机引风机余压有限的情况,将考虑增设脱硫增压风机,以满足脱硫系统阻力压损的需求。增压风机拟采用静叶可调轴流风机,风量可以很好的与烧结机引风机相匹配。
⑥ 根据烧结烟气粉尘中成份复杂(主要以铁及其化合物,还有硅、钙等铁矿伴生成份以及砷、锌、铅、铜、铝、镉、铬、镍等重金属)特点,我们认为,氧化铁等具有催化作用,对提高脱硫效率有帮助;但同时如果对其处理不恰当,将对硫酸铵品质产生影响。因此我们将配置溶液过滤系统,将烟气中重金属从溶液中分离出来,不带入硫酸铵产品中(在硫酸铵结晶前采用溶液初过滤及其精过滤两级过滤沉淀系统)。最终的含金属物的渣质,经板框压滤分离,回烧结重新利用,不产生二次污染。可有效保证硫铵产品品质要求符合国标,达到农用合格品以上标准。
⑦ 在硫酸铵结晶方面,根据申川氨法创新的结晶器兼反应器的特点,称也反应结晶技术,不另设结晶设备,工艺简单,结晶温度低,不消耗蒸汽,电耗也低,将形成大颗粒的硫铵结晶体。
⑧ 在优化操作和控制方面,采用以PH 值控制加氨量进而控制脱硫效率,以液位控制水流量,以密度控制产品硫铵量。系统操作具有很好的稳定性和安全性,将完全实现自动化运行,操作简单。
⑨ 在脱硫塔大型化方面,设计采用带有低阻力和高效率专用多螺旋喷嘴的申川专利喷雾塔,内件少,结构简单,具有十分良好的操作弹性。此法不会发生结垢和堵塞,无维护要求,解决了脱硫塔大型化的诸多问题。
四、 上海申川氨法技术特点综述
申川氨法脱硫技术在我国氨法脱硫的开创者公司技术总监、上海交通大学特聘教授、教育部长江学者、化学工程专家肖文德先生的主持下,经过二十多年的科学研究和技术攻关,已发展了第三代、第四代及第五代氨法脱硫技术,目前公司拥有该技术专利150余项,涵盖了氨法烟气脱硫技术的所有内容。申川氨法以化学工程科学和技术领域的最新理论及技术成果为基础,克服了现有其他氨法的技术缺陷,其技术成熟度高,稳定性强,关键技术是独特和创新的,代表着当
今中国和世界氨法脱硫的先进性水平,特别是攻克了氨逃逸和防止气溶胶生成和逃逸的世界性技术难关,在世界氨法脱硫领域独树一帜。申川公司将根据冶金烧结机烟气脱硫的特点,不断优化工艺流程,创立新一代氨法脱硫新工艺、新技术,以满足不同烧结机烟气脱硫的需求,再攀新高峰,为我国的烟气脱硫事业做出新的贡献。
五、 工艺技术比较
由于历史的原因,导致钙法成为中国企业脱硫选型的主流技术(主要指电厂)。2004年左右我国开始大力推动火电厂脱硫,纷纷引进国外脱硫技术,钙法工艺也由此成为中国电厂的主要选择(烧结烟气脱硫也类似),目前90%以上脱硫项目采用了钙法工艺。但是经过近几年的建设运营,钙法脱硫项目暴露出了较多问题,使得脱硫设施的实际投运率不足60%。一是运营成本高,水电消耗大,石灰石随着原材料涨价,投入增加,宁波地区的石灰石价格约为400元/T左右。二是易造成二次污染,石膏难以充分利用,大都被抛弃,由气态转为固态污染。且石灰石在运输、装卸过程中易产生扬尘。三是运行故障率高,设备结疤腐蚀严重,管道易堵塞。在石灰石/ 石膏法中, 粉尘中的铁、锌、铝、钒等起催化作用,将部分SO 2 催化氧化为SO 3 , 从而提高了浆液中硫酸钙的浓度, 增加了脱硫系统堵
塞的可能性, 相应地腐蚀性也会增加。四是系统设计先天不足,对国外技术和设计的依赖度较高,个别设备出现故障后难以及时修复,造成脱硫设施停运。据统计,国内钙法脱硫设施实际投运率不足60%。五是高碳排放,脱除二氧化硫的同时又产生大量二氧化碳气体排放。理论上,钙法脱硫每脱除1吨SO 2,将产生0.8
吨CO 2。按宁钢年脱除15504吨SO 2计算,将产生12000吨CO 2 ,不仅没有减排,
反而加重了环保压力。
钙法和氨法烟气脱硫技术、经济投资效益对比
由此可见,氨法脱硫工艺比较钙法脱硫工艺有较大优势。
水中溶解度(g/100ml)
每100毫升水中的溶解克数:
2.15g/20℃
化学性质
白色单斜晶系结晶。 极易溶于水。不溶于醇。微溶于丙酮。
用途
用作照相定影剂、金属清洗剂、电镀液和还原剂
用途
硫氰酸铵亦称硫氰化铵,用于合成杀虫剂噻嗪酮的中间体异硫氰酸特丁酯以及杀虫剂唑蚜威,杀菌剂叶枯唑,除草剂氟噻草胺等的中间体氨基硫脲,此外,它也用作制造双氧水的辅助原料和染料、有机合成的聚合催化剂等。
用途
感光工业用作照相定影剂,较钠盐更易溶解卤化银的乳膜,具有水洗时间短而银回收容易的优点。还用作镀银电镀浴的主要组分;金属表面的清净剂;铝镁合金浇铸保护剂。在医药上用作杀菌剂、分析试剂。
用途
本品在无氰电镀时作络合剂,硫代硫酸根与银离子结合,成硫代硫酸合银络合离子。提高阴极极化作用,使镀银层结晶细致,覆盖能力好。一般用量200~250 g/L。
用途
用作分析试剂、照相定影剂和还原剂
生产方法
将NH3水加入反应釜中,通SO2,得亚硫酸铵备用。另将多硫化铵加入反应釜,加水溶解后在搅拌下缓缓级加入上述溶液,在30~55 ℃下反应,反应过程中使反应液始终保持深橙色。加亚硫酸铵溶液量稍低于理论量。亚硫酸铵溶液加毕后,通蒸汽数小时,以驱除硫化铵。将反应液过滤,在氮气保护下进行蒸,用活性炭脱色以除去硫黄。冷冻结晶,离心脱水,在氨气保护下干燥得成品。
生产方法
碳酸氢铵法由碳酸氢铵与二氧化硫和水作用生成亚硫酸铵,经过滤除去杂质后再与硫黄加热煮沸进行反应,再过滤、蒸发、冷却结晶、离心分离,制得硫代硫酸铵成品。其
2NH4HCO3+SO2+H2O→(NH4)2SO3+2H2O+2CO2↑
(NH4)2SO3+S→(NH4)2S2O
生产方法
其制备方法可通过二硫化碳法或硫磺法制备硫氰酸铵。
二硫化碳法
将二硫化碳和稍过量的液氨同水混合,在压力5.88×105Pa、温度100℃的条件下反应约20h,反应液经减压蒸发脱除硫化氢,在液温105℃时用硫化铵除去铁及重金属,过滤,将滤液减压浓缩后在结晶器内冷却结晶,再经离心分离、干燥,得到硫氰酸铵。反应方程式:CS2+3NH3=NH4SCN+NH4HS
NH4HS=NH3↑+H2S↑
硫磺法
将适量水与硫磺粉在反应器中搅拌成浆状,分次缓慢加入固体氰化钠,在110℃左右进行反应,生成硫氰化钠,再加入固体氯化铵,反应生成硫氰酸铵,再在反应液中加入硫氰酸钡除杂澄清,上层清液经减压蒸发,浓缩析出氯化钠,再经过滤、冷却结晶、分离和干燥,得到硫氰酸铵。反应方程式:NaCN+S=NaSCN
NaSCN+NH4Cl=NaCl+NH4SCN
类别
有毒物品
毒性分级
中毒
急性毒性
口服-大鼠LD50: 2890 毫克/公斤口服-小鼠LD: >3000 毫克/公斤
可燃性危险特性
高温产生有毒硫氧化物和氨烟雾
储运特性
库房通风低温干燥
灭火剂
干粉、泡沫、砂土、二氧化碳, 雾状水
化学式:(NH4)2S2O3,分子量148.20。无色单斜系晶体。熔点150°