天然产物的微生物及其发酵液有效成分
微生物是包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。能够提供有效成分的主要是真核生物中的真菌与藻类,以及其他微生物的代谢(发酵)产物。来源于微生物及发酵液的有效成分主要有多糖类、酶类、抗生素类、色素类、氨基酸类、有机酸类、醇酮类、维生素类、核酸类等等。现将主要成分简介如下: 微生物多糖是一类次生代谢产物。其中的有些同琼脂、果胶、阿拉伯胶等一样,是一类水溶性胶体物质,具有高粘度、高水溶性、高稳定性以及安全性等性质,因而在工业上具有多方面的特殊利用价值。某些来自高等真菌的多糖具有抗肿瘤作用,医用价值很大。根据存在位置的不同,多糖可分为细胞内多糖、细胞壁多糖和细胞外多糖。微生物大量产生的多糖主要是胞外多糖。胞外多糖的种类很多,根据所含糖苷基的情况可分为同型多糖和异型多糖。同型多糖中糖苷单体只有一种,如葡萄糖苷组成的葡聚糖、果糖苷组成的果聚糖、甘露糖基聚合的甘露聚糖。植物体内的淀粉和纤维素是葡聚糖型的同型多糖。异型多糖也称杂多糖,是由两种以上(一般为2-4种)不同的糖苷基组成的聚合体。构成异型多糖的单体糖有葡萄糖、甘露糖、葡糖酸、鼠李糖、葡萄糖醛酸、甘露糖醛酸和半乳糖等。有的异型多糖含有少量丙酮酸、琥珀酸等有机酸成分,也称为酸性多糖。日常生活中常用的微生物多糖有:
黄单胞菌多糖(黄原胶):一种典型的水溶性胶体多糖,是工业生产中产率最大的微生物多糖。由甘露糖、葡萄糖和葡糖酸(2:2:1)构成的杂多糖,具有增粘、稳定和互溶等物理性质。在食品工业中作为饮料、调味品、面包和罐头制品中的添加剂。
短梗酶多糖:水溶性胶类物质,由出芽短梗霉菌深层发酵产生。由葡萄糖构成的麦芽三糖为糖苷基单位,是一种同型多糖。具有良好的水溶性、粘结性、成膜性和安全性,主要用作食品、医药、化妆品等制造中的增稠剂、成型剂和粘结剂。
右旋糖酐:是一种发现较早的微生物多糖。发酵生产用菌种是肠膜明串珠菌。右旋糖酐为类似淀粉和糊精的葡聚糖物质,主要用途是在医疗中作为代血浆、动脉硬化抑制剂等,在食品加工上作为稳定剂和保湿剂等。
海藻酸:最初在海藻中提取。主要由甘露糖醛酸和古洛糖醛酸单体聚合而成。海藻酸可作为乳化剂、稳定剂和增粘剂用于食品、医药和造纸工业。其钠盐是一种通透性良好、无毒多聚胶体物质。
其他的大型真菌主要是多孔菌和伞菌中的种类,其多糖类代谢物具有增强机体免疫力、抑制肿瘤细胞增生的抗癌作用,著名的如香菇多糖、茯苓多糖、猴头多糖、虫草多糖及银耳多糖等。 氨基酸是在食品、医药、饲料、化工和农业等部门中具有广泛用途的化学原料。是一类具有特殊重要意义的化合物,是与生命活动密切相关的蛋白质的基本组成单位,是人体必不可少的物质。氨基酸广泛存在于动物、植物和微生物中。
氨基酸分子中既有碱性-NH2和酸性COOH,与强酸强碱都能作用生成盐,因此氨基酸为两性化合物。氨基酸根据分子中所含的氨基和羧基的数目分为中性氨基酸、碱性氨基酸和酸性氨基酸。中性氨基酸是指分子中氨基和羧基数目相等的一类氨基酸。分子中氨基的数目多余羧基时称为碱性氨基酸,氨基的数目少于羧基时称为酸性氨基酸。
氨基酸为无色晶体,熔点一般都较高(常在230-300℃)之间),熔融时即可分解放出二氧化碳。氨基酸都能溶于酸性或碱性溶液中,但难溶于乙醚等有机溶剂。在纯水中各种氨基酸的溶解度差异较大,加乙醇能使许多氨基酸从水溶液中沉淀析出。
氨基酸的发酵生产是通过微生物的代谢作用使含碳和氮的有机物转化成氨基酸,再将发酵液浓缩干燥或通过离子交换树脂将其提取出来。通过发酵法制得的是具有生化活性的L型氨基酸。大部分氨基酸几乎都可以用微生物来生产。这比人工合成或用天然蛋白质降解的制造方法来得容易,且效益也大大提高。谷氨酸(味精)是最早用微生物工业化生产的氨基酸。用发酵法生产的氨基酸有赖氨酸、丙氨酸、精氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、色氨酸、苏氨酸、脯氨酸、瓜氨酸、鸟氨酸等。目前工业发酵生产的氨基酸主要如下:
L-谷氨酸:生产谷氨酸的主要有谷氨酸棒杆菌、黄色短杆菌以及微杆菌中的种类。工业发酵采用大型通气搅拌发酵罐,碳源采用淀粉质原料(玉米、甘薯、小麦和马铃薯等)糖化后的葡萄糖液。尿素、氨水是良好的氮源。发酵最适温度为30-35℃,最适pH值为7.5-8。
L-赖氨酸:是谷类蛋白质中不足的氨基酸,作为食品和饲料中添加的必须氨基酸。赖氨酸发酵菌种是通过诱变处理获得的谷氨酸棒杆菌或黄色短杆菌的营养缺陷型突变株,人为地解除氨基酸生物合成的代谢控制机制,能大量积累赖氨酸,产量可以达到30g/L以上。 抗生素是微生物在新陈代谢过程中产生的、以低微浓度能抑制它种微生物的生长和活动,甚至杀灭它种微生物性能的化学物质。抗生素根据作用机制可以分为以下几类:
作用于DNA合成系统的抗生素:核苷酸生物合成的抑制剂抑制dATP、dGTP、dTTP、dCTP的合成,5FU、FdUMP、叶酸拮抗剂抑制从dUMP到dTMP的生成。ara C及ara CTP抑制从dCTP生成DNA。抗癌霉素抑制DNA多聚酶。丝裂霉素、烷化剂、博来霉素、奈里酸、腐草霉素、抗原虫剂、嗜癌素、喹啉类、早妥链丝菌素以及新制癌素C(纺锤菌素、远霉素A、多色霉素等)作用于模板DNA或RNA。此外还有抑制核苷酸生物合成的化合物:叶酸和5FU。
抑制转录反应的抗生素:利福霉素、曲张链丝霉素、链霉菌素、α-鹅膏菌素、放线菌素、柔红霉素、丰加霉素、冬虫夏草菌素等。
作用于核苷酸生物合成系统的有冬虫夏草菌素、重氮霉素A、丙氨菌素等。
抑制蛋白质合成系统的有吲哚霉素、链霉素、庆大霉素、卡那霉素、四环素等。
抑制细菌细胞壁粘肽生物合成系统的有磷霉素、D-环丝氨酸、万古霉素、杆菌肽以及β-内酰胺类抗生素等。
作用于细胞质膜的有持久霉素、青霉素、多粘菌素B、大四环抗生素、缬氨霉素、大四环抗生素以及英恩霉素等。
作用于能量代谢系统或作为抗代谢物的有:抗霉素A、寡霉素、短杆菌肽S等。
就作用和产值而言,抗生素及相关的生物活性物质是微生物最重要的产品。迄今已经能够生产的有一百多种,临床应用的有几十种。放线菌产生的抗生素种类最多,约占四分之三。目前开发的新微生物生物活性物质目标集中在以下几个方面:抗肿瘤物质;抗耐药性金黄色葡萄球菌、大肠杆菌和结核杆菌物质、抗绿脓杆菌和变形杆菌物质、抗病毒物质、抗心血管疾病物质。 色素根据溶解性能的不同可以分为水溶性的色素和油溶性的色素。水溶性的色素有柠檬黄、日落黄、苋菜红、靛蓝、亮蓝、甜菜红、花青素、玫瑰茄红、越橘红等,脂溶性的色素有胡萝卜素、辣椒红素、姜黄、玉米黄、红曲酶色素等。微生物色素除红、橙、黄、绿、青、蓝、紫,褐和黑色之外,还有介于它们之间的各种各样颜色。这些色素有在细胞内的,有在细胞外的;有自身合成的,有转化培养基中的某些成份而形成的。总的来说,可以分为两类;①菌苔本身呈色而不渗入培养基,称为非水溶性色素。④菌苔本身呈色或不呈色,但使培养基呈色,称水溶性色素。
微生物有些色素,如细胞色素C,具有十分重要的生理功能,但许多色素的功能尚未被人们认识。在微生物,最普遍和常见的色素是黄色和橙色--类胡萝卜素。所有光合微生物都有类胡萝卜索,如光合细菌。许多非光合微生物也含有类胡萝卜素,如红酵母菌、链孢霉菌、藤黄八叠球菌等。许多假单胞菌靶一些放线菌可以产生各种颜色的 吩嗪类色素,如紫色的碘菌素、蓝绿色的绿脓杆菌素、金黄色的金色菌素等。真菌的色素种类也很多,一种真菌往往可以产生不只一种色素,色素的主要成份是甲苯醌、萘醌和咄吨酮等类型的衍生物。
色素是一种次生代谢产物,一般是在菌体生长后期开始合成,其合成过程可能是在培养基中缺乏某种营养物质,菌体的生长过程受到限制时被启动的。一般是菌体生长繁殖过程中不需要的物质、菌体失去合成这种物质的能力后照常生长。 目前用微生物生产的酶有数百种,其中大部分是水解酶(碳水化合物水解酶、蛋白酶、脂肪酶等)、氧化酶、转化酶、异构酶等,均已大规模生产和应用。分子生物学上广泛使用的工具酶(限制性内切酶、聚合酶、连接酶等)大都来源于微生物。目前我国已经能用发酵法大规模生产工业上所需要的酶及部分工具酶。
微生物由于催化自身代谢的需要,能合成种类繁多的酶。酶具有催化各种生化反应的功能。酶在化工、食品、酿造、医药、纺织和制革等工业上用途很广。利用微生物的工业发酵可以生产各种酶产品。
酶是生物细胞产生的一类具有高度催化活性的蛋白质,其催化能力比无机催化剂要高出几万倍甚至几亿倍。在生产上应用酶来催化各种反应,同使用无机催化剂相比具有许多优点,如作用快,生产周期短,转移性强,副产物少,产物易提纯;代替强酸强碱的催化作用,不污染环境等。目前酶制剂已经称为工业上的一项新兴产品,在食品、化工、医药、纺织、造纸、农林以及生物科学研究等领域有着广泛的用途。
氧化还原酶类如脱氢酶和过氧化物酶;转换酶类如转氨酶和转磷酸酶等;水解酶类如淀粉酶、纤维素酶、脂酶和蛋白酶等;裂解酶类如脱羧酶、脱氨酶和DNA内切酶等;异构酶类如葡萄糖异构酶和磷酸丙糖异构酶等;连接酶如DNA连接酶等。 维生素是维持细胞生长和正常代谢所必须的微量有机化合物。在化学结构上不属于同一类化合物,脂肪族、芳香族、脂环族、糖苷和杂环类等化合物都有。虽然结构不同,生理功能各异,但也有以下几点共同点:以本体形式或可被利用的前体形式存在于天然食品中;多数不能在体内合成,也不能大量储存在组织中;不是构成各种组织的原料,也不提供能量;常以辅酶或辅基的形式参与酶功能;有的维生素结构和生物活性相近,如吡哆醇、吡哆醛、吡哆胺等。
维生素根据溶解性能可分为两大类:脂溶性和水溶性维生素。脂溶性的维生素包括维生素A、D、E、K,它们不溶于水而溶于脂肪及有机溶剂中,在食物中常与脂类共存;水溶性维生素包括B族维生素和维生素C.一般无毒性,容易在体内被代谢出。用微生物生产的维生素有核黄素、β-胡萝卜素、维生素B2、维生素B6、维生素B12、维生素C等。 有机酸:目前用微生物工业化生产的有机酸有柠檬酸、醋酸、葡糖酸、葡萄糖酸、丁烯二酸、曲酸、乌头酸、苹果酸、α-酮戊二酸、衣康酸、乳酸、酒石酸、延胡索酸等。他们中的大多数是重要的化工原料。
有机酸具有超过抗生素的多种作用,其中包括降低pH值和增强胰腺分泌。作为一类化学物质,它们都有共同的结构R-COOH。
醇酮类:乙醇、丁醇、丙酮等化工原料都可利用微生物来生产。
来源于植物界的有效成分主要有黄酮类、生物碱类、多糖类、挥发油类、醌类、萜类、木脂素类、香豆素类、皂苷类、强心苷类、酚酸类及氨基酸与酶等。现将主要成分简介如下: 多糖(polysaccharide)又称多聚糖(polysaccharides),由单糖通过苷键连接而成,是聚合度大于10的极性复杂大分子,基本结构单元是葡聚糖,其分子量一般为数万甚至达数百万。广泛分布于动物、植物及微生物中,作为来自高等动植物细胞膜和微生物细胞壁的天然高分子化合物,是构成生命活动的4大基本物质之一。目前已发现的活性多糖有几百种,按其来源不同,可分为真菌多糖、高等植物多糖、藻类地衣多糖、动物多糖、细菌多糖5大类。
植物多糖结构组成非常复杂,不同种的植物多糖的分子构成及分子量各不相同,植物的不同部位,因功能不同,多糖的种类和功能各不相同,生物活性也不同。多糖的结构与蛋白质一样也具有一、二、三、四级结构,植物多糖是由许多相同或不同的单糖以α一或β一糖苷键所组成的化合物,不同种的植物多糖的分子构成及分子量各不相同。淀粉、纤维素等多糖,大多为无定形化合物,无甜味和还原性,难溶于水;除淀粉、纤维素、果胶以外的具有生物活性的多聚糖,是一般,易溶于水,不溶于乙醇。 挥发油(volatile oils)又称精油(essential oils),是一类在常温下能挥发的、可随水蒸气蒸馏的、与水不相混的油状液体的总称。大多数挥发油具有芳香气味,在水中的溶解度很小,但能使水具有挥发油的特殊气味和生物活性,挥发油常存于植物组织表皮的腺毛、油室、油细胞或油管中,大多数成油滴状态存在。有时挥发油与树脂共存于树脂道内(如松茎),少数以甙的形式存在(如冬绿甙、其水解后的产物水杨酸甲酯为冬绿油的主成分)。
挥发油在植物体内的分布有多种多样。有的全株植物都含有(荆芥、紫苏);有的则在根(当归)、根茎(姜)、花(丁香)、果(柑橘)、种子(豆蔻)等部分器官中含量较多。挥发油为多种类型成分的混合物,一种挥发油往往含有几十种到一、二百种成分,其中以某种或数种成分占较大的分量。其基本组成为脂肪族、芳香族和萜类化合物。挥发油中存在的萜类主要是单萜和倍半萜,通常它们含量较高,但无香气,不是挥发油的芳香成分。挥发油易溶于醚、氯仿、石油醚、二硫化碳和脂肪油等有机溶剂中,能完全溶于无水乙醇。 醌类化合物(quinonoids)是植物中一类具有醌式结构的有色物质,在植物界分布较广泛,高等植物中大约有50多个科100余属的植物中含有醌类,集中分布于蓼科、茜草科、豆科、鼠李科、百合科、紫葳科等植物中。天然药物如大黄、虎杖、何首乌、决明子、丹参、番泻叶、芦荟、紫草中的有效成分都是醌类化合物。醌类化合物多数存在于植物的根、皮、叶及心材中,也有存在于茎、种子和果实中。
醌类化合物包括醌类或容易转化为具有醌类性质的化合物,以及在生物合成方面与醌类有密切联系的化合物,醌类化合物基本上具有α、β-不饱和酮的结构,当其分子中连有OH、OCH3等助色团时,多显示黄、红、紫等颜色。主要分为苯醌、萘醌、菲醌和蒽醌四种类型,在中药中以蒽醌及其衍生物尤为重要。游离的醌类多具升华性,小分子的苯醌类及苯酮类具有挥发性,能随水蒸汽蒸馏,可因此进行提取、精制。游离醌类极性较小,一般溶于甲醇、乙醇、丙酮、醋酸乙酯、氯仿、乙醚、苯等有机溶剂,不溶或难溶于水;与糖结合成苷后极性显著增大,易溶于甲醇、乙醇中,溶于热水,但在冷水中溶解度较小,几乎不溶于乙醚、苯、氯仿等极性较小的有机溶剂中。 木脂素(lignan)又称木脂体,由两分子苯丙素衍生物(C6-C3)聚合而成,单体主要是肉桂酸和苯甲酸及其羟甲基衍生物。是一类植物小分子量次生代谢物,在体内大多呈游离状态,也有与糖结合成甙存在于植物的树脂状物质中。木脂素常见于夹竹桃科、爵床科、马兜铃科植物中,广泛分布于植物的根、根状茎、茎、叶、花、果实、种子以及木质部和树脂等部位。因为从木质部和树脂中发现较早,并且分布较多,故而得名木脂素。木脂素类化合物可分为两大类,即木脂素和新木脂素。木脂素类是指C6-C3单位通过边链的β位碳连接而成的化合物,常见的有芳基萘、二苄基丁内酯、四氢呋喃、二苄基丁烷和联苯环辛烯等类型。C6-C3单位不通过边链β位碳连接形成的聚合体被归为新木脂素。
木脂素多数为无色或白色结晶(新木脂素除外),多数无挥发性,少数能升华,如去甲二氢愈创酸。游离木脂素偏亲脂性,难溶于水,能溶于苯、氯仿、乙醚、乙醇等。与糖结合成苷者水溶性增大,并易被酶或酸水解。木脂素分子结构中常含醇羟基、酚羟基、甲氧基、亚甲二氧基及内脂环等官能团,具有这些官能团所具有的化学性质。具有酚羟基的木脂素还可溶于碱性水溶液中。 香豆素类化合物(Coumarins)是邻羟基桂皮酸的内酯,具有芳香气味,广泛分布于高等植物中,尤其以芸香科和伞形科为多,少数发现于动物和微生物中。在植物体内,它们往往以游离状态或与糖结合成苷的形式存在。香豆素的母核为苯骈α-吡喃酮。该类化合物的母核结构有简单香豆素类、呋喃香豆素类、吡喃香豆素类三种类型,是生药中的一类重要的活性成分,主要分布在伞形科、豆科、菊科、芸香科、茄科、瑞香科、兰科等植物中。
游离的香豆素多数有较好的结晶,且大多有香味。香豆素中分子量小的有挥发性,能随水蒸汽蒸馏,并能升华。香豆素苷多数无香味和挥发性,也不能升华。游离的香豆素能溶于沸水,难溶于冷水,易溶于甲醇、乙醇、叙情和乙醚;香豆素苷类能溶于水、甲醇和乙醇,而难溶于乙醇等极性小的有机溶剂。 皂苷(saponins)是广泛存在于植物界的一类特殊的苷类,它的水溶液振摇后可生产持久的肥皂样的泡沫,因而得名。是由甾体皂苷元或三萜皂苷元与糖或糖醛酸缩合而成的苷类化合物。广泛存在于植物界,在单子叶植物和双子叶植物中均有分布,尤以薯蓣科、玄参科、百合科、五加科、豆科、远志科、桔梗科、石竹科等植物中分布最普遍,含量也较高,例如薯蓣、人参、柴胡、甘草、知母、桔梗等都含有皂苷。此外在海洋生物如海参、海星和动物中亦有发现。按皂苷配基的结构分为两类:甾族皂苷,多存在于百合科和薯蓣科植物中;三萜皂苷,多存在于五加科和伞形科等植物中。根据水解后生成皂苷元的结构,皂苷可分为三萜皂苷与甾体皂苷两大类。
皂苷大多为白色或乳白色的无定形粉末,味苦而辛辣,具吸湿性,能刺激粘膜而引起喷嚏,无明显的熔点。可溶于水,易溶于热水、热甲醇、热乙醇,不溶于乙醚、苯等极性小的有机溶剂。皂苷易溶于水饱和的丁醇或戊醇,因此常从水溶液中用丁醇或戊醇提取,借以与糖、蛋白质等亲水性成分分开。皂苷经酶或酸水解生成皂苷元为结晶状物质,可溶于丙酮、乙醚、三氯甲烷等有机溶剂。 强心苷类(cardiac glycosides)是指天然界存在的一类对心脏有显著生理活性的甾体苷类,可用于治疗充血性心力衰竭及节律障碍等心脏疾患,由强心苷元及糖缩合而成,其苷元是甾体衍生物,所连接的糖有多种类型。强心苷的基本结构是由甾醇母核和连在C17位上的不饱和共轭内酯环构成苷元部分,然后通过甾醇母核C3位上的羟基和糖缩而合成。根据苷元部分C17位上连接的不饱和内酯环的类型分为甲型和乙型两类。甲型,是目前临床应用的强心苷及植物体中发现的绝大多数强心苷都是属于这一类型,如洋地黄、毛花洋地黄、毒毛旋花、羊角拗、黄花夹竹桃、夹竹桃、福寿草、侧金盏花、北五加皮、铃兰、万年青等所含的强心苷。
强心苷类成分多为无色结晶或无定形粉末,味苦,对黏膜有刺激性。可溶于水、丙酮及醇类等极性溶剂,略溶于醋酸乙酯、含醇三氯甲烷(2∶1或3∶1),几乎不溶于醚、苯、石油醚等非极性溶剂。它们在极性溶剂中的溶解性,随分子中糖数目增加而增加。苷元难溶于极性溶剂而易溶于三氯甲烷、醋酸乙酯中。强心苷的苷键可被酸、酶水解,分子中具有酯键结构的还能被碱水解。
有两种生产工艺。1.甲基萘用铬酐氧化而得。将2-甲基萘溶解于冰醋酸中,搅拌冷却到40℃以下,缓缓加入铬酐与等量水的混和液,使温度维持在35-40℃。加毕,在40℃保温0.5h,升温到70℃保温45min,再升温到85℃保温15min,将反应物倾入大量水中,不断搅拌下沉淀出2-甲萘醌。过滤,滤饼反复用水洗,至水溶液无酸味,滤干得2-甲萘醌。收率51%。2-甲基萘也可用重铬酸钠、重铬酸钾氧化收率大致相同。2.由甲苯醌与丁二烯环合得到2-甲基萘氢醌,再经铬酸氧化而得。将甲苯醌加入冰醋酸中溶解,通入丁二烯,在20℃以下通至所需量。密闭静置20h后,加热使剩余的丁二烯逸出,继续加热至110℃左右回流3h,再减压蒸馏回收冰醋酸约30%。然后冷却至40℃以下,缓缓加入铬酸与等量水的混合液,使温度保持在65-70℃,加毕,在70-80保温1h而生成甲萘醌。
1891年,Kossel明确提出了植物次生代谢(secondary metabolism)的概念。植物次生代谢产物是指植物体中一大类并非生长发育所必需的小分子有机化合物,其产生和分布通常有种属、器官、组织和生长发育期的特异性。少数小分子有机物在代谢途径上与次生产物比较相似,但具有明显的生理功能,因而不把它们视为次生代谢产物,如萜类成分赤霉素、脱落酸、均为植物激素,另外如胡萝b素为光合作用所必需。随着研究的深入,植物次生代谢的概念有待进一步明确。
2植物次生代谢物的种类
植物次生代谢物种类繁多,结构迥异,人们至今已发现有黄酮类、酚类、香豆素、木质素、生物碱、糖苷、萜类、甾类、皂苷、多炔类、有机酸等。一般分为酚性化合物、萜类化合物、含氮有机物三大类。
2.1酚类主要包括黄酮类、简单酚类和醌类等,主要由磷酸烯醇式丙酮酸到分支酸的生物合成途径而来,称莽草酸途径,这也是芳香族化合物的来源。黄酮类是以苯色酮环为基础具有C、C、CH结构的酚类化合物。生物前体为苯丙氨酸和马龙基辅酶A(malonyl CoA),据B环的连接位置又分为2一苯基衍生物(黄酮醇、黄酮等),3一苯基衍生物(异黄酮)和4一苯基衍生物(新黄酮)。根据三碳结构的氧化程度又分为花色苷类、黄酮类、黄酮醇类及黄烷酮等。黄酮类成分有许多用于心血管疾病的治疗如芦丁。还有一些是植保素如异黄酮类。简单酚类是含有一个被羟基取代苯环化合物,分布于植物各种组织、器官中,有些参与调节植物生长的作用,有些是植保素或与植物异株相克有关。醌类是由苯式多环烃碳氢化合物(如萘、葸等)衍生的芳香二氧化合物,根据其环系统可分为苯醌、萘醌和蒽醌。醌类是植物主要呈色剂之一。有些醌类是抗菌、抗癌的重要成分如胡桃醌和紫草宁。
2.2萜类 萜类是由异戊二烯单元组成的化合物,通过异戊二烯途径f又称甲羟戊酸途径)合成。现在已研究发现,在植物细胞器质体中存在着第二条途径——丙酮酸/磷酸甘油醛途径,胡罗b素、单萜和二萜通过该途径合成。两条途径差异就是异戊烯基焦磷酸(IPP)形成机制不一样。甲羟戊酸途径IPP前体为甲羟戊酸,而丙酮酸/磷酸甘油醛途径的前体是在转酮酶的作用下,由丙酮酸和3一磷酸甘油醛缩合而成的5一磷酸木酮糖,丙酮酸提供2一c骨架,而3一磷酸甘油醛则提供3一c骨架。根据萜类分子结构通常分为低等萜类和高等萜类,现已知萜类己超过2万种。
2.3含氮化合物 大多数含氮化合物是从普通氨基酸合成的,主要有生物碱、胺类、非蛋白氨基酸、生氰苷和芥子油苷,多具有防御作用。生物碱是一类含氮的天然产物,多为药用植物主要有效成分,有些是植保素。现已深入研究的有烟草的烟碱、毗咯啶生物碱、毒藜碱、毛莨科的小檗碱,曼陀罗的莨菪碱、东莨菪碱等。胺类是NH中的氢的不同取代物。通常由氨基酸脱羧或醛转氨而产生,在植物中分布广泛,常存在于花部,具臭味。有些胺类与植物的生长发育有关,如离体条件下多巴胺能促进石斛提前开花。非蛋白氨基酸是不组成植物蛋白的氨基酸,常有毒,多存在于豆科。因与蛋白氨基酸相似,易被错误掺入蛋白质,多为代谢拮抗物。生氰苷是一类由脱羟氨基酸形成的0一糖苷,氰苷来自于2一C和氨基。生氰苷是植物生氰过程中产生HCN的前体。生氰苷与植物趋避捕食有关。芥子油苷主要存在于芸薹属植物,其经硫葡糖苷酶(thioglucosidase)水解,生成糖苷配基(aglycone),然后自发分解为异硫氰苷(isothiocyanate)和腈(nitrile)。这些产物对草食动物有毒。但植物未受伤害之前芥子油苷和硫葡糖苷酶是分隔开的。
2.4多炔类、有机酸类等 多炔类主要分布于菊科、伞形科植物。有机酸分布广泛。研究表明有些有机酸如水杨酸、茉莉酸在植物信号传导中起重要作用。
3植物次生产物对环境胁迫的防御作用 植物生长环境中的温度、水分、光照、大气、盐分、养分等都会对植物的生长产生各种各样的影响甚至胁迫。为了提高植物对生态环境的适应性,植物一方面可在形态结构上发生变化,另一方面可以在生理生化上发生变化,而一些次生物质则成为后一种适应的物质基础。在植物耐旱、抗寒和耐盐性研究中都发现次生代谢产物都在其中发挥重要作用。
3.1温度 温度是调节植物代谢水平的主要环境因子,对植物的次生代谢也有很大影响。有研究表明,黄豆在低温下培养24h,根部总酚酸、染料木黄酮(genistein)、大豆黄素(daidzein)和染料木苷(genistin)的代谢水平显著增高。低温条件下,在栀子、苹果、山梨、石榴中发现有与抗低温有关的多元醇如甘油、山梨醇、甘露醇等的积累。冷平等(2001年)研究认为,在低温锻炼后,植物体内强还原性酚类物质花青素苷的含量显著增加,可以明显提高苹果、桃、及柿树的抗寒性。DudtJF等(1994年)通过研究认为,低温胁迫条件可能造成活性氧在树体内积累,而黄酮类物质上的羟基具有强的供电子能力,能以单电子转移的方式清除超氧负离子或其他自由基。清除或控制由低温胁迫所产生的生物自由基可能是酚类物质保护植物机体免受损伤的重要机理之一[41。闫杰研究也证明:水杨酸2.0mmol/L浸种处理能显著缓解高温胁迫对幼苗造成的伤害,提高黄瓜幼苗的耐热性;水杨酸在黄瓜幼苗4叶l心期进行叶面喷施处理,高温胁迫条件下,水杨酸0.1mmo]]L显著提高幼苗的耐热性。表明水杨酸可以提高黄瓜幼苗的耐热性及耐旱性,使其保护酶活性提高,增加Pro含量,减少MDA积累对膜造成的伤害。
3.2水分 在干旱胁迫下,植物组织中次生代谢产物的浓度常常上升,包括氰甙、其他硫化物、萜类化合物、生物碱、单宁和有机酸等。在受到中度干旱胁迫的针叶树中,低分子量萜类化合物的浓度升高,同时树脂酸和单萜的组成发生变化,而橡胶受到严重干旱胁迫后橡胶浆汁的流速和产量均下降。干旱胁迫导致喜树(Camptothecaacuminata)叶片中喜树碱的含量增加[71,高山红景天(Rhodiolasachalinensis)根中的红景天苷含量也因土壤含水量而变化[8],轻度的水分胁迫则有利于乌拉尔甘草(Glycyrrhizauralensis)中甘草酸的积累。渗透胁迫下多种植物在体内积累渗透调节物质甜菜碱,有研究报告甜菜碱醛脱氢酶的基因表达量与甜菜碱含量平行增加。闫杰的研究证明,在干旱胁迫下,水杨酸2.0mmol/L浸种处理能提高黄瓜幼苗的耐旱性;水杨酸在黄瓜幼苗4叶1心期进行叶面喷施处理,水杨酸0.1mmol/L能显著缓解干旱胁迫对幼苗造成的伤害J。这些都与次生代谢产物在平衡无机阳离子、维持膜的稳定性和清除自由基等作用有重要关系。对某些耐旱植物的研究,发现其脱落酸和脯氨酸含量较高。小麦在发生萎蔫的4h内,脱落酸含量即增加达40倍;在大麦的不同抗旱性品系中,抗性的强弱与其体内脯氨酸含量高低间具很高的相关性。脱落酸能促使气孔关闭,而气孔开放时间的缩短或使其只在晚间开放是植物提高保水力从而增强抗旱能力的途径之一。实验证明,在叶片施用脱落酸(浓度为0.02g/cm)能有效地使气孔关闭,几天内就足以减少50%以上的水分消耗。脯氨酸含量提高的意义尚不清楚,但其含量高低与抗旱性强弱之间的这种相关性,至少说明它与抗旱性有关。
3.3光照 光强、光质和日照长短都对植物次生代谢有影响。林中植物上部阳生叶中酚类物质含量要比下部阴生叶中多,非洲热带雨林植物中的酚含量与光照强度正相关。温室中的烟草补加紫外光照射时绿原酸含量增加到对照的5倍,受红光照射时则产生较多的生物碱、较少的酚。大棚中生长的欧洲赤松fPinussylvestris)由于光照强度低于棚外,树脂油和单萜类物质含量也较低。遮荫导致高山红景天根中的红景天苷含量降低,但却增加了喜树叶片中的喜树碱含量。红光成分增加提高高山红景天根中的红景天苷含量n”,而蓝光成分增加则提高喜树叶片中的喜树碱含量。Saleem研究认为,不同光照条件下植物次生代谢产物含量的变化是一种生物学适应性响应。
3.4营养条件 许多盐生植物体内有甜菜碱和脯氨酸的大量积累。实验表明,淡土植物和盐生植物由非盐条件逐步转移至高盐分环境中都能诱导脯氨酸生成量的逐步增加。测定一系列对盐分具不同敏感性的植物中甜菜碱浓度的结果表明,增加盐分能引起甜菜碱的增加并伴随脯氨酸水平的提高。也有一些植物中,累积的则是山梨醇、右旋肌醇甲醚等。盐生植物累积的这些化合物都易溶于水。因而研究人员认为,盐水植物通过在细胞内积累这些无毒溶质可以平衡由于液泡内无机离子(如Na等)积累所造成的细胞质渗透压的变化,从而对细胞起保护作用。Hattenschwiler等发现植物体内的多酚浓度随土壤肥力下降而增加;Yu等等通过测定生长在酸l生贫瘠土壤上的植物体内多酚,揭示了多酚具有减少养分流失、除去铝毒害、提高磷的有效性和调节氮循环等作用。
3.5二氧化碳的浓度 大气中CO2的浓度一直在增加,这种变化不仅作用于植物的初生代谢,也影响次生代谢。一些研究工作观察到,伴随着大气中CO2浓度的升高,落叶树叶片中单宁的浓度升高,盐生车前(Plantagomaritima)叶片中咖啡酸含量和根部的香豆素(verbascoside)含量也增加。CO2浓度倍增条件下,垂枝桦(Betulapendula)幼苗的类黄酮、原花青素(pmanthocyanidins)的浓度和欧洲赤松体内仪一蒎烯的浓度均提高。人参(Panaxginseng)根部在高浓度的CO2,下增加了总酚酸和类黄酮的含量,而这个过程与葡萄糖、6一磷酸脱氢酶、莽草酸脱氢酶、苯丙氨酸解氨酶、肉桂醇脱氢酶、咖啡酸过氧化物酶和绿原酸过氧化物酶的活性增强密切相关[161。
3.6UV—B辐射 中波紫外辐射(LW—B,280320nm)对植物的影响是近年来的研究热点,大量研究表明,UV—B辐射增强对植物最一致的影响是诱导植物叶片中的紫外吸收物质主要是酚类化合物如类黄酮、黄酮醇、花色素苷以及烯萜类化合物如类胡萝卜素、树脂等,其中类黄酮最主要),并且也观察到在uV—B辐射下类黄酮合成途径的苯丙氨酸解氨酶和查尔酮合成酶以及其它分支点酶的酶量增加或活性加强。uV—B辐射诱导紫外吸收物质含量增加的现象出现在不同类型的植物中,如欧洲云杉(Piceaabies)、垂枝桦、水稻(oryzasariva)、拟南芥(Arabidopsisthaliana)等。类黄酮等次生代谢产物在植物体内可起紫外“吸收屏障(uV—filter)”的作用,从而增强植物抗紫外辐射的能力。
3.7 环境污染 一些研究表明,环境污染可导致植物次生代谢产物的组成和含量发生变化,如酚类等化合物对各种形式的污染物均有反应。在重金属及SO2,污染下,受污染程度最重的垂枝桦(B.pubescens)中低分子量酚的含量最高,总酚含量(单个酚化合物总和1比对照区的高20%。不过也有研究表明,SO2,污染使垂枝桦的几种具有抗氧化和防御作用的酚类物质如杨梅苷(myricitrin)、焦儿茶酚(catechin)、3、4一二羟基丙酰(3、4一theta2dihydroxypropiophenone)和原花色素(proanthocyanidins)的量减少了。增加乙烯的释放量是植物对大气污染危害的普遍反应,在紫花苜蓿、大豆、西红柿、落叶松、欧洲赤松和挪威云杉中都观察到这一现象。总之,植物可以改变某些次生代谢产物的组成和含量来减轻环境污染的毒害作用。