如何用核磁共振氢谱鉴别丙酸甲酯与乙酸乙酯?
这两者的氢谱差别蛮大的
丙酸甲酯,CH3(1)-CH2(2)-COO-CH3(3),1号H大概在0.8-1.0ppm的化学位移,三重峰;2号H大概1.8-2.1ppm,四重峰;3号H大概3.78ppm左右,单峰。三者积分值比3:2:3
乙酸乙酯,CH3(1)-COO-CH2(2)-CH3(3),1号H约在2.1ppm附近,单峰;2号氢大概3.9-4.1ppm,四重峰;3号氢约1.0-1.2ppm,三重峰。三者积分比3:2:3
简单的说,将0.8-1.2ppm附近的出峰积分值定为3,那么:
1.8-2.1ppm附近的氢为单峰,则是乙酸乙酯;若为四重峰,则是丙酸甲酯;积分值为3,则是乙酸乙酯;积分值为2,则是丙酸甲酯。
3.7-4.1ppm附近的氢为单峰,则是丙酸甲酯;若为四重峰,则是乙酸乙酯;积分值为3,则是丙酸甲酯;积分值为2,则是乙酸乙酯。
或者按照低场到高场的积分值顺序,3/2/3的就是丙酸甲酯;2/3/3的就是乙酸乙酯
如果你对氢谱了解足够深入,这两者在使用CDCl3作为溶剂时,3.778ppm出峰的就是丙酸甲酯——一般酯键的甲氧基都是出在这个位置
有以下几个:
1、2980到2850cm到为甲基、亚甲基碳氢键CH伸缩振动产生的吸收峰。
2、1742cm,为羰基C等于0伸缩振动产生的吸收峰。
3、1374cm是甲基的CH弯曲振动产生的吸收峰。
4、1240cm,1047cm为C,O,C伸缩振动产生的吸收峰。
乙酸乙酯与丙酸甲酯二者氢谱各个峰裂分情况一致,化学位移很相似,不容易区别。
丙酸甲酯的三氢单峰化学位移在3-4之间,而乙酸乙酯的三氢单峰在2-3之间,有较多的重合。
核磁共振氢谱原理:
氢原子具有磁性,如电磁波照射氢原子核,它能通过共振吸收电磁波能量,发生跃迁。用核磁共振仪可以记录到有关信号,处在不同环境中的氢原子因产生共振时吸收电磁波的频率不同,在图谱上出现的位置也不同,各种氢原子的这种差异被称为化学位移。利用化学位移,峰面积和积分值以及耦合常数等信息,进而推测其在碳骨架上的位置。
在核磁共振氢谱图中,特征峰的数目反映了有机分子中氢原子化学环境的种类;不同特征峰的强度比(及特征峰的高度比)反映了不同化学环境氢原子的数目比。
乙酰乙酸乙酯在常温下有8%左右的烯醇式,92%是酮式,因此应该有两个主峰。
乙酰乙酸乙酯本身是含有羰基的,可以和羰基试剂作用。另外乙酰乙酸乙酯在水中可以和水形成烯醇结构,这种烯醇和苯酚的性质相似,所以也可以像苯酚一样,和氯化铁显色。
通过观察上述三种物质的分子式,通过观察发现,三种物质的H是不一样的。
所以,可以通过红外光谱配合核磁共振氢谱(HNMR)检验最快。
核磁共振鉴别:
三个物质的核磁图谱,可以看出,分别会出现如下情况:
HCOCH2COOCH2CH3有4个峰,比例分别为1:2:2:3
CH3COCH2COOCH2CH3有4个峰,比例分别为3:2:2:3
CH3COOCH2CH3有3个峰,比例分别为3:2:3
上述的图谱中都会出现一个四重峰,与鉴别不大相关。
只要通过计算图谱中的积分曲线得到的比例,就可以区分。
红外光谱鉴别:
通过红外光谱也可以鉴别,会发现3者都存在一个酯基的吸收峰
不同之处在于:
HCOCH2COOCH2CH3、CH3COCH2COOCH2CH3
2个都多一个C=O的伸缩振动吸收峰(1600Cm-1到1700CM-1左右),
而CH3COOCH2CH3没有。
①这样可以鉴别出CH3COOCH2CH3
②剩下的两个,发现CH3COCH2COOCH2CH3大约在1380Cm-1处存在一个吸收峰,
证明为孤立甲基。这样这可以鉴别CH3COCH2COOCH2CH3。
③最后剩下的那个就是HCOCH2COOCH2CH3。
在HPLC分析中,在色谱柱正常,样品浓度适宜,分析方法合适,色谱峰在出峰时间较短的条件下,峰型应对称而尖锐。但在实际操作中,如果对样品不了解,前处理不恰当或者分析方法不合理等,会出现峰形不正常的情况,其中双峰现象就是液相色谱中常见的问题之一。色谱双峰指的是明明是同一种物质,但在色谱图中却呈现双峰,让实验人员误认为含有两种物质。
出现色谱双峰的原因一般有以下几种:
色谱柱
如果在样品分析时发现每个色谱峰都有双峰出现,尤其在采用单一纯物质时,则可以确定是色谱柱出现问题了,一般是柱头受损或者柱头固定相污染引起的。
如果进样量少,原来色谱柱正常,色谱峰的形状多为一大峰带一小峰,不一定拖尾,这一般应是柱头受堵,将色谱柱反过来接,用流动相冲洗或酸洗或其它溶剂,将堵在柱头的残留物冲掉,再反过来,一般情况下就行了。当然不反冲,正冲有时也会正常的。
如果峰拖尾,双峰强弱相差不大,柱头固定相变脏或流失可能性更大,这时可以将进样头拧开,将微孔滤片超声,柱头刮去一部分填料,重新填上新填料拧紧,不过这个对技术要求较高且不能经常做,否则用不了几次,色谱柱就会应柱效降低而报废。
如果上述不能解决问题,可能是柱塌陷造成的,此时需要更换色谱柱。
溶剂问题
目前HPLC分析多为反相色谱,流动相多为甲醇、乙腈、水,加各种添加剂以改善分离性能。样品一般用与流动相相溶的溶剂溶解,最佳的溶解方法是用流动相溶解。在实际分析中,有时候为了样品的溶解性或稳定性加入了一点的缓冲液,缓冲液的酸碱性可能会导致样品转化,从而产生双峰现象。此时需要更换缓冲液,调整溶剂pH值,或者用流动相配置样品。
此外,样品要现配现用,避免样品溶解液的有机相比例、pH值发生变化而导致的溶剂效应。
进样量
当用溶剂极性强度大的试剂,如纯甲醇、纯乙腈,纯乙醇,而分析体系中以水为主时,如果样品进样量大,如定量管为20ul,此时单一的纯物质会出现双峰,第二峰比第一峰小(每次都不太一样),且拖尾,保留时间会提前(相对进样量少而言),将进样量减少一半以上,峰型将变为正常。这是样品的溶剂与流动相极性相差太大,而流动相来不及将其稀释达到平衡造成的,此情况下需要减少进样量。
另一个原因是,进样量不一定大,但绝对量很大,色谱图上的双峰紧靠在一起,基本上齐高,不拖尾(如果出峰很快,也可能是色谱柱问题)。将样品稀释再进样就可以了,这是由于进样量过大,色谱柱过载造成的。
pH值
体系pH值对色谱双峰的影响出现在各个环节上(前面已经提到),尤其在缓冲液流动相平衡过程中其影响更为明显。当连续进样时,受pH的连续变化影响会经常遇到这种双峰的情况。另外,在样品分析时,流动相的pH尽量远离被分析物的等电点,否则也容易引起双峰的产生。在用离子对试剂分析时,选择不好条件也会容易引起双峰的产生。
样品特性
有些样品由于其化学结构的特点,存在互变异构现象,而这种互变异构体无法分开,而是以一个动态平衡存在。在色谱分析时,在一个特定的条件下(如pH值、流动相极性、温度等),一种物质将出现双峰,双峰靠的很近,基本齐高,不拖尾,条件稍一变化,尤其pH,双峰现象将消失,如红霉素等。
有的样品紫外的色谱图上看不到双峰,但在LC-MS下,用质谱检测器,其质谱的总离子流图上较明显,如农药啶虫眯(吡虫清)。