乙酸乙酯皂化反应
分类: 教育/科学 >>职业教育
问题描述:
为什么本实验要在恒温条件下进行?而且CH3COOC2H5和CH3COONa溶液,在混合前还要预先恒温?
解析:
乙酸乙酯的皂化反应是一个典型的二级反应:
CH3COOC2H5+OH-→CH3COO-+C2H5OH
设反应物乙酸乙酯与碱的起始浓度相同,则反应速率方程为:
r = =kc2
积分后可得反应速率系数表达式:
(推导)
式中:为反应物的起始浓度;c为反应进行中任一时刻反应物的浓度。为求得某温度下的k值,需知该温度下反应过程中任一时刻t的浓度c。测定这一浓度的方法很多,本实验采用电导法。
用电导法测定浓度的依据是:
(1) 溶液中乙酸乙酯和乙醇不具有明显的导电性,它们的浓度变化不致影响电导的数值。同时反应过程中Na+的浓度始终不变,它对溶液的电导有固定的贡献,而与电导的变化无关。因此参与导电且反应过程中浓度改变的离子只有OH-和CH3COO-。
(2) 由于OH-的导电能力比CH3COO-大得多,随着反应的进行,OH-逐渐减少而CH3COO-逐渐增加,因此溶液的电导随逐渐下降。
(3) 在稀溶液中,每种强电解质的电导与其浓度成正比,而且溶液的总电导等于溶液中各离子电导之和。
设反应体系在时间t=0,t=t 和t=∞时的电导可分别以G0、Gt 和G∞来表示。实质上G0是
NaOH溶液浓度为时的电导,Gt是 NaOH溶液浓度为c时的电导与CH3COONa溶液浓度为- c时的电导之和,而G∞则是产物CH3COONa溶液浓度为 时的电导。即:
G0=K反c0
G∞=K产c0
Gt=K反c+K产(c0- c)
式中K反,K产是与温度,溶剂和电解质性质有关的比例系数。
处理上面三式,可得
G0- Gt=(K反- K产)(c0- c)
Gt- G∞=(K反- K产)c
以上两式相除,得
代入上面的反应速率系数表达式,得
k=
上式可改写为如下形式:
Gt= + G∞
以Gt对作图,可得一直线,直线的斜率为,由此可求得反应速率系数k,由截距可求得G∞。
二级反应的半衰期t1/2 为:
t1/2=
可见,二级反应的半衰期t1/2 与起始浓度成反比。由上式可知,此处t1/2 即是上述作图所得直线之斜率。
若由实验求得两个不同温度下的速率系数k,则可利用阿累尼乌斯(Arrhenius)公式:
ln=()
计算出反应的活化能Ea。
乙酸乙酯皂化反应速率常数的测定: CH3COOC2H5 +NaOH → CH3COONa +C2H5OH t = 0: c c 0 0。
t = t: c-x c-x x xt →∞: → → →c →c反应速率方程为积分得:只要测出反应进程中t时的x值,再将c代入上式,就可以算出反应速率常数k值。
用二级反应的方法测定乙酸乙酯皂化反应速率常数,要保证强电解质浓度与电导为正比例关系需要NaOH的浓度足够低,乙酸乙酯浓度如果低了,配制浓度的误差会增大,如果采用准一级反应的方法可以改善实验的结果。
相关内容:
二级反应的反应速度方程式为:dx/dt=k(a-x)(b-x),a与b分别为反应物开始时的浓度,x为生成物的浓度。二级反应的半衰期为1/(k*a) (只适用于只有一种反应物的二级反应。
两种反应物的二级反应的半衰期公式比较复杂,除包含速率常数k外,还与反应物起始浓度有关),即开始时反应物浓度愈大,则完成浓度减半所需的时间愈短。
二级反应最为常见,如乙烯、丙烯、异丁烯的二聚反应,乙酸乙酯的水解,甲醛的热分解等,都是二级反应。
皂化反应通常指的是碱(通常为强碱)和酯反应,而生产出醇和羧酸盐,尤指油脂和碱反应。这个反应是制造肥皂流程中的一步,因此而得名。 它的化学反应机制于1823年被法国科学家Eugène Chevreul发现。 皂化反应除常见的油脂与氢氧化钠反应外,还有油脂与浓氨水的反应。
2、用乳胶管连接恒温水浴,开启恒温水浴,设定温度。
3、用大肚移液管准确量取50.00mL氢氧化钠溶液置于反应器中,磁力搅拌器缓慢搅拌,温度恒定后,测定电导率κ0。
4、计算出所需乙酸乙酯的用量,用量程为10~100μL的移液器量取。
5、磁力搅拌器速度开到最大,取下橡胶塞加入乙酸乙酯,同时计时,然后塞上橡胶塞。
6、持续快速搅拌约1min后,将搅拌速度减慢,保持慢速均匀搅拌。然后依次记录2,4,6,8,10,12,15,20,15,20,25,30,35,40min时刻的电导率κt。
7、清洗实验用品,用Origin软件处理实验数据。
②乙酸乙酯皂化反应是吸热反应,混合后系统温度降低,所以混合后几分钟内所测溶液的电导率偏低,因此数据处理时舍弃前几分钟的测量值,否则电导率的测量图得不到直线(主因)
乙酸乙酯皂化反应速率常数的测定数据处理的方法是电导法。
用电导法测定浓度的依据是:
1、溶液中乙酸乙酯和乙醇不具有明显的导电性,它们的浓度变化不致影响电导的数值。同时反应过程中Na+的浓度始终不变,它对溶液的电导有固定的贡献,而与电导的变化无关。因此参与导电且反应过程中浓度改变的离子只有OH-和CH3COO-。
2、由于OH-的导电能力比CH3COO-大得多,随着反应的进行,OH-逐渐减少而CH3COO-逐渐增加,因此溶液的电导随逐渐下降。
3、在稀溶液中,每种强电解质的电导与其浓度成正比,而且溶液的总电导等于溶液中各离子电导之和。设反应体系在时间t=0,t=t 和t=∞时的电导可分别以G0、Gt 和G∞来表示。实质上G0是NaOH溶液浓度为时的电导,Gt是 NaOH溶液浓度为c时的电导与CH3COONa溶液浓度为- c时的电导之和,而G∞则是产物CH3COONa溶液浓度为时的电导。
皂化:
皂化原来指动、植物油脂与碱作用而成肥皂(高碳数脂肪酸盐)和甘油的反应,现在一般指酯与碱作用而成对应的酸(或盐)和醇的反应。是水解的一种,如醋酸乙酯加氢氧化钠生成醋酸钠和乙醇。
酯类在碱性条件下发生的水解反应。产物为酸和醇。例如,油脂(植物油或动物油)主要成分为高级脂肪酸甘油酯,在碱性条件下水解(NaOH),因水解产物之一为高级脂肪酸钠盐,是肥皂的主要成分而得名。酯(尤指羧酸酯)在碱的作用下水解生成羧酸盐和醇的反应。
RCOOR′+NaOH→RCOONa+ROH这个反应最初应用于由动、植物油脂(硬脂酸、软脂酸和油酸的混合甘油酯)加苛性碱水解来制造肥皂脂肪酸钠或钾和甘油,因此这类反应被称为皂化反应。
1、电导法测定乙酸乙酯皂化反应的速率常数的步骤:
①调节恒温槽的温度在26.00℃;
②在1-3号大试管中,依次倒入约20mL蒸馏水、35mL 1.985×10-2mol/L的氢氧化钠溶液和25mL1.985×10-2mol/L乙酸乙酯溶液,塞紧试管口,并置于恒温槽中恒温。
③安装调节好电导率仪;
④k0的测定:
从1号和2号试管中,分别准确移取10mL蒸馏水和10mL氢氧化钠溶液注入4号试管中摇匀,至于恒温槽中恒温,插入电导池,测定其电导率k0;
⑤kt的测定:
从2号试管中准确移取10mL氢氧化钠溶液注入5号试管中至于恒温槽中恒温,再从3号试管中准确移取10mL乙酸乙酯溶液也注入5号试管中,当注入5mL时启动秒表,用此时刻作为反应的起始时间,加完全部酯后,迅速充分摇匀,并插入电导池,从计时起2min时开始读kt值,以后每隔2min读一次,至30min时可停止测量。
⑥反应活化能的测定:
在35℃恒温条件下,用上述步骤测定kt值。
2、pH法测定乙酸乙酯皂化反应的速率常数的步骤:
1).开启恒温水浴电源,将温度调至35℃.
2).配制纯乙酸乙酯溶液
配制0.0200mol/L乙酸乙酯溶液。先计算配制0.0200mol/L乙酸乙酯溶液100ml所需的分析乙酸乙酯(约0.1762g)量,根据乙酸乙酯温度与密度的关系式: ρ=925.54-1.68×t-1.95×10-3 t² 式中:ρ、t的单位分别为kg·m-3 和℃,计算该温度下对应的密度并换算成配准100ml 0.0200mol/L所需乙酸乙酯的体积,用0.5ml刻度移液管移取所需的体积,加到预先放好2/3去离子水的100ml容量瓶中,然后稀释至刻度,加盖摇匀备用。
3).测定35℃,起始浓度的pH值,C(NaOH)=10 pH-14 mol/L,移取20mlNaOH溶液,准确加入20ml水,放入pH计,稳定后读数并记录。
4).测定35℃,t时刻对应的pH值,Ct(NaOH)=10 pH-14 mol/L,移取20mlNaOH溶
液至测定管,准确加入20ml乙酸乙酯溶液至测定管另外一侧,放入pH计,记录不同时间t的pH值。每分钟测定一次,测25分钟。
5).重复上述操作,测定40℃时的pH值。
6).处理、计算反应速率常数k和表观活化能Ea。
如果混合前没有恒温,那就意味着温度的不等~~~那开始时的速率常数自然不是实验测定的速率常数~~~
然后温度是连续变化,最后变成恒温的温度
相应的,速率常数也是连续变化,最后变成要测的反应常数~~
而且开始时浓度大,反应快~~这对实验测得的数据的影响是大大的~~~
仅供参考