建材秒知道
登录
建材号 > 盐酸 > 正文

盐酸苯肼怎么去除

沉静的小土豆
老实的睫毛
2023-01-28 01:00:23

盐酸苯肼的理化性质以及对人的危害是什么

最佳答案
辛勤的大地
疯狂的火龙果
2025-06-29 08:39:37

【分子式】C6-H8-N2.CL-H

【分子量】144.62

【熔点】243-246℃

【急性毒性】口服-小鼠 LD50: 2100 毫克/公斤

【毒性分级】中毒

【可燃性危险特性】明火可燃受热放出有毒氯化氢和氧化氮气体

【储运事项】库房通风低温干燥与食品原料分开储运

【灭火剂】水、二氧化碳、砂土、泡沫

白色叶片状结晶。对光和湿敏感。能升华。易溶于水,溶于乙醇,几乎不溶于乙醚。加入浓盐酸则从溶液中析出沉淀。熔点250-254℃有毒,最小致死量(兔,经口)25mg/kg。有致癌可能性。

最新回答
殷勤的八宝粥
粗犷的发卡
2025-06-29 08:39:37

取盐酸、亚硝酸钠依次加入苯胺中,其中苯胺、盐酸、亚硝酸钠摩尔比为1∶2.3~3.2∶1~1.1,且亚硝酸钠在0~5℃时开始投料,反应温度为0~22℃,反应时间为30~90分钟,再按与苯胺的摩尔比为1∶2~3.5∶2.5~3.0加入亚硫酸铵、盐酸,进行还原、水解、酸析,再经抽滤或甩干,即可,其优点是反应速度快,操作时间短,氯化重氮苯的收率高,生产成本低且设备投资小.

着急的电话
害羞的机器猫
2025-06-29 08:39:37
呋喃唑酮苯腙,萃取试剂,我的建议是你先取一点产物,然后你尝试用环己烷萃取试试看行不行。再有,我再问一下,这是研究生题吗?如果是紫外分光光度计的话,要求你要选择的萃取试剂以及萃取液都要在紫外区或可见区有明显的吸收峰。因为环己烷溶解脂溶性有机物效果好些,首先建议你先用甲苯萃取出来,然后做成晶体较纯品。至于萃取、紫外测定这个问题你还真应该查一下常用水溶性溶剂、脂溶性溶剂,极性溶剂、非极性溶剂等,查查他们的相似相溶性质、熔沸点、以及紫外分光光度法所用的常用溶解试剂有哪些,你试试看,毕竟你实验还是有时间的,紫外测定即使次数较多也不会多麻烦,将你选定的几种可能试剂分别溶解少量晶体产物,然后分别进行全波长扫描,看看哪种试剂溶解晶体后紫外测定效果更好。

我也不能确定哪个试剂好些,你做个小实验试试看吧...

忧虑的鞋垫
花痴的苗条
2025-06-29 08:39:37
20℃以下。苯肼是氯化重氮苯经还原而制得,在冷至20℃以下,滤出的结晶即为苯肼盐酸盐。苯肼是白色单斜棱形晶体或油状液体,有芳香气味,在空气中渐变黄色,有毒。熔点19.5℃(水合苯肼熔点24℃)。沸点243.5℃。相对密度1.0978。折射率1.60813,闪点69℃。

体贴的鞋子
要减肥的大侠
2025-06-29 08:39:37
基本信息:

中文名称

苯肼

中文别名

肼基苯

英文名称

phenylhydrazine

英文别名

PhenylhydrazineHydrazine,phenylHydrazinobenzenePhenylhydrazinN-phenyl

hydrazineFenylhydrazine

[Dutch]Fenilidrazina

[Italian]Hydrazine-benzene

CAS号

100-63-0

上游原料

CAS号

中文名称

108-86-1

溴代苯

591-50-4

碘苯

98-95-3

硝基苯

108-90-7

氯苯

59-88-1

盐酸苯肼

110-85-0

哌嗪

121-44-8

三乙胺

369-57-3

四氟硼酸重氮苯盐

100-34-5

氯化重氮苯

下游产品

CAS号

名称

100-63-0

苯肼

367-57-7

1,1,1-三氟-2,4-戊二酮

105-07-7

4-氰基苯甲醛

956-02-5

4-氯查耳酮

更多上下游产品参见:http://baike.molbase.cn/cidian/38747

朴实的绿草
尊敬的含羞草
2025-06-29 08:39:37
1 甲醛检测方法

目前,国内外居室、纺织品、食品中甲醛检测方法主要有分光光度法、电化学检测法、气相色谱法、液相色谱法、传感器法等.

1.1 分光光度法

分光光度法是基于不同分子结构的物质对电磁辐射的选择性吸收而建立的一种定性、定量分析方法,是居室、纺织品、食品中甲醛检测最常规的一种方法.目前涉及到的有乙酰丙酮法、酚试剂法、AHMT法、品红一亚硫酸、变色酸法、间苯三酚法、催化光度法等,每种检测方法所偏重的应用领域不同,并各有其优点和一定的局限性.

1.1.1 乙酰丙酮法.乙酰丙酮法指在过量铵盐存在下,甲醛与乙酰丙酮通过45~60℃水浴30min或25℃室温下经2.5 h反应生成黄色化合物,然后比色定量[4-7]甲醛含量.甲醛与乙酰丙酮反应的特异性较好,干扰因素少,酚类和其它醛类共存时均不干扰,显色剂较为稳定,检出限达到0.25 me/L[Bl,测定线性范围较宽,适合高含量甲醛的检测,多用于居室和水发食品中对甲醛的测定.但在进行水发食品中甲醛检测时,需将样品中的甲醛在磷酸介质中加热蒸馏提取出来,经水溶液吸收、定容后再检测,操作过程复杂、繁琐、耗时.

1.1.2 酚试剂法.酚试剂法即MBTH法,即甲醛与酚试剂(3一甲基一2一苯并噻唑腙盐酸盐,ugrn)反应生成嗪,嗪在酸性溶液中被铁离子氧化成蓝色,室温下经15 rain后显色,然后比色定量[m].酚试剂法操作简便,灵敏度高,检出限为0.02mg/L,较适合测定微量甲醛测定.但脂肪族醛类也有类似的反应,对测定会有干扰,二氧化硫对测定也有一定的干扰,使结果偏低,所以,在测定吊白块时应用此方法要慎重.酚试剂的稳定性较差,显色剂MITI?H在4℃冰箱内仅可以保存3 d,显色后吸光度的稳定性也不如乙酰丙酮法,显色受时间与温度等的限制.本法多用于居室中对甲醛的检测.纺织品和食品中对甲醛的测定有时也用该方法一.

1.1.3 AHMT法.AHMT法指甲醛与AHMT(4一氨基一3一联氨一5一巯基一1,2,4一三氮杂茂)在碱性条件下缩合,经高碘酸钾氧化成紫红色化合物,然后比色定量检测甲醛含量的方法[13].本方法特异性和选择性均较好,在大量乙醛、丙醛、丁醛、苯乙醛等醛类物质共存时不干扰测定,检出限为0.04 mg/L.但AHMT法在操作过程中显色随时间逐渐加深,标准溶液的显色反应和样品溶液的显色反应时间必须严格统一,重现性较差,不易操作,多用于居室中对甲醛的检测.

1.1.4 品红一亚硫酸法.品红一亚硫酸法指利用甲醛与品红一亚硫酸在浓硫酸存在条件下呈蓝紫色的特性,用比色定量进行检测的方法[HI1 .本法利用的是甲醛的特有反应,其它醛与酚不干扰测定.此法操作简便、测定范围宽,但其比色液很不稳定,重现性较差,在测定甲醛含量较低的样品时,差异较大,精确度不如乙酰丙酮法,而且品红一亚硫酸法受温度影响较大,检测过程还需浓硫酸,故一般多用于食品中甲醛的定性分析.

1.1.5 变色酸法.变色酸法指将甲醛在浓硫酸介质中与铬变酸(1,8一二羟基萘一3,6一二磺酸)作用,在沸水浴中生成紫红色化合物,进行比色定量的方法.此法灵敏度高,检出限为0.1 mg/L比色液稳定.但当酚类和其添加剂离子共存时有干扰,因此该法不适用于测定甲醛含量较高的样品.因含甲醛量高的溶液遇酸极易产生聚合物,所以该反应须在浓硫酸介质作用下进行,操作较繁琐,因此该法多用于方法研究,实际检测时应用较少.间苯三酚法.间苯三酚法指利用甲醛在碱性条件下与间苯三酚发生缩合反应生成橘红色化合物的特性,进行比色定量检测甲醛含量的方法[" 引.此法操作简便、干扰物影响小,检出限为0.1 mg/L.但甲醛与间苯三酚生成物的颜色不稳定,测定结果偏差较大,只适用于甲醛的定性分析.此法多用于水发食品中对甲醛的测定.

1.1.7 催化光度法.催化光度法指水浴条件下,在磷酸介质中甲醛催化溴酸钾一溴甲酚紫引、金莲橙O0[20]或甲基红[21]等进行氧化还原反应,使其反应体系褪色而建立的甲醛测定方法.此法是一新研究方法,操作简便,检出限为0.04—0.2 mg/L,反应速度受温度影响较大,多用于水发食品中对甲醛的测定.上述分光光度法相对稳定性差,易受乙醛、酚、葡萄糖等成分的干扰,操作过程繁琐,分析时间过长,难以直接用于甲醛现场快速检测,应用范围受到一定限制.

1.2 电化学法

电化学分析法是基于化学反应中产生的电流(伏安法)、电量(库仑法)、电位(电位法)的变化,判断反应体系中分析物的浓度进行定量分析的方法,用于甲醛检测的有极谱法和电位法2种.

1.2.1 示波极谱测定法.示波极谱测定法简称极谱法,是通过获得的电流一电压曲线即极谱波来进行分析测定的方法.甲醛在盐酸苯肼一氯化钠底液中产生一个明晰的极谱波,峰电流与甲醛含量成正比,根据样品峰电流与甲醛标准峰电流比较进行定量检测[ 一;或在pH值为5的乙酸一乙酸钠介质中,甲醛与硫酸肼的反应产物产生一个灵敏的吸附还原波,其峰高与甲醛浓度在一定范围内呈线性关系[24],根据这种关系对甲醛进行定量检测.该法操作简便、选择性好,但是极谱分析法对试样的前处理要求比较高,使用的“滴汞电极”有污染,目前多用于食品和食品包装材料中对甲醛的检测.

1.2.2 电位法.电位法也称离子选择电极法,是利用膜电极将被测离子的活度转换为电极电位而加以测定的一种方法.在硫酸介质中,甲醛对溴酸钾氧化碘化钾具有促进作用,利用这个特性,用碘离子选择电极跟踪I一,可建立测定微量甲醛的动力学电位法( .该方法的线性范围为0—5 mg/L,检出限为0.055 mg/L.此法是一新研究方法,在实际应用中较少.

1.3 色谱法

色谱具有强大的分离效能,不易受样品基质和试剂颜色的干扰,对复杂样品的检测灵敏、准确,可直接用于居室、纺织品、食品中对甲醛的分析检测.也可将样品中的甲醛进行衍生化处理后,再进行测定的,常用的衍生剂有2,4一二硝基苯肼(DNPH)、眯唑、乙硫醇、硫酸肼等,将样品中的甲醛与DNPH衍生化,生成2,4一二硝基苯腙,经甲苯或正己烷萃取,用毛细管或填充柱气相进行色谱分离,再用电子捕获检测器检测,根据保留时间和峰高进行定性和定量检测,检出限为0.001 5 mg/L,其中乙醇、丙酮、二氧化硫、氮氧化物等均不会产生干扰.陈笑梅等[驯将样品中甲醛与DNPH衍生化后,经萃取,用高效液相色谱进行分离,用紫外检测器检测,根据保留时间和峰面积进行定性和定量检测,检出限可达0.05 mg/Lt驯.居室、纺织品、食品中样品组分一般较复杂,干扰组分多,甲醛含量又低,常规检测方法中需耗费大量的时间精力进行分离、浓缩等预处理后再进行检测.色谱法灵敏度高、定量准确、抗干扰性强,可直接用于居室、纺织品、食品中甲醛的检测.但是色谱法对设备要求较高,衍生化时间长,萃取等步骤、操作过程烦琐,不适合于一般实验室和家庭的现场快速检测,难以满足市场需求.

1.4 传感器

用于检测甲醛的传感器有电化学传感器、光学传感器和光生化传感器等.电化学传感器结构比较简单,成本比较低,其中高质量的产品性能稳定,测量范围和分辨率基本能达到室内环境检测的要求.但缺点是所受干扰物质多,且由于电解质与被测甲醛气体发生不可逆化学反应而被消耗,故其工作寿命一般比较短.光学传感器价格比较贵 30,且体积较大,不适用于在线实时分析,使其使用的广泛性受到限制.虽然光生化传感器提高了选择性,但是由于酶的活性以及其它因素导致传感器不稳定,缺乏实用性,而且一般甲醛气体传感器的价格过高,难以普及.

知识扩展:

首先我们先来认识一下甲醛的危害

甲醛是一种破坏生物细胞蛋白质的原生质毒物,会对人的皮肤、呼吸道及内脏造成损害,麻醉人的中枢神经,可引起肺水肿、肝昏迷、肾衰竭等.世界卫生组织确认甲醛为致畸、致癌物质,是变态反应源,长期接触将导致基因突变⋯.目前甲醛污染问题主要集中于居室、纺织品和食品中.居室装饰材料和家具中的胶合板、纤维板、刨花板等人造板材中含有大量以甲醛为主的脲醛树脂,各类油漆、涂料中都含有甲醛

2.纺织品在生产加工过程中使用含甲醛的N一羟甲基化合物作为树脂整理剂,以增加织物的弹性,改善折皱性,还使用含甲醛的阳离子树脂以提高染色牢度

3,造成纺织品中甲醛残留问题.另外,因经济利益驱使,一些不法分子以甲醛为食品添加剂,如水发食品加甲醛以凝固蛋白防腐、改善外观、增加口感,酒类饮料中加入甲醛防止浑浊、增加透明度,这些都会造成食品的严重污染,损害人体健康.《中华人民共和国食品卫生法》中已明文规定禁止甲醛作为食品添加剂.由此可见,甲醛污染问题已普及到生活中的每一个角落,严重威胁人体健康,应引起人们的高度关注.甲醛含量已成为当今居室、纺织品、食品中污染监测的一项重要安全指标.因此研究一种市民可以在自己家中独立完成的,简便、灵敏、快速、直观、准确、经济的甲醛检测方法将会有很大的市场前景.

2 展望

随着人们生活水平的日益提高,居室、纺织品、食品中甲醛超标等安全事故频频发生,日益严重,因此有必要建立一种简便、灵敏、快速、直观、准确、经济的甲醛检测方法.在每个家庭中,居民都可以自己实现居室、纺织品、食品中甲醛在线实时检测是市场所需,人心所向.目前还没有一种较为理想的甲醛现场快速检测方法,分光光度受水浴或浓硫酸等操作条件的限制,电化学检测法对样品预处理要求较高,色谱法受仪器设备限制,传感器检测甲醛成本高、寿命短,而现在市场上的甲醛快速检测箱需专业人员操作,成本高,一般家庭难以普及.因此建立一种简便、快速、灵敏的甲醛在线检测方法是适时而必要的.现有的新兴技术,如微全分析系统、固相微萃取等技术的引入可降低甲醛检测的检出限,避免干扰,为甲醛现场快速检测便携化提供更大的可能.

清爽的发带
羞涩的咖啡
2025-06-29 08:39:37
答:含有C,H,O三种元素的有机物不一定是糖类,而脂类和蛋白质分别是含有C,H,O三种最基本的元素的,但是它们之中还含有N,P等,它们不是糖类。另外,只含有C,H,O三种元素的有机物也不一定是糖类,因为如甲醛(CH2O)、乙酸(C2H4O2)、甲酸甲酯(C2H4O2)等并不属于糖类的。

详细资料:

糖类(suger,saccharides)又称碳水化合物(carbohydrates),广泛分布于生物体内,为植物光合作用的初生产物。糖类不仅是植物体内的贮藏养料,而且是生物合成其他有机化合物的前体。按照组成糖类成分的糖基个数,可将糖类分为单糖、低聚糖和多糖三类。

(一) 单糖类

单糖类(monosaccharides)通式(CH2O)n,是具有多羟基的醛(醛糖类aldoses)或酮(酮糖类ketoses)。现已发现的天然单糖有200多种,n=3~8,而以五碳(戊糖,pentose)、六碳(己糖,hexose)单糖最多见。大多数单糖在生物休内是呈结合状态的,仅葡萄糖(glucose)和果糖(fructose)等少数单糖呈游离状态存在。

1. 常见的单糖

⑴ 五碳醛糖(aldopentoses):L-阿拉伯糖(l-arabinose)、D-木糖(D-xylose)、D-核糖(D-ribose)等。

⑵ 甲基五碳醛糖:L-夫糖(L-fucose)、L-鼠李糖(L-rhamnose)等。

⑶ 六碳醛糖(aldohexoses):D-葡萄糖(D-glucose)、D-甘露糖(D-mannose)、D-半乳糖(D-galactose)等。

⑷ 六碳酮糖(ketohexose):D-果糖(D-fructose)、L-山梨糖(L-sorbose)等。

2. 特殊的单糖

⑴ a -去氧糖(deoxysugars):单糖分子的一个或二个羟基被氢原子替代的糖叫去氧糖。如:D-洋地黄毒糖(D-digitoxose)、L-夹竹桃糖(L-oleandrose)等。

⑵ 分枝碳链糖:如:D芹菜糖(D-apiose)、D-金缕梅糖(D-hamanelose)、链霉糖(streptose)等。

⑶ 氨基糖(amino sugar):单糖分子的一个或几个醇羟基被氨基替代的糖叫氨基糖。大多存在于地衣、微生物和动物中。如存在于龙虾甲壳中的2-氨基-2-去氧-D-葡萄糖(又称葡萄糖胺)。常用的庆大霉素、青霉素、卡那霉素都属于氨基糖甙类。

3. 单糖衍生物

(1) 糖醇:单糖分子的醛或酮基还原成羟基后所得的多元醇称糖醇。如:D-山梨糖(D-sorbitol)等。

(2) 糖醛酸:单糖分子的伯醇基氧化成羧基的化合物叫糖醛酸,如葡萄糖醛酸(glucuronic

acid)、半乳糖醛酸(galacturonic acid)等。

(3) 糖的磷酸酯:如a -D-葡萄糖磷酸酯等。

(4) 环醇类(cyclitols):最多见的是肌醇(inositols)。

各种单糖分子如用环状结构表示,即成为五环的呋喃糖(furanose)或六元环的吡喃糖(pyranose),有a -和b -两种构型。

单糖多呈结晶状态,有甜味,易溶于水,可溶于稀醇,难溶于高浓度乙醇,不溶于乙醚、氯仿和苯等低极性溶剂。具旋光性和还原性。

(二) 低聚糖类

低聚糖类(oligosaccharides)由2~9个单糖分子聚合而成。目前仅发现由2~5个单糖分子组成的低聚糖,分别称为双糖(如蔗糖、麦芽糖)、三糖(如龙胆三糖、甘露三糖)、四糖(如水苏糖)、五糖(如毛蕊糖)等。在植物体内分布最广又呈游离状态的低聚糖是蔗糖。

低聚糖大多由不同的糖聚合而成,也可由相同的单糖聚合而成,如麦芽糖、海藻糖。常见的植物低聚糖见表1-3-1。

低聚糖与单糖类似,为结晶性,部分糖有甜味。易溶于水,难溶或不溶于有机溶剂。易被酶或酸水解成单糖而具旋光性。当分子中有游离醛基或酮基时,具有还原性。如麦芽糖、乳糖;当分子中没有游离醛基或酮基时,不具有还原性。如蔗糖、龙胆三糖。

(三) 多(聚糖类)

多(聚)糖类(polysaccharides)由10个以上单糖分子聚合而成,通常由几百甚至几千个单糖分子组成。由一种单糖组成的多糖,称为均多糖(homosaccharide),通式为(CnH2n-2on-1)x,x可至数千。由二种以上不同的单糖组成的多糖,称杂多糖(heterosaccharide)。在多糖结构中除单糖外,还含有糖醛酸、去氧糖、氨基糖与糖醇等,且可有别的取代基。

多糖按功能可分为两类,一类是不溶于水的动植物的支持组织,如植物中的纤维素,甲壳类动物中的甲壳素等,另一类为动植物的储藏养料,可溶于热水形成胶状溶液。随着科学技术的发展,不少多糖的生物活性被发掘并用于临床,如刺五加多糖、灵芝多糖、黄精多糖、黄芪多糖都可促进人体的免疫功能,香菇多糖(lentinan)具抗癌活性,鹿茸多糖可抗溃疡等。

多糖性质已大大不同于单糖,大多为无定形化合物,无甜味和还原性,难溶于水,在水中溶解度随分子量增大而降低,多糖被酶或酸水解,可产生代聚糖或单糖。

常见的多糖化合物有以下几种:

1. 淀粉(starch) 为D-葡萄糖的高聚物,通式为(C6H10O5)n。淀粉是植物体内贮藏的营养物质,具有一定的形态,通常为白色颗粒状粉末,不溶于冷水、乙醇及有机溶剂,在热水中形成胶体溶液,可被稀酸水解成葡萄糖,也可被淀粉酶水解成麦芽糖。

按淀粉的结构可分为两类:一类是胶淀粉(amylopectin),又称淀粉精,位于淀粉粒外周,约占淀粉的80%。胶淀粉为支链淀粉,由1000个以上D-葡萄吡喃糖以a -1,4连接,并带有a -1,6连接的支链,分子量5万~10万,在热水中膨胀成粘胶状,遇碘液呈紫色或红紫色。另一类为糖淀粉(amylose),又称淀粉糖,位于淀粉粒中央,约占淀粉的20%。糖淀粉为直链淀粉,由约300个D-葡萄吡喃糖以a -1,4连接而成,分子量1万~5万,可溶于热水,遇碘液显深蓝色。淀粉通常无明显的药理作用,大量用作制取葡萄糖的原料,在制剂中常作为赋形剂、润滑剂或保护剂。淀粉粒的形态结构是生药显微鉴定的特征之一。

淀粉常用碘液反应来鉴定,即淀粉遇碘液呈蓝紫色,加热后蓝色消失,冷却后蓝紫色复现。

2. 菊糖(inulin) 为约35个D-果糖以b -2,1连接而成,最后接D-葡萄糖。这种果聚糖广泛分布于菊科和桔梗科植物中。菊糖溶解于细胞液中。遇乙醇可形成球状结晶析出。能溶于热水,微溶或不溶于冷水,不溶于有机溶剂,遇碘液不显色。常用于肾功能检查。菊糖的形态结构可作为生药显微鉴定的特征之一。

3. 树胶(gum) 为高等植物干枝受伤或受菌类侵袭后自伤口渗出的分泌物,在空气中干燥后形成半透明的无定形固体。树胶的形成是由于细胞壁、细胞内含物质受酶的作用分解变质(树胶化)所致。主要分布于蔷薇科、豆科、芸香科与梧桐科等多种植物。

树胶是一种有分支结构的杂多糖,水解后产生L-阿拉伯糖、L-鼠李糖、D-葡萄糖醛酸等。糖醛酸常与钙、镁、钾结合成盐。

树胶在水中膨胀成胶体溶液,不溶于有机溶剂,与醋酸铅或碱式醋酸铅溶液产生沉淀。

常的树胶有阿拉伯胶(acacia)、西黄芪胶(tragacanth)、杏胶、桃胶等,主要用作制剂的赋形剂、混悬剂、粘合剂和乳化剂。

4. 粘液质(mucilage) 为存在于种子、果实、根、茎的粘液细胞和海藻中的一类粘多糖,是保持植物水分的基本物质,是植物正常的生理产物。如车前子胶(plantosan)是车前种子中的粘液质。

粘液质的组成与树胶相似,多为无定形固体。在热水中形成胶体溶液,冷后成冻状,不溶于有机溶剂,可与醋酸铅溶液产生沉淀。

5. 粘胶质(pectic substance)

为高等植物细胞间质的构成物质。如果胶(pectin)是由D-半乳糖醛酸a-1,4连接而成的直链化合物,具止泻作用。

6. 纤维素(cellulose)与半纤维素(semicellulose) 纤维素为b -1,4相连的直链葡聚糖,半纤维素为酸性多糖,它们与木质素共同组成细胞壁。

7. 动物多糖

(1) 肝糖元(glycogan):是动物的贮藏养料,存在于肌肉与肝脏中。其结构与胶淀粉相似,遇碘液呈红褐色。

(2) 甲壳素(chitin):是组成甲壳类昆虫外壳的多糖。其结构与纤维素类似,不溶于水,对稀酸和碱都很稳定。甲壳素的水解产物葡萄糖胺是重要的合成原料。

(3) 肝素(heparin):主要存在于肝与肺中,为高度硫酸酯化的左旋多糖。有很强的抗凝血作用,用于防治血栓形成。

(4) 硫酸软骨素(chondroitin sulgate):为动物组织的基础物质,用以保持组织的水分和弹性,也是软骨的主成分。它与肝素相似,在动物体内与蛋白质结合而存在。具有降低血脂活性。

(5) 透明质酸(hyaluronic acid):为酸性粘多糖,存在于眼球玻璃体、关节液、皮肤等组织中作为润滑剂,并能阻止微生物的入侵。

(四)糖类成分的鉴别

1. Fehling试验 生药的水浸液加Fehling试剂,于沸水浴加热数分钟,若有还原性糖类成分存在,则产生砖红色氧化亚铜沉淀。若有非还原性低聚糖及多糖存在,则必须加稀酸水解后,才能与Fehling试剂呈阳性反应。

2. Molish试验 生药水浸液,加a -萘酚试剂数滴,摇匀后沿管壁滴加浓硫酸,若有糖类成分与甙类存在,则在二液面交界处出现紫红色环。

3. 成脎试验 生药的水浸液与盐酸苯肼液共热,只要有糖类成分存在,即生成黄色的糖脎结晶。镜检结晶,可视结晶的形状而鉴定出糖的种类。

4. 层析法 取生药浸出液(多糖类需水解),以某种糖为对照品一起进行层析检测。常用纸层析法,正丁醇-乙酸-水(4 : 1 : 5上层)作展开剂,新配制的氨化硝酸银溶液为显色剂,结果还原糖形成黑色斑点。

踏实的龙猫
虚拟的故事
2025-06-29 08:39:37

A能与苯肼作用但不发生银镜反应,可以排除醛;D能发生银镜反应,但不起碘仿反应,可以排除乙醛和甲基酮;而E则可发生碘仿反应而无银镜反应,那E应该是甲基酮。由上可得出:

A:CH3CH2C=OCH(CH3)2,2-甲基-3戊酮;

B:CH3CH2CH(OH)CH(CH3)2,2-甲基-3戊醇,

C:CH3CH2CH=C(CH3)2,即2-甲基-2-戊烯,

D:CH3CH2CHO,丙醛;

E:丙酮

2. 有旋光性即一定有手性碳。C可与Na反应放出H2,则为甲醛或乙醇。再倒推过去,可知:

A: H-C-O-CH(CH3)CH2OH,3-羟基-甲酸异丙醇酯。

B:HOCH(CH3)CH2OH,1,2-丙二醇

C:甲醛

扩展资料:

常用的制备方法是通过苯胺与亚硝酸钠在盐酸作用下生成重氮盐,再用亚硫酸钠/氢氧化钠还原制取。酸析生成苯肼盐酸盐,经过中和即得苯肼。

用于制染料、药物、显影剂等,也是一种重要的鉴定羰基的试剂,用作鉴定醛类、酮类和糖类。与苯甲醛反应生成苯腙,利用苯肼或2,4-二硝基苯肼所生成的腙来鉴定醛和酮,与醛酮发生费歇尔吲哚合成(由赫尔曼·埃米尔·费歇尔在1883年发现。

反应是用苯肼与醛、酮在酸催化下加热重排消除一分子氨,得到2-或3-取代的吲哚。)得到吲哚环系化合物。

参考资料来源:百度百科-苯肼