草酰乙酸怎么反应成丙酮酸
糖酵解可以反应成丙酮酸,草酰乙酸由磷酸烯醇式丙酮酸羧激酶催化,消耗1个ATP,变成磷酸烯醇式丙酮酸,然后再由丙酮酸激酶催化生成丙酮酸。
丙酮酸在丙酮酸羧化酶催化下转化为草酰乙酸,这是三羧酸循环的一个重要回补途径,该反应需要生物素作为辅基,消耗一分子ATP。
苹果酸在苹果酸脱氢酶作用下被NAD+氧化脱氢生成草酰乙酸,再生的草酰乙酸可再次进入三羧酸循环用于柠檬酸的合成。
扩展资料:
丙酮酸在空气中颜色变暗。加热时缓慢聚合,富有反应性,容易与氮化物、醛、卤化物、磷化物等反应,参与生物体的糖代谢、胶质、氨基酸、蛋白质等的生化合成、代谢、醇的发酵等。
当用力时,在肌肉中被还原为乳酸,休息时再次氧化并部分转变为糖原,丙酮酸是人体的一种成分,在人体内主要参与糖、脂肪等的代谢,也是碳水化合物代谢的中间产物之一。
首先由丙酮酸羧化酶催化,将丙酮酸转变为草酰乙酸,然后再由磷酸烯醇式丙酮酸羧激酶催化,由草酰乙酸生成磷酸烯醇式丙酮酸。
这个过程中消耗两个高能键(一个来自ATP,另一个来自GTP),而由磷酸烯醇式丙酮酸分解为丙酮酸只生成1个ATP。
由于丙酮酸羧化酶仅存在于线粒体内,胞液中的丙酮酸必须进入线粒体,才能羧化生成草酰乙酸,而磷酸烯醇式丙酮酸羧激酶在线粒体和胞液中都存在,因此草酰乙酸可在线粒体中直接转变为磷酸烯醇式丙酮酸再进入胞液中,也可在胞液中被转变为磷酸烯醇式丙酮酸。但是,草酰乙酸不能通过线粒体膜,其进入胞液可通过两种方式将其转运:一种是经苹果酸脱氢酶作用,将其还原成苹果酸,然后通过线粒体膜进入胞液,再由胞液中NAD+-苹果酸脱氢酶将苹果酸脱氢氧化为草酰乙酸而进入糖异生反应途径,由此可见,以苹果酸代替草酰乙酸透过线粒体膜不仅解决了糖异生所需要的碳单位,同时又从线粒体内带出一对氢,以NADH+H+形成使1,3-二磷酸甘油酸生成3磷酸甘油醛,从而保证了糖异生顺利进行。另一种方式是经谷草转氨酶的作用,生成天门冬氨酸后再逸出线粒体,进入胞液中的天门冬氨酸再经胞液中谷草转氨酶催化而恢复生成草酰乙酰。有实验表明,以丙酮酸或能转变为丙酮酸的某些成糖氨基酸作为原料成糖时,以苹果酸通过线粒体方式进行糖异生,而乳糖进行糖异生反应时,它在胞液中变成丙酮酸时已脱氢生成NADH+H+,可供利用,故常在线粒体内生成草酰乙酸后,再变成天门冬氨酸而出线粒体内膜进入胞浆。
具体过程如下,1糖酵解:葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-二磷酸果糖→3-磷酸甘油醛(二羟丙酮磷酸)→1,3-二磷酸甘油醛→3-磷酸甘油醛→2-磷酸甘油酸→磷酸烯醇式丙酮酸→烯醇式丙酮酸→丙酮酸。
2三羧酸循环:草酰乙酸+CH3CoA→柠檬酸→顺乌头酸→异柠檬酸→草酰琥珀酸→α酮戊二酸→琥珀酰-CoA→琥珀酸→延胡索酸→苹果酸→草酰乙酸
转化:TCA,乙酰COA进入乙醛酸循环(GAC),脂肪酸合成的原料
从线粒体转到其膜外通过:乙酰COA在线粒体内与草酰乙酸结合生成柠檬酸,柠檬酸可以透过线粒体膜进入细胞质,然后在柠檬酸裂解酶的催化下生成乙酰COA和草酰乙酸
草酰乙酸既是一种α-酮酸也是一种β-酮酸,它同时具有两种官能团的性质。
作为α-酮酸,其酮基碳可受亲核进攻,例如:
草酰乙酸发生 C-α 转氨基作用,得到天冬氨酸;
草酰乙酸与乙酰CoA缩合,得柠檬酸。这是三羧酸循环中的关键反应之一,一般认为是启动循环的一步;
作为β-酮酸,草酰乙酸稳定性不强,易脱羧。例子有:
苹果酸在苹果酸酶催化下经过草酰乙酸,发生氧化脱羧生成丙酮酸;
糖异生中,草酰乙酸在磷酸烯醇式丙酮酸羧化激酶作用下转变为磷酸烯醇式丙酮酸;
羧化 丙酮酸在丙酮酸羧化酶催化下转化为草酰乙酸,这是三羧酸循环的一个重要回补途径,该反应需要生物素作为辅基,消耗一分子ATP;
苹果酸在苹果酸脱氢酶作用下被NAD+氧化脱氢生成草酰乙酸,再生的草酰乙酸可再次进入三羧酸循环用于柠檬酸的合成。
在糖异生中,丙酮酸羧化成草酰乙酸的详细步骤是如下。
丙酮酸羧化成草酰乙酸需要丙酮酸羧化酶的催化。丙酮酸羧化酶以一个共价键结合的生物素作为辅基。生物素起CO2载体作用。生物素的末端羧基与酶分子的一个赖氨酸残基的ε-氨基乙酰胺键相连,使生物素和赖氨酸形成丙酮酸羧化酶的一个长摆臂。
丙酮酸羧化分为
丙酮酸羧化酶在ATP参与下与CO2结合使CO2成为活化形式,ATP水解推动此反应的进行:活化羧基从羧化生物素转移到丙酮酸上形成草酰乙酸。
糖异生的过程
过程分两阶段:各种糖异生前体(除甘油外)转变成磷酸烯醇式丙酮酸;磷酸烯醇式丙酮酸转变为6-磷酸葡萄糖,再生成各种单糖或多糖。
糖异生的主要前体是乳酸、丙酮酸、氨基酸及甘油等。在反刍动物的消化道中,经细菌作用能将大量纤维素等转变成丙酸,后者在体内也可转变成糖。
其作用:
糖异生作用的主要生理意义是保证在饥饿情况下,血糖浓度的相对恒定。
血糖的正常浓度为3.89-11mmol/L,即使禁食数周,血糖浓度仍可保持在3.40mmol/L左右,这对保证某些主要依赖葡萄糖供能的组织的功能具有重要意义,停食一夜(8-10小时)处于安静状态的正常人每日体内葡萄糖利用。
脑约125g,肌肉(休息状态)约50g,血细胞等约50g,仅这几种组织消耗糖量达225g,体内贮存可供利用的糖约150g,贮糖量最多的肌糖原仅供本身氧化供能,若只用肝糖原的贮存量来维持血糖浓度最多不超过12小时,由此可见糖异生的重要性。
氨基转移到另一种α酮酸的酮基上,生成相应的氨基酸。体内有多种转氨酶,其中谷丙转氨酶(GPT或ALT)和谷草转氨酶(GOT或AST)最为重要。由于骨骼肌和心肌中L-谷氨酸脱氢酶的活性弱,难于进行联合脱氨基作用,该组织的氨基酸主要通过嘌呤核苷酸循环进行脱氨基作用。嘌呤核苷酸循环过程,氨基酸首先通过连续的转氨基作用将氨基转移给草酰乙酸,生成天冬氨酸;天冬氨酸与次黄嘌呤核苷酸生成腺苷酸带琥珀酸,经裂解生成AMP,AMP在腺苷酸脱氨酶催化下脱去氨基。由此可见,嘌呤核苷酸循环实际上也可以看成是另一种形式的联合脱氨基作用。
2 乙酰辅酶A:是体内二碳单位的载体。来源多样。主要参与氧化分解(TCA循环),也可合成脂肪酸。
3 草酰乙酸主要在TCA中产生,也可由氨基酸脱氨基产生。参与TCA循环。