二甲苯酚橙怎么变色的,变色范围
指示剂主要用作金属离子的指示剂。
水溶液为红色,酸性溶液中为柠檬黄色,金属络合物为鲜红色,碱性溶液中为紫红色。不溶于无水乙醇。
用作酸碱指示剂、金属指示剂(测定铋、钍、铅、钴、铜、铯、钒、锆、锌、镉、汞等)。用二甲酚橙为指示剂,在酸性溶液中以EDTA直接滴定Bi³⁺,Zn²⁺,Pb²⁺,Hg²⁺等离子可得很好结果。二甲酚橙常配成0.2%的水溶液使用。
扩展资料:
当温度高于65℃时,能跟水以任意比例互溶。苯酚有腐蚀性,接触后会使局部蛋白质变性,其溶液沾到皮肤上可用酒精洗涤。小部分苯酚暴露在空气中被氧气氧化为醌而呈粉红色。遇三价铁离子变紫,通常用此方法来检验苯酚。
酚羟基的氧原子采用sp2杂化,提供一对孤电子与苯环的6个碳原子共同形成离域键。大π键加强了烯醇的酸性,羟基的推电子效应又加强了O-H键的极性,因此苯酚中羟基的氢可以电离出来。
与醛、酮反应生成酚醛树脂、双酚A,与醋酐;水杨酸反应生成醋酸苯酯、水杨酸酯。还可进行卤代、加氢、氧化、烷基化、羧基化、酯化、醚化等反应。
苯酚在通常温度下是固体,与钠不能顺利发生反应,如果采用加热熔化苯酚,再加入金属钠的方法进行实验,苯酚易被还原,在加热时苯酚颜色发生变化而影响实验效果。
参考资料来源:百度百科--二甲苯酚
参考资料来源:百度百科--苯酚
一、方法要点
氨与苯酚及次氯酸钠在碱性介质中,以亚硝酰铁氰化钠为催化剂,生成蓝色的靛酚。颜色的深度与氨浓度成比例,可用分光光度法测定。显色反应受pH值、温度及次氯酸盐浓度等因素影响较大。采用pH 11.7的磷酸盐缓冲溶液,在37℃发色30min,次氯酸盐浓度为50mg/L(指测定体系的浓度,以有效氯计),在此条件下灵敏度最高。钙、镁及其他金属离子的干扰可用EDTA掩蔽消除。
二、试剂与仪器
(1)铵标准溶液:称取3.8190g在100℃干燥过的无水氯化铵,溶于水中,转入1L容量瓶中,稀释至标线,此溶液含氨氮为1mg/mL。再吸取10mL置于1000mL容量瓶中,用水稀释至标线,此溶液含氨氮为0.01mg/mL。
(2)溶液A:溶解5g苯酚和25mg亚硝酰铁氰化钠于水中,稀释至500mL,放入棕色瓶中贮存,并置于冰箱中。
(3)溶液B:溶解2.5g氢氧化钠、18.7g、磷酸氢二钠和15.9g磷酸钠(Na3PO4·12H2O)于水中,加入含有效氯250mg的次氯酸钠溶液,用水稀释,用磷酸或磷酸钠调节至pH11.7,然后用水稀释至500mL。
(4)EDTA溶液(1%):溶解1gEDTA于100mL水中,用浓氢氧化钠溶液调节pH 10。
(5)次氯酸钠溶液:将浓盐酸滴加于二氧化锰上,使发生的氯气通入2mol/L氢氧化钠溶液中。可得有效氯浓度为0.3~0.4mol/L的溶液。或将5%~10%漂白粉溶液用浓盐酸调至pH 6.5~7制得,两种方法制得的次氯酸钠溶液均不稳定,使用前需用硫代硫酸钠间接碘量法测定其中的有效氯。用漂白粉溶液制备次氯酸钠时,会产生大量钙的沉淀,必须滤去。
(6)分光光度计。
(7)pH-S-3型酸度计。
三、分析步骤
量取处理后的水样或试液,置于100mL容量瓶中,加1mL 1%EDTA溶液(如样液含钙、镁较多时加3mL),摇匀,加入10mL溶液A,加10mL溶液B,摇匀,用水稀释至标线,再摇匀。置于37℃恒温水浴中30min(或20~30℃室温下4h),用1cm比色皿,于625nm波长处,以试剂空白为参比,测定吸光度。由标准曲线查得相应的氨氮含量。
计算:
氨氮(mg.N/L)=测得氨氮量(μg)/水样体积(mL)
四、标准曲线的绘制
在6个100mL容量瓶中,分别加入0.0、1.0、3.0、5.0、7.0、9.0μg氨氮
1、苯酚的硝化反应
C₆H₅O⁻+CO₂+H₂O = C₆H₅OH+HCO₃⁻
2、苯酚与甲醛的反应,本质为缩聚反应,生产中用于制酚醛树脂。
C₆H₅OH + HCHO → C₆H₃OHCH₂ + H₂O
3、苯酚与溴的反应,生成三溴苯酚。
3Br₂+C₆H₅OH → (C₆H₅OH ) Br₃+3HBr
4、苯酚与氢氧化钠发生反应,生成苯酚钠和水。
C₆H₅OH +NaOH→C₆H₅ONa+ H₂O
苯酚的物理性质:苯酚在室温下微溶于水,能溶于苯及碱性溶液,易溶于乙醇、乙醚、氯仿、甘油等有机溶剂中,难溶于石油醚。
扩展资料
苯酚的使用:
1、苯酚常用于测定硝酸盐、亚硝酸盐及作有机合成原料等。 苯酚工业生产以异丙苯法为主,该法具有产品纯度高、原料和能源消耗低等优点,但其发展受联产物丙酮的制约。
2、苯酚是重要的有机化工原料,用它可制取酚醛树脂、己内酰胺、双酚A、水杨酸、苦味酸、五氯酚、己二酸、酚酞n-乙酰乙氧基苯胺等化工产品及中间体,在化工原料、烷基酚、合成纤维、塑料、合成橡胶、医药、农药、香料、染料、涂料和炼油等工业中有着重要用途。
3、苯酚还可用作溶剂、实验试剂和消毒剂,苯酚的水溶液可以使植物细胞内染色体上蛋白质与DNA分离,便于对DNA进行染色。
参考资料来源:百度百科-苯酚
pH>6.3的时候,金属-二甲酚橙和游离二甲酚橙都是红色,此时即使金属被EDTA反应完,溶液也不会有明显变色,就看不出滴定终点了,所以要pH<6.3
C6H5-OH +3H2---催化剂,加热->C6H11OH(羟基环己烷)
氧化:C6H6O+O2=C6H4O2+H2O.对苯醌会画么?两个对位的碳碳双键,两个对位的碳氧双键,干好把六个碳用完
催化氧化的不知道啦,问问哪个知道的把
另外,Fe3+能和SCN-发生络合而显紫色。
因为二甲酚橙颜色会随着pH值变化的:从pH=1显黄色向pH=6.3显红色递变.
在滴加EDTA的过程中相当于在稀释二甲酚橙,pH在增大,到第一滴定终点pH虽然没有到5~6(pH=5~6时Pb2+要与二甲酚橙形成紫色络合物了),但二甲酚橙已经显示出黄色中带一定的橙色.
使蛋白质变性,同时抑制了DNase的降解作用。用苯酚处理匀浆液时,由于蛋白与DNA 联结键已断,蛋白分子表面又含有很多极性基团与苯酚相似相溶。蛋白分子溶于酚相,而DNA溶于水相。
使用酚的优点:1. 有效变性蛋白质;2. 抑制了DNase的降解作用。
缺点:1. 能溶解10-15%的水,从而溶解一部分poly(A)RNA。2. 不能完全抑制RNase的活性。
氯仿的作用?
氯仿:克服酚的缺点;加速有机相与液相分层。
最后用氯仿抽提:去除核酸溶液中的迹量酚。(酚易溶于氯仿中)
用酚-氯仿抽提细胞基因组DNA时,通常要在酚-氯仿中加少许异戊醇,为什么?
异戊醇:减少蛋白质变性操作过程中产生的气泡。异戊醇可以降低表面张力,从而减少气泡产生。另外,异戊醇有助于分相,使离心后的上层含DNA的水相、中间的变性蛋白相及下层有机溶剂相维持稳定。
用乙醇沉淀DNA时,为什么加入单价的阳离子?
用乙醇沉淀DNA时,通常要在溶液中加入单价的阳离子,如NaCl 或 NaAc,Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,而易于聚集沉淀。
原理:动物和植物组织的脱氧核糖核蛋白(DNP)可溶于水或浓盐溶液(如1mol/L氯化钠),但在0.14mol/L氯化钠盐溶液中溶解度最低,而核酸核蛋白(RNP)则在0.14mol/L氯化钠中溶解度最大,利用这一性质可将其分开。
将沉淀物溶解于生理盐水,加入去污剂十二烷基硫酸钠(SDS)溶液,使DNA与蛋白质分离开。加入固体氯化钠使其浓度达到1mol/L,使DNA溶解。加氯仿-异戊醇去除蛋白质,也可重复该步操作得较纯DNA。最后用95%乙醇沉淀DNA。
溶解:将离心后除去RNA的沉淀,用30ml生理盐水溶解,充分搅拌后,匀浆一次。加4毫升10%SDS溶液,使溶液的SDS浓度达到1%左右,边加边搅拌,放置60 ℃水浴保温10分钟(不停搅拌),冷却。加固体氯化钠,使溶液氯化钠浓度达到1mol/L,充分搅拌10分钟;
除杂质:加等体积氯仿-异戊醇混合液,充分震荡10分钟, 8000 r/min离心7分钟,取上层液量好体积,倒入烧杯中(离心管),加同体积的氯仿-异戊醇混合液,重复上次操作。直至界面不出现蛋白凝胶为止;
沉淀:准确量取上清液体积,加2倍体积95%冷乙醇,搅拌后,置冰箱静止冷却,待有白色丝状物出现,约10-15分钟,离心8000 r/min离心7分钟,得白色沉淀;
溶解:将沉淀物用0.1mol/L NaOH约10毫升溶解,得DNA溶液。
溶液I—溶菌液: 溶菌酶:它是糖苷水解酶,能水解菌体细胞壁的主要化学成分肽聚糖中的β-1,4糖苷键,因而具有溶菌的作用。当溶液中pH小于8时,溶菌酶作用受到抑制。 葡萄糖:增加溶液的粘度,维持渗透压,防止DNA受机械剪切力作用而降解。 EDTA:(1)螯合Mg2+、Ca2+等金属离子,抑制脱氧核糖核酸酶对DNA的降解作用(DNase作用时需要一定的金属离子作辅基)(2)EDTA的存在,有利于溶菌酶的作用,因为溶菌酶的反应要求有较低的离子强度的环境。
溶液II-NaOH-SDS液:NaOH:核酸在pH大于5,小于9的溶液中,是稳定的。但当pH>12或pH<3时,就会引起双链之间氢键的解离而变性。在溶液II中的NaOH浓度为0.2mo1/L,加抽提液时,该系统的pH就高达12.6,因而促使染色体DNA与质粒DNA的变性。 SDS:SDS是离子型表面活性剂。它主要功能有:(1)溶解细胞膜上的脂质与蛋白,因而溶解膜蛋白而破坏细胞膜。(2)解聚细胞中的核蛋白。(3)SDS能与蛋白质结合成为R-O-SO3-…R+-蛋白质的复合物,使蛋白质变性而沉淀下来。但是SDS能抑制核糖核酸酶的作用,所以在以后的提取过程中,必须把它去除干净,防止在下一步操作中(用RNase去除RNA时)受到干扰。
溶液III--3mol/L NaAc(pH4.8)溶液:NaAc的水溶液呈碱性,为了调节pH至4.8,必须加入大量的冰醋酸。所以该溶液实际上是NaAc-HAc的缓冲液。用pH4.8的NaAc溶液是为了把pH12.6的抽提液,调回pH至中性,使变性的质粒DNA能够复性,并能稳定存在。而高盐的3mol/L NaAc有利于变性的大分子染色体DNA、RNA以及SDS-蛋白复合物凝聚而沉淀之。前者是因为中和核酸上的电荷,减少相斥力而互相聚合,后者是因为钠盐与SDS-蛋白复合物作用后,能形成较小的钠盐形式复合物,使沉淀更完全。
为什么用无水乙醇沉淀DNA? 用无水乙醇沉淀DNA,这是实验中最常用的沉淀DNA的方法。乙醇的优点是可以任意比和水相混溶,乙醇与核酸不会起任何化学反应,对DNA很安全,因此是理想的沉淀剂。 DNA溶液是DNA以水合状态稳定存在,当加入乙醇时,乙醇会夺去DNA周围的水分子,使DNA失水而易于聚合。一般实验中,是加2倍体积的无水乙醇与DNA相混合,其乙醇的最终含量占67%左右。因而也可改用95%乙醇来替代无水乙醇(因为无水乙醇的价格远远比95%乙醇昂贵)。但是加95%的乙醇使总体积增大,而DNA在溶液中有一定程度的溶解,因而DNA损失也增大,尤其用多次乙醇沉淀时,就会影响收得率。折中的做法是初次沉淀DNA时可用95%乙醇代替无水乙酵,最后的沉淀步骤要使用无水乙醇。也可以用0.6倍体积的异丙醇选择性沉淀DNA。一般在室温下放置15-30分钟即可。
在用乙醇沉淀DNA时,为什么一定要加NaAc或NaCl至最终浓度达0.1~0.25mol/L? 在pH为8左右的溶液中,DNA分子是带负电荷的,加一定浓度的NaAc或NaCl,使Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,易于互相聚合而形成DNA钠盐沉淀,当加入的盐溶液浓度太低时,只有部分DNA形成DNA钠盐而聚合,这样就造成DNA沉淀不完全,当加入的盐溶液浓度太高时,其效果也不好。在沉淀的DNA中,由于过多的盐杂质存在,影响DNA的酶切等反应,必须要进行洗涤或重沉淀。
加核糖核酸酶降解核糖核酸后,为什么再要用SDS与KAc来处理? 加进去的RNase本身是一种蛋白质,为了纯化DNA,又必须去除之,加SDS可使它们成为SDS-蛋白复合物沉淀,再加KAc使这些复合物转变为溶解度更小的钾盐形式的SDS-蛋白质复合物,使沉淀更加完全。也可用饱和酚、氯仿抽提再沉淀,去除RNase。在溶液中,有人以KAc代替NaAc,也可以收到较好效果。
7.为什么在保存或抽提DNA过程中,一般采用TE缓冲液? 在基因操作实验中,选择缓冲液的主要原则是考虑DNA的稳定性及缓冲液成分不产生干扰作用。磷酸盐缓冲系统(pKa=7.2)和硼酸系统(pKa=9.24)等虽然也都符合细胞内环境的生理范围(pH),可作DNA的保存液,但在转化实验时,磷酸根离子的种类及数量将与Ca2+产生Ca3(PO4)2沉淀;在DNA反应时,不同的酶对辅助因子的种类及数量要求不同,有的要求高离子浓度,有的则要求低盐浓度,采用Tris-HCl(pKa=8.0)的缓冲系统,由于缓冲液是TrisH+/Tris,不存在金属离子的干扰作用,故在提取或保存DNA时,大都采用Tris-HCl系统,而TE缓冲液中的EDTA更能稳
苯酚、氯仿、异戊醇在DNA提取时的作用
抽提DNA去除蛋白质时,怎样使用酚与氯仿较好?
酚与氯仿是非极性分子,水是极性分子,当蛋白水溶液与酚或氯仿混合时,蛋白质分子之间的水分子就被酚或氯仿挤去,使蛋白失去水合状态而变性。经过离心,变性蛋白质的密度比水的密度为大,因而与水相分离,沉淀在水相下面,从而与溶解在水相中的DNA分开。而酚与氯仿有机溶剂比重更大,保留在最下层。作为表面变性的酚与氯仿,在去除蛋白质的作用中,各有利弊,酚的变性作用大,但酚与水相有一定程度的互溶,大约10%~15%的水溶解在酚相中,因而损失了这部分水相中的DNA,而氯仿的变性作用不如酚效果好,但氯仿与水不相混溶,不会带走DNA。所以在抽提过程中,混合使用酚与氯仿效果最好。经酚第一次抽提后的水相中有残留的酚,由于酚与氯仿是互溶的,可用氯仿第二次变性蛋白质,此时一起将酚带走。也可以在第二次抽提时,将酚与氯仿混合(1:1)使用。
为什么用酚与氯仿抽提DNA时,还要加少量的异戊酵?
在抽提DNA时,为了混合均匀,必须剧烈振荡容器数次,这时在混合液内易产生气泡,气泡会阻止相互间的充分作用。加入异戊醇能降低分子表面张力,所以能减少抽提过程中的泡沫产生。一般采用氯仿与异戊酵为24:1之比。也可采用酚、氯仿与异戊醇之比为25:24:1(不必先配制,可在临用前把一份酚加一份24:1的氯仿与异戊醇即成),同时异戊醇有助于分相,使离心后的上层水相,中层变性蛋白相以及下层有机溶剂相维持稳定。
苯酚:氯仿:异戊醇为什么要25:24:1?
抽提DNA去除蛋白质时,怎样使用酚与氯仿较好?酚与氯仿是非极性分子,水是极性分子,当蛋白水溶液与酚或氯仿混合时,蛋白质分子之间的水分子就被酚或氯仿挤去,使蛋白失去水合状态而变性。经过离心,变性蛋白质的密度比水的密度为大,因而与水相分离,沉淀在水相下面,从而与溶解在水相中的DNA分开。而酚与氯仿有机溶剂比重更大,保留在最下层。作为表面变性的酚与氯仿,在去除蛋白质的作用中,各有利弊,酚的变性作用大,但酚与水相有一定程度的互溶,大约10%~15%的水溶解在酚相中,因而损失了这部分水相中的DNA,而氯仿的变性作用不如酚效果好,但氯仿与水不相混溶,不会带走DNA。所以在抽提过程中,混合使用酚与氯仿效果最好。经酚第一次抽提后的水相中有残留的酚,由于酚与氯仿是互溶的,可用氯仿第二次变性蛋白质,此时一起将酚带走。也可以在第二次抽提时,将酚与氯仿混合(1:1)使用。
为什么用酚与氯仿抽提DNA时,还要加少量的异戊酵?在抽提DNA时,为了混合均匀,必须剧烈振荡容器数次,这时在混合液内易产生气泡,气泡会阻止相互间的充分作用。加入异戊醇能降低分子表面张力,所以能减少抽提过程中的泡沫产生。一般采用氯仿与异戊酵为24:1之比。也可采用酚、氯仿与异戊醇之比为25:24:1(不必先配制,可在临用前把一份酚加一份24:1的氯仿与异戊醇即成),同时异戊醇有助于分相,使离心后的上层水相,中层变性蛋白相以及下层有机溶剂相维持稳定。
+
6
c6h5oh
===
h3[fe(c6h5o)6]
+
3
hcl
如果没想错的话,这应该是高二有机化学里的,苯酚与氯化铁的显色反应.用于苯酚的定性鉴定
,其反应原理是fe3+
+
6
c6h5o-
=
[fe(c6h5o)6]3-
苯酚负离子和三价铁形成配合物,更详细的内容就没必要和你说了,等你上了大学会了解更多的,祝您学习愉快!