有机化学低温反应溶剂的问题
问题一:溶剂可能参杂,导致丙酮的熔点与标准不同。
问题二:对于我所知的溶剂,或者混合溶剂有:
*液氨 -33.35℃ 特殊溶解性:能溶解碱金属和碱土金属 剧毒性、腐蚀性
液态二氧化硫 -10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶 剧毒
*甲胺 -6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯 中等毒性,易燃
二甲胺 7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂 强烈刺激性
石油醚 不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶 与低级烷相似
*乙醚 34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶 麻醉性
戊烷 36.1 与乙醇、乙醚等多数有机溶剂混溶 低毒性
二氯甲烷 39.75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶 低毒,麻醉性强
*二硫化碳 46.23 微溶于水,与多种有机溶剂混溶 麻醉性,强刺激性
*溶剂石油脑 与乙醇、丙酮、戊醇混溶 较其他石油系溶剂大
*丙酮 56.12 与水、醇、醚、烃混溶 低毒,类乙醇,但较大
1,1-二氯乙烷 57.28 与醇、醚等大多数有机溶剂混溶 低毒、局部刺激性
*氯仿 61.15 与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶 中等毒性,强麻醉性
*甲醇 64.5 与水、乙醚、醇、酯、卤代烃、苯、酮混溶 中等毒性,麻醉性,
四氢呋喃 66 优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃 吸入微毒,经口低毒
己烷 68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶 低毒。麻醉性,刺激性
三氟代乙酸 71.78 与水,乙醇,乙醚,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物
1,1,1-三氯乙烷 74.0 与丙酮、、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶 低毒类溶剂
*四氯化碳 76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶 氯代甲烷中,毒性最强
*乙酸乙酯 77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐 低毒,麻醉性
*乙醇 78.3 与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶 微毒类,麻醉性
丁酮 79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶 低毒,毒性强于丙酮
*苯 80.10 难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶 强烈毒性
*环己烷 80.72 与乙醇、高级醇、醚、丙酮、烃、氯代烃、高级脂肪酸、胺类混溶 低毒,中枢抑制作用
乙睛 81.60 与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶 中等毒性,大量吸入蒸气,引起急性中毒
异丙醇 82.40 与乙醇、乙醚、氯仿、水混溶 微毒,类似乙醇
1,2-二氯乙烷 83.48 与乙醇、乙醚、氯仿、四氯化碳等多种有机溶剂混溶 高毒性、致癌
乙二醇二甲醚 85.2 溶于水,与醇、醚、酮、酯、烃、氯代烃等多种有机溶剂混溶。能溶解各种树脂,还是二氧化硫、氯代甲烷、乙烯等气体的优良溶剂 吸入和经口低毒
*三氯乙烯 87.19 不溶于水,与乙醇.乙醚、丙酮、苯、乙酸乙酯、脂肪族氯代烃、汽油混溶 有机有毒品
三乙胺 89.6 水:18.7以下混溶,以上微溶。易溶于氯仿、丙酮,溶于乙醇、乙醚 易爆,皮肤黏膜刺激性强
丙睛 97.35 溶解醇、醚、DMF、乙二胺等有机物,与多种金属盐形成加成有机物 高毒性,与氢氰酸相似
庚烷 98.4 与己烷类似 低毒,刺激性、麻醉性
硝基甲烷 101.2 与醇、醚、四氯化碳、DMF、等混溶 麻醉性,刺激性
*1,4-二氧六环 101.32 能与水及多数有机溶剂混溶,仍溶解能力很强 微毒,强于乙醚2~3倍
*甲苯 110.63 不溶于水,与甲醇、乙醇、氯仿、丙酮、乙醚、冰醋酸、苯等有机溶剂混溶 低毒类,麻醉作用
硝基乙烷 114.0 与醇、醚、氯仿混溶,溶解多种树脂和纤维素衍生物 局部刺激性较强
吡啶 115.3 与水、醇、醚、石油醚、苯、油类混溶。能溶多种有机物和无机物 低毒,皮肤黏膜刺激性
4-甲基-2-戊酮 115.9 能与乙醇、乙醚、苯等大多数有机溶剂和动植物油相混溶 毒性和局部刺激性较强
乙二胺 117.26 溶于水、乙醇、苯和乙醚,微溶于庚烷 刺激皮肤、眼睛
丁醇 117.7 与醇、醚、苯混溶 低毒,大于乙醇3倍
*乙酸 118.1 与水、乙醇、乙醚、四氯化碳混溶,不溶于二硫化碳及C12以上高级脂肪烃 低毒,浓溶液毒性强
乙二醇一甲醚 124.6 与水、醛、醚、苯、乙二醇、丙酮、四氯化碳、DMF等混溶 低毒类
辛烷 125.67 几乎不溶于水,微溶于乙醇,与醚、丙酮、石油醚、苯、氯仿、汽油混溶 低毒性,麻醉性
乙酸丁酯 126.11 优良有机溶剂,广泛应用于医药行业,还可以用做萃取剂 一般条件毒性不大
吗啉 128.94 溶解能力强,超过二氧六环、苯、和吡啶,与水混溶,溶解丙酮、苯、乙醚、甲醇、乙醇、乙二醇、2-己酮、蓖麻油、松节油、松脂等 腐蚀皮肤,刺激眼和结膜,蒸汽引起肝肾病变
*氯苯 131.69 能与醇、醚、脂肪烃、芳香烃、和有机氯化物等多种有机溶剂混溶 低于苯,损害中枢系统
乙二醇一乙醚 135.6 与乙二醇一甲醚相似,但是极性小,与水、醇、醚、四氯化碳、丙酮混溶 低毒类,二级易燃液体
对二甲苯 138.35 不溶于水,与醇、醚和其他有机溶剂混溶 一级易燃液体
*二甲苯 138.5~141.5 不溶于水,与乙醇、乙醚、苯、烃等有机溶剂混溶,乙二醇、甲醇、2-氯乙醇等极性溶剂部分溶解 一级易燃液体,低毒类
间二甲苯 139.10 不溶于水,与醇、醚、氯仿混溶,室温下溶解乙睛、DMF等 一级易燃液体
醋酸酐 140.0
邻二甲苯 144.41 不溶于水,与乙醇、乙醚、氯仿等混溶 一级易燃液体
N,N-二甲基甲酰胺 153.0 与水、醇、醚、酮、不饱和烃、芳香烃烃等混溶,溶解能力强 低毒
环己酮 155.65 与甲醇、乙醇、苯、丙酮、己烷、乙醚、硝基苯、石油脑、二甲苯、乙二醇、乙酸异戊酯、二乙胺及其他多种有机溶剂混溶 低毒类,有麻醉性,中毒几率比较小
环己醇 161 与醇、醚、二硫化碳、丙酮、氯仿、苯、脂肪烃、芳香烃、卤代烃混溶 低毒,无血液毒性,刺激性
N,N-二甲基乙酰胺 166.1 溶解不饱和脂肪烃,与水、醚、酯、酮、芳香族化合物混溶 微毒类
*糠醛 161.8 与醇、醚、氯仿、丙酮、苯等混溶,部分溶解低沸点脂肪烃,无机物一般不溶 有毒品,刺激眼睛,催泪
N-甲基甲酰胺 180~185 与苯混溶,溶于水和醇,不溶于醚 一级易燃液体
*苯酚(石炭酸) 181.2 溶于乙醇、乙醚、乙酸、甘油、氯仿、二硫化碳和苯等,难溶于烃类溶剂,65.3℃以上与水混溶,65.3℃以下分层 高毒类,对皮肤、黏膜有强烈腐蚀性,可经皮吸收中毒
1,2-丙二醇 187.3 与水、乙醇、乙醚、氯仿、丙酮等多种有机溶剂混溶 低毒,吸湿,不宜静注
二甲亚砜 189.0 与水、甲醇、乙醇、乙二醇、甘油、乙醛、丙酮乙酸乙酯吡啶、芳烃混溶 微毒,对眼有刺激性
邻甲酚 190.95 微溶于水,能与乙醇、乙醚、苯、氯仿、乙二醇、甘油等混溶 参照甲酚
N,N-二甲基苯胺 193 微溶于水,能随水蒸气挥发,与醇、醚、氯仿、苯等混溶,能溶解多种有机物 抑制中枢和循环系统,经皮肤吸收中毒
*乙二醇 197.85 与水、乙醇、丙酮、乙酸、甘油、吡啶混溶,与氯仿、乙醚、苯、二硫化碳等男溶,对烃类、卤代烃不溶,溶解食盐、氯化锌等无机物 低毒类,可经皮肤吸收中毒
对甲酚 201.88 参照甲酚 参照甲酚
N-甲基吡咯烷酮 202 与水混溶,除低级脂肪烃可以溶解大多无机,有机物,极性气体,高分子化合物 毒性低,不可内服
间甲酚 202.7 参照甲酚 与甲酚相似,参照甲酚
苄醇 205.45 与乙醇、乙醚、氯仿混溶,20℃在水中溶解3.8%(wt) 低毒,黏膜刺激性
*甲酚 210 微溶于水,能于乙醇、乙醚、苯、氯仿、乙二醇、甘油等混溶 低毒类,腐蚀性,与苯酚相似
甲酰胺 210.5 与水、醇、乙二醇、丙酮、乙酸、二氧六环、甘油、苯酚混溶,几乎不溶于脂肪烃、芳香烃、醚、卤代烃、氯苯、硝基苯等 皮肤、黏膜刺激性、经皮肤吸收
*硝基苯 210.9 几乎不溶于水,与醇、醚、苯等有机物混溶,对有机物溶解能力强 剧毒,可经皮肤吸收
乙酰胺 221.15 溶于水、醇、吡啶、氯仿、甘油、热苯、丁酮、丁醇、苄醇,微溶于乙醚 毒性较低
六甲基磷酸三酰胺 233(HMTA) 与水混溶,与氯仿络合,溶于醇、醚、酯、苯、酮、烃、卤代烃等 较大毒性
喹啉 237.10 溶于热水、稀酸、乙醇、乙醚、丙酮、苯、氯仿、二硫化碳等 中等毒性,刺激皮肤和眼
乙二醇碳酸酯 238 与热水,醇,苯,醚,乙酸乙酯,乙酸混溶,干燥醚,四氯化碳,石油醚,CCl4中不溶 毒性低
二甘醇 244.8 与水、乙醇、乙二醇、丙酮、氯仿、糠醛混溶,与乙醚、四氯化碳等不混溶 微毒,经皮吸收,刺激性小
丁二睛 267 溶于水,易溶于乙醇和乙醚,微溶于二硫化碳、己烷 中等毒性
*环丁砜 287.3 几乎能与所有有机溶剂混溶,除脂肪烃外能溶解大多数有机物
甘油 290.0 与水、乙醇混溶,不溶于乙醚、氯仿、二硫化碳、苯、四氯化碳、石油醚 食用对人体无毒
问题三:减缓液氮汽化是很难的,在太空能凝固,在地球上除了不断加压冷却外好像很难办到。
唯一的方法是把握时间,在短时间完成实验。
四氢呋喃是一类杂环有机化合物。它是最强的极性醚类之一,在化学反应和萃取时用做一种中等极性的溶剂。无色易挥发液体,有类似乙醚的气味。溶于水、乙醇、乙醚、丙酮、苯等多数有机溶剂。
熔点(℃)-108.4℃
相对密度(水=1)0.8892(20℃)
沸点(℃)65-66℃
化学性质
与空气混合可爆在空气中能形成可爆的过氧化物,遇明火、高温、氧化剂易燃燃烧产生刺激烟雾。四氢呋喃
四氢呋喃球棍模型
是一个杂环有机化合物。属于醚类,是芳香族化合物呋喃的完全氢化产物。在化学反应和萃取时用做一种中等极性的非质子溶剂。四氢呋喃室温时四氢呋喃与水能部分混溶,部分不法试剂商就是利用这一点对四氢呋喃试剂兑水牟取暴利。四氢呋喃在储存时容易变成过氧化物。因此,商用的四氢呋喃经常是用BHT,即2,6-二叔丁基对甲酚来防止氧化。四氢呋喃可以通过氢氧化钠置于密封瓶中存放在暗处保存。
问题二:水和酒精是互溶的? 水和酒精肯定是互溶的
问题三:水和乙醇能够互溶吗?请你正确描述图中的实验现象:______ 实验现象如下:①在沿着试管壁向高锰酸钾溶液的中滴加乙醇后,两种液体分层;②振荡试管中的液体,高锰酸钾溶液和乙醇互溶;③静置,液体不分层,混合液的颜色变浅.
问题四:乙醇是有机溶剂,为什么能与水互溶 与水混溶和是否是有机溶剂没有关系,大量有机溶剂都能与水混溶,比如二甲基甲酰胺、吡咯烷酮、二甲亚砜、环丁砜、四氢呋喃等等
问题五:水跟乙醇溶解度参数相差挺大,为什么能互溶? 我刚好对这个问题有一点了解。
溶剂的溶解度参数可以分为非极性、极性和氢键三个部分。
就水和乙醇的溶解度参数而言,它们的非极性部分差异很小,最主要的差异在于氢键溶解度部分。但是氢键部分属于比较特殊的分子间作用力,在水醇混合体系中这一部分会发生重组。这意味着在溶液中水和乙醇都不会体现单独时的溶解度参数。
如果你看过一些较深入的溶解度理论教材都会涉及这一问题。
溶解度相似相容原理,对于简单的溶剂混合体系是可以解释的,但是对于有氢键的体系要特殊处理的。
问题六:乙醇为什么可以与水任意比互溶 乙醇可以形成氢键,水分子也可以形成氢键,两者之间也可形成氢键,所以可以互溶
问题七:水和酒精是互溶的? 水和酒精肯定是互溶的
问题八:乙醇可以和水互溶,但是为什么不能和盐互溶? 中午好,乙醇也可以溶解「盐」的只不过一般都是有机盐。由于乙醇是极性溶剂,对于无机物来说缺乏直接溶解力(但是,含有多碳脂肪键的则可以,比如乙醇不可以,但乙二醇,丙二醇和丙三醇就可以溶解日常的盐,氯化钠氯化钾等等)。与水互溶是它的物理特性,乙醇属于特殊的极性溶剂也是一种表面活性剂,它可以和水,四氢呋喃等极性溶剂相溶,也可以和二甲苯等非极性溶剂相溶。这个道理也很简单,比如水和乙醇相溶,乙醇和二甲苯相溶,但一旦把两者再混合,二甲苯就从乙醇和水里析出了哦。对于我们家庭的无机盐来说也是一样的道理。乙醇可以溶解的有机盐比较多,比如我们常见打印机的墨水染料就是有机磺酸盐,可以溶解在乙醇中。希望以上解释能对你有所帮助。
问题九:解释乙醇为什么可以和水混溶 为什么酒精可以和水任意比混溶?
是由它的结构、物理性质、
化学
性质所决定的。
一、乙醇的结构
乙醇的分子式是C2H6O,结构简式为CH3CH2OH或C2H5OH,它的官能团是羟基(―OH)。
二、乙醇的物理性质
乙醇俗称酒精,它是无色、透明且具有特殊香味的液体,密度比水小,能和水以任意比互溶。乙醇的水溶液浓度越大,密度越小。通常用无水硫酸铜来检验酒精是否含水,将含水的酒精与新制生石灰混合蒸馏可得无水酒精。
三、乙醇的化学性质:
乙醇中的O-H键、C-O键都有可能在反应中断裂。
乙醇的极性比四氢呋喃大。
四氢呋喃(Tetrahydrofuran)是一个杂环有机化合物,分子式为C4H8O。属于醚类,是芳香族化合物呋喃的完全氢化产物,是一种无色、可与水混溶、在常温常压下有较小粘稠度的有机液体。
四氢呋喃作用与用途
1、用作溶剂、有机合成的原料。
2、用作色谱分析试剂、有机溶剂及尼龙66中间体。四氢呋喃又名一氧五环、氧杂环戊烷、四亚甲基氧,是合成农药苯丁锡的中间体,另外,可直接用于制合成纤维、合成树脂、合成橡胶,也是许多聚合材料、精密磁带和电镀工业的溶剂,还用于制己二腈、己二酸、己二胺、丁二酸、丁二醇、γ-丁内酯等,在医药工业上,可用于生产咳必清、黄体酮、利复霉素和用作制药溶剂等。
3、四氢呋喃是一种重要的有机合成原料且是性能优良的溶剂,特别适用于溶解PVC、聚偏氯乙烯和丁苯胺,广泛用作表面涂料、防腐涂料、印刷油墨、磁带和薄膜涂料的溶剂,并用作反应溶剂,用于电镀铝液时可任意控制铝层厚度且光亮。四氢呋喃自身可缩聚(经阳离子引发开环再聚合)成聚四亚甲基醚二醇(PTMEG),也称四氢呋喃均聚醚。
以上内容参考:百度百科-四氢呋喃
石油醚 >苯 >氯仿 >乙醚 >乙酸乙酯 >正丁醇 >丙酮 >乙醇 >甲醇 >水。
石油醚、苯、氯仿、乙醚、乙酸乙酯、正丁醇与水互不混溶。
丙酮、乙醇、甲醇与水相混溶。
一般羟基越多,亲水性越强;一般烃基越多,碳链越长,亲脂性越好;常用溶剂中,乙醚,甲醇,乙醇,丙三醇亲水性逐渐增强。四氯化碳偏于亲脂,主要用于溶解卤族单质。
扩展资料:
亲脂性、疏水性和非极性可以互相替换,然而,亲脂性和疏水性并不是同义字,可以借由硅氧树脂和氟化碳确认这点,因为他们是疏水性但非亲脂性。
亲脂性的化合物常常会和自己相同的化合物或其他亲脂的化合物借由伦敦力产生反应。他们几乎无法形成氢键。当一个亲脂性的化合物被水包覆时,周围的水会形成冰晶状,而亲脂性分子会因热力学不合被赶出水,这就被视为是个疏水性分子。因此,亲脂性分子不溶于水,他们不约而同的有相当高的水分布系数。
参考资料来源:百度百科-亲脂性
下午好,半胱胺极易溶于无水甲醇、乙醇和丙二醇等极性溶剂,但对于极性较差的如THF、二恶烷和MEK溶解度就较差了,常温条件下溶于乙醇再加入THF就会析出请酌情参考。THF属于杂环醚它虽然有一定的亲水性但并不能与水完全互溶,它和二恶烷一样不属于极性质子溶剂。
物理性质:溶于水 (水溶液在pH 14 时稳定,在中性或者酸性溶液中迅速分解)。溶解于甲醇( 溶解度为13 g/100 mL) 和乙醇(3.16 g/100 mL),但是分解为硼酸盐。溶于聚乙二醇、异丙醇且在其中稳定(0.37 g/100 mL);不溶于醚,微溶于四氢呋喃。
化学性质:因为硼氢化钠中的氢带有部分负电荷(B的电负性比H小),醇和胺类物质中-OH,-NH-,-NH2中的氢都带有较多的部分正电荷,所以硼氢化钠中的BH4-能与构成这些物质的分子之间形成双氢键,因此硼氢化钠能溶于水、液氨、醇和胺类物质。
扩展资料
硼氢化钠虽然还原性较强,能够还原很多官能团,但是在某些条件下具有还原选择性。比如虽然它可以还原酮,但在一定情况下只与醛反应,将醛还原成醇,而同时存在的酮羰基不反应。利用硼氢化钠的这种选择性还原,可以进行很多有用的特殊合成。
硼氢化钠除了可用在羰基化合物的还原上,也可对双键 (如碳-氮双键) 或三键 (如炔烃) 化合物进行还原。如在硼氢化钠的作用下,炔烃化合物还原为烯烃,还原得到的烯烃不会进一步被硼氢化钠还原。
参考资料来源:百度百科-硼氢化钠
乙醇的结构简式为,俗称酒精。它在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有特殊的、令人愉快的香味,并略带刺激性,密度比水小,能跟水以任意比互溶(一般不能做萃取剂),是一种重要的溶剂,能溶解多种有机物和无机物。作为溶剂,乙醇易挥发,且可以与水、乙酸、丙酮、苯、四氯化碳、氯仿、乙醚、乙二醇、甘油、硝基甲烷、吡啶和甲苯等溶剂混溶。此外,低碳的脂肪族烃类如戊烷和己烷,氯代脂肪烃如1,1,1-三氯乙烷和四氯乙烯也可与乙醇混溶。随着碳数的增长,高碳醇在水中的溶解度明显下降。由于存在氢键,乙醇具有潮解性,可以很快从空气中吸收水分。羟基的极性也使得很多离子化合物可溶于乙醇中,如氢氧化钠、氢氧化钾、氯化镁、氯化钙、氯化铵、溴化铵和溴化钠等。氯化钠和氯化钾则微溶于乙醇。此外,其非极性的烃基使得乙醇也可溶解一些非极性的物质,例如大多数香精油和很多增味剂、增色剂和医药试剂。
酒中的乙醇
乙醇分子是由乙基和羟基两部分组成,可以看成是乙烷分子中的一个氢原子被羟基取代的产物,也可以看成是水分子中的一个氢原子被乙基取代的产物。乙醇分子中的碳氧键和氢氧键比较容易断裂。乙醇的化学反应:
(1)乙醇的金属反应:乙醇可以与金属钠反应,产生氢气,但不如水与金属钠反应剧烈。 活泼金属(钾、钙、钠、镁、铝)可以将乙醇羟基里的氢取代出来。
(2)乙醇与氢卤酸反应。通常用溴化钠和硫酸的混合物与乙醇加热进行该反应。故常有红棕色气体产生。
(3)乙醇的氧化反应。燃烧:发出淡蓝色火焰,放出大量的热。催化氧化:在加热和有催化剂存在的情况下进行。
工业制乙醇,工业上一般用淀粉发酵法或乙烯直接水化法制取乙醇。
乙醇氧化
发酵法制乙醇是在酿酒的基础上发展起来的,在相当长的历史时期内,曾是生产乙醇的惟一工业方法。发酵法的原料可以是含淀粉的农产品,如谷类、薯类或野生植物果实等;也可用制糖厂的废糖蜜;或者用含纤维素的木屑、植物茎秆等。这些物质经一定的预处理后,经水解(用废蜜糖做原料必经这一步)、发酵,即可制得乙醇。发酵液中的质量分数约为6%~10%,并含有其他一些有机杂质,经精馏可得95%的工业乙醇。
乙烯直接水化法,就是在加热、加压和有催化剂存在的条件下,让乙烯与水直接反应,生产乙醇。
第一步是与醋酸汞等汞盐在水-四氢呋喃溶液中生成有机汞化合物,而后用硼氢化钠还原。此法中的原料——乙烯可大量取自石油裂解气,成本低,产量大,这样能节约大量粮食,因此该产业发展很快。
乙醇的用途很广,可用乙醇来制造乙醛、乙醚、乙酸、乙酯、乙胺等基本有机化工原料,也可用来制取醋酸、香精、染料、涂料、洗涤剂等产品,医疗上也常用体积分数为70%~75%的乙醇作消毒剂。乙醇可以调入汽油,作为车用燃料,乙醇汽油的销售在美国已有几十年历史。此外,乙醇还做稀释剂、有机溶剂、涂料溶剂等几大方面,其中用量最大的是消毒剂。
乙醇是酒的主要成分。其含量和酒的种类有关系,如白酒为56度的酒。注意:我们喝的酒内的乙醇不是把乙醇加进去,而是发酵出来的乙醇,当然根据使用的发酵酶不同,还会有乙酸或糖等有关物质。
酒也是酿造出来的。淀粉经过麸曲的作用变成麦芽糖,再让糖液发酵,酵母菌“吃”下糖,“排泄”出酒精和二氧化碳。这种含酒精的水,通过蒸馏,使酒精浓度增大,就成了酒。
用不同品种的粮食、水果或野生植物酿造出来的酒都含有酒精,做菜的黄酒里有15%的酒精;啤酒里有4%的酒精;葡萄酒含酒精10%左右;烧酒里含酒精最多,超过60%。
烧鱼时加点酒,酒精能把鱼肉里发腥味的三甲胺揪出来,带着它一块儿变成蒸气挥发掉了,所以,烧鱼时加酒可以除腥。
纯粹的酒精并不好喝。名酒佳酿里除了酒精,还有香酯、糖、香料、矿物质等微量物质。
饮酒后,乙醇很快通过胃和小肠的毛细血管进入血液。一般情况下,饮酒者血液中乙醇的浓度将在30~45分钟内达到最大值,随后逐渐降低。当BAC超过1000毫克/升时,可能引起明显的乙醇中毒。摄入体内的乙醇除少量未被代谢而通过呼吸和尿液直接排出外,大部分乙醇需被氧化分解。在乙醇的代谢过程中,乙醇脱氢酶起着至关重要的作用,它主要分布在肝脏,在胃肠道及其他组织中也有少量分布。乙醇通过血液流到肝脏后,首先被ADH氧化为乙醛,而乙醛脱氢酶则能把乙醛中的2个氢原子脱掉,使其分解为二氧化碳和水,在肝脏中乙醇还能被酶分解代谢。
人喝酒后面部潮红,是因为皮下暂时性血管扩张所致。因为这些人体内有高效的乙醇脱氢酶,能迅速将血液中的酒精转化成乙醛,而乙醛具有让毛细血管扩张的功能,会引起脸色泛红甚至身上皮肤潮红等现象,也就是我们平时所说的“上脸”。
乙醇代谢的速率主要取决于体内酶的含量,其具有较大的个体差异,并与遗传有关。人体内若是具备乙醇脱氧酶和乙醛脱氧酶这两种酶,就能较快地分解酒精,中枢神经就较少受到酒精的作用,因而即使喝了一定量的酒后,也行若无事。在人体中,都存在乙醇脱氢酶,而且大部分人数量基本是相等的。但缺少乙醛脱氢酶的人就比较多。这种乙醛脱氢酶的缺少,使酒精不能被完全分解为水和二氧化碳,而是以乙醛的形态继续留在体内。我们所说的酒精的代谢应该是被完整的分解后的状态,由于很多人缺少乙醛脱氢酶,拥有乙醛脱氢酶的量也是有差别的,所以,严格地说,酒精的代谢速度是无法用一个准确的速度来描述的,此因人而异。
长期酗酒可引起多发性神经病、慢性胃炎、脂肪肝、肝硬化、心肌损害及器质性精神病等。皮肤长期接触可引起干燥、脱屑、皲裂和皮炎。 乙醇具有成瘾性及致癌性,但乙醇并不是直接导致癌症的物质,而是致癌物质普遍溶于乙醇。在中国传统医药观点上,乙醇有促进人体吸收药物的功能,并能促进血液循环,治疗虚冷症状。药酒便是依照此原理制备出来的。