影响光伏发电系统效率的因素有哪些?
影响太阳能光伏发电效率的因素:自然条件的影响:太阳高度角和地理纬度的影响,太阳高度角可以直接影响太阳的辐射强度,在纬度高的地区太阳的高度角就会越小,太阳的辐射强度就会越弱;在纬度低的地区,太阳高度角就会越大,这样太阳的辐射强度就会越强,因此在纬度低的地区,开发太阳能光伏发电更加具有可行性。大气透明度和海拔高度的影响,
大气的透明度是太阳光透过大气的一个参数,在天空晴朗的时候,大气的透明度就非常的高,太阳光对于地面的辐射就会强一些,反之则少;海拔高度越高时,空气就越稀薄,大气透明度就越大。因此海拔越高,太阳辐射能量也就越大,这些地区就更加适合开发太阳能光伏发电。
日照时数的影响,日照时数也是影响地面太阳能的一个重要因素。一般日照时间长,地面所获得的太阳总辐射量就多。逆变器整机效率对发电效率的影响,大功率的逆变器在满载时,效率必须在百分之九十以上。特别是在低负荷下供电时,仍须有较高的效率。逆变器效率的高低对太阳能光伏发电系统提高有效发电量和降低发电成本有重要的影响。光伏发电系统专用的逆变器在设计中应特别注意减少自身功率损耗,提高整机效率。所以为了提高输出效率,并网逆变器应具有最大功率点跟踪控制功能,随时跟随太阳能辐射能力而变化。此外还能根据日出、日落条件的不同自动进行开与关。
1,当地的太阳能辐射总量和平均有效光照时长
2,倾斜角度:当地所在纬度决定了太阳能电池板的倾斜角度
3,太阳能电池板的数量
4,太阳能电池板本身的功率大小,材质,转换效率,FF比值
5,连接线路的材质,数量决定看线路损耗的大小
基于光伏系统的能量流,在光伏系统设计时需充分考虑一些对光电转换效率影响的重要因素:
1、气象环境因素对光伏组件光电转换效率的影响
太阳能光伏组件长期暴露在自然环境中,风雨雷电等因素都会对太阳能光伏电池产生影响,光照、风力、温度等都会形成对太阳能光伏组件(电池)光电转换效率的改变,有些因素甚至能造成太阳能光伏电池功能和结构的损坏,应在太阳能光伏电站设计工作充分开展气象和环境监测数据的收集。
2、太阳能光伏电池组件倾角对光电转换效率的影响
太阳能光伏组件需要以最佳的角度吸收阳光,这样才能真正起到提高光电转换效率的作用,在不同季节、不同地理位置、不同日照条件下,太阳能光伏组件的最佳角度也会有很大的变化,要根据季节、经纬度和日照时间的变化积极调整太阳能光伏组件的倾角。固定倾角应选择全年综合发电量最大的倾角安装。
3、太阳能光伏组件表面清洁度对光电转换效率的影响
太阳能光伏组件表面清洁度,影响光电转换。需对太阳能光伏组件在环境中受到污染的实际情况进行了解,确定污染物沾染光伏组件表面的情况,特别需要注意大风、强对流和沙尘暴天气对光伏电池表面的影响,再根据当地人工成本确定光伏组件的清洗频率。
4、太阳电池方阵间距设计对光电转换效率的影响
光伏组件表面一旦被遮挡,将会影响电站的发电能力,因此在光伏组件方阵间距设计时,必须要考虑周围建(构)筑物对光伏组件的遮挡以及组件方阵之间的自遮挡问题。
5、MPPT跟踪精度对系统效率的影响
随着辐照度和温度的改变,光伏阵列的输出端电压随之改变,从而光伏阵列的输出功率也将改变。光伏逆变器的最大功率点跟踪(MPPT)目的是使光伏阵列在辐照度和温度改变时仍能获得最大功率输出,因此MPPT的精度很大程度上影响了系统的效率。
6、综合考虑并网系统各环节损耗及系统匹配等因素对效率的影响
光伏阵列在能量转换与传输过程中的损失包括:
组件匹配损失:应避免不同受光条件的组件串联造成的系统损失;
偏离最大功率点损失:如温度的影响、最大功率点跟踪(MPPT)精度等引入的发电损失;
直流线路损失:按有关标准规定,线缆损失需控制在一定范围内;
逆变器的转换损耗: 逆变器的直/交转换过程中因所处运行功率点不同而影响效率;
交流并网环节的损耗:从逆变器输出至高压电网的传输效率,主要考虑变压器效率。
1、太阳辐射量:太阳能电池组件是将太阳能转化为电能的装置,光照辐射强度直接影响着发电量。各地区的太阳能辐射量数据可以通过NASA气象资料查询网站获取,也可以借助光伏设计软件例如PV-SYS、RETScreen得到。
2、太阳能电池组件的倾斜角度: 从气象站得到的资料,一般为水平面上的太阳辐射量,换算成光伏阵列倾斜面的辐射量,才能进行光伏系统发电量的计算。最佳倾角与项目所在地的纬度有关。大致经验值如下:
A、纬度0°~25°,倾斜角等于纬度
B、纬度26°~40°,倾角等于纬度加5°~10°
C、纬度41°~55°,倾角等于纬度加10°~15°
3、太阳能电池组件转化效率
4、系统损失:和所有产品一样,电站在长达25年的寿命周期中,组件效率、电气元件性能会逐步降低,发电量随之逐年递减。除去这些自然老化的因素之外,还有组件、逆变器的质量问题,线路布局、灰尘、串并联损失、线缆损失等多种因素。 一般光伏电站的财务模型中,系统发电量三年递减约5%,20年后发电量递减到80%。
5、组合损失: 凡是串联就会由于组件的电流差异造成电流损失并联就会由于组件的电压差异造成电压损失而组合损失可达到8%以上,中国工程建设标准化协会标准规定小于10%。
衰减致使系统效率下降的因素有:1.组件产品的本身质量好坏;2.安装使用化境的好坏,例如海边等湿度、盐碱度高的地区衰减更快。
光伏组件转换率是最主要的因素;
关照必须充分,没有遮挡物;
尘埃多了也影响发电效率,尘埃多了就需要清理;
等等……
希望能帮到您,祝您天天开心^_^!
衰减致使系统效率下降的因素有:1.组件产品的本身质量好坏;2.安装使用化境的好坏,例如海边等湿度、盐碱度高的地区衰减更快。
影响其发电效率的主要因素包括:
1)光伏温度因子:光伏电池的效率会随着其工作时的温度变化而变化。当它们的温度升高时,晶体硅光伏电池效率呈现降低的趋势。本项目所在地区多年极端最高气温为52.9°C,极端最高气温40.2°C,极端最低气温-12.1°C。全年平均气温15.9°C,计算得到当地的温度折减为2.5%。
2)组件匹配损失:组件串联因为电流不一致产生的效率降低,根据电池板出厂的标称偏差值,对于精心设计、精心施工的系统,约有3%的损失。为保证电池发电效率,将定期、及时对组件进行清洗,但组件上的灰尘或积雪造成的污染仍会对发电量造成影响,此项造成的年系统效率折减取3.2%。当辐照度过低时,会产生不可利用的低、弱太阳辐射损失。
3)直流线路损失:光伏组件产生电量输送至汇流箱、直流配电柜、逆变器时,存在直流电路的线损,按3%记取
4)电气设备造成的效率损失:逆变器转换过程中也存在电量损失,此项折减取2.5%。箱式变压器的升压过程中,也会存在能量损失。
5)光伏电站内线损等能量损失:电能由逆变器输出至箱变,再送至开关站,交流线路会存在线损。
6)系统的可利用率:虽然光伏组件的故障率极低,但定期检修及电网故障仍会造成损,按2%记取。
考虑以上各种因素,通过计算分析光伏电站系统发电总效率:
η=97.5%×96.8%×94.5%×97.2%×97%×97.5%×97.3%×=79.7%
影响太阳能光伏发电效率的因素有哪些:在经济和社会的发展过程中,面临着非常大的难题,就是能源短缺的问题。在以前的经济发展的过程中,人们对于能源的开发和使用并没有一个度的认识,认为能源是源源不断的,可是在现在,人们又不得不为过度的开发能源进行弥补的工作。过去的经济建设中还存在着环境的污染和生态破坏的问题,所以现在发展新能源成为了促进经济发展的重点。太阳能作为一种新能源而且还是一种可再生的能源受到了人们的关注,在使用太阳能的过程中不会对环境造成太多的破坏,而且这种能源是可以循环利用的。但是在太阳能的光伏发电的过程中会出现很多的因素对发电的功率进行影响。一、太阳能光伏发电的发电原理;太阳能的光伏发电系统是由非常多的部件组成的,这其中包括太阳能的电池、电池的充和放电的控制器,计算机的监控设备和蓄电池以及一些辅助的设备。太阳能的光伏发电的原理主要是利用阳光的照射,在阳光照射太阳能电池的表面的时候,太阳光中的光子就会被太阳能电池的硅材料吸收,这样光子的能量就会通过硅原子使得太阳能电池内的电子发生变化。在太阳能电池与外部的电路相连接的时候,就是产生一定的输出功率,交大蓝天光伏发电系统就是一个光能转化为电能的过程。太阳能电池连接着蓄电的电池组,这样就可以将光能转化为电能的能源储存起来。进而通过电能的输送装置输送到电网中,以便人们使用。