分布式光伏系统如何防止雷击火灾隐患
(1)太阳能光伏发电系统或发电站建设地址的选择,要尽量避免放置在容易遭受雷击的位置和场合。
(2)尽量避免避雷针的投影落在太阳电池方阵组件上。
(3)根据现场状况,可采用避雷针、避雷带和避雷网等不同防护措施对直击雷进行防护,减小雷击概率,并应尽量采用多根均匀布置的引下线将雷击电流引入地下。多根引下线的分流作用可降低引下线的引线压降,减少侧击的危险,并使引下线泄流产生的磁场强度减小。
(4)为防止雷电感应,要将整个光伏发电系统的所有金属物,包括电池组件外框、设备、机箱/机柜外壳、金属线管等与联合接地体等电位连接,并且做到各自独立接地。光伏发电系统等电位连接。
(5)在系统回路上逐级加装防雷器件,实行多级保护,使雷击或开关浪涌电流经过多级防雷器件泄流。一般在光伏发电系统直流线路部分采用直流电源避雷器,在逆变后的交流线路部分使用交流电源避雷器。避雷器在太阳能光伏发电系统中的应用。
(6)光伏发电系统的接地类型和要求主要包括以下几个方面。
①防雷接地。包括避雷针(带)、引下线、接地体等,要求接地电阻小于10欧姆,并最好考虑单独设置接地体。
②安全保护接地、工作接地、屏蔽接地。包括光伏电池组件外框、支架,控制器、逆变器、配电柜外壳,蓄电池支架、金属穿线管外皮及蓄电池、逆变器的中性点等,要求接地电阻小于等于4欧姆。
③当安全保护接地、工作接地、屏蔽接地和防雷接地4种接地共用一组接地装置时,其接地电阻按其中最小值确定若防雷已单独设置接地装置时,其余3种接地宜共用一组接地装置,其接地电阻不应大于其中最小值。
④条件许可时,防雷接地系统应尽量单独设置,不与其他接地系统共用,并保证防雷接地系统的接地体与公用接地体在地下的距离保持在3m以上。
电站的全部设备、线缆桥架、电缆的金属外壳都要可靠接地。
接地装置:人工垂直接地体宜采用角钢、钢管或者圆钢。水平接地体宜采用扁钢或者圆钢。圆钢的直径不应该小于10mm,扁钢40*4mm,角钢L50*5*2500mm,钢管厚度不小于3.5mm。人工垂直接地体的长度宜为2.5m,垂直接地体及人工水平接地体间的距离宜为5m。
人工接地体在土壤中的埋设深度不应小于0.5m,需要热镀锌防腐处理,在焊接的地方也要进行防腐防锈处理。
长期在接地装置周围添加工业盐,会导致土壤盐碱化,造成土壤污染,影响周围植物生长,甚至污染附近水源。
土壤中电解质的增加,还会形成电化学腐蚀环境,加速接地材料的腐蚀。所以我们经常会发现第一年灌盐很好用,第二年稍差,到第三年第四年再怎么灌都不管用了,因为这时候地下的接地材料已经基本被腐蚀没了。
不采用灌盐的方式降低接地电阻,这种做法相当于饮鸩止渴。
①防雷接地包括避雷针、避雷带以及低压避雷器、外线出线杆上的瓷瓶铁脚以及连线架空线路的电缆金属外皮都要接地,以便将流过的雷电引入大地。
②工作接地逆变器、蓄电池的中性点、电压互感器和电流互感器的二次线圈接地。
③保护接地光伏电池组件机架、控制器、逆变器、配电柜外壳蓄电池支架、电缆外皮、穿线金属管道的外皮接地。
④屏蔽接地电子设备的金属屏蔽接地
⑤重复接地低压架空线路上,每隔1km处接地。
太阳能光伏系统定义:
太阳能光伏系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或110V,还需要配置逆变器。
分布式光伏发电系统的基本设备包括光伏电池组件、光伏方阵支架、直流汇流箱、直流配电柜、并网逆变器、交流配电柜等设备,另外还有供电系统监控装置和环境监测装置。
在电站建设过程中,经常遇到施工或相关专业人员对防雷接地重视不够,认为其技术性不强,工艺较简单,往往在施工中出现不规范作业或纰漏,所以造成光伏系统雷击事故。因此,防雷与接地工程在监理及验收工作中至关重要,其质量直接影响整个系统的使用功能、安全及寿命。
图1
根据光伏电站工程的特殊性,所有屋顶电站都可以依附在所属建筑的主体结构的防雷系统上,不用独立去设计独立的防雷系统,这样不仅可以节约工期、资金,更可充分利用现有资源。对于混凝土结构,大部分建筑在建时期都做了专业的防雷系统,混凝土结构在做防雷系统时候一般会做避雷带或者是避雷网。
钢结构厂房光伏电站防雷思路与混凝土大体想差不多,接闪器、引下线、接地体的选择,材料的连接都与混凝土屋面相似。
工商业光伏发电系统防雷接地材料选用
1、接闪器
一般选用直径 12-16mm的圆钢,如果采用避雷带,则使用直径不低于8mm的圆钢或厚度不小于4mm的扁钢。
图2
2、引下线
引下线宜采用热镀锌圆钢或扁钢,宜优先采用圆钢,直径不小于 8mm;如用扁钢,厚度应不小于 4mm。要求较高的要使用截面积为 35mm 2 的双层绝缘多股铜线。
图3
3、接地体
宜采用热镀锌钢材,其规格一般为:直径 50mm 的钢管,壁厚不小于 3.5mm;50mm*50mm*5mm 角钢,长度不低于2.5米;或者 40mm*4mm 的扁钢,长度一般为 2.5-4m。扁钢接地体的水平埋设深度不小于 0.5m,角钢垂直埋深不低于2.5m,连接焊接过的部位要重新做防腐防锈处理。
图4
4、组件与支架等电位连接
组件铝边框与镀锌支架或铝合金支架都做了镀层处理,仅仅通过压块的压接满足不了接地要求,只有组件的接地孔连接到支架上才算组件有效接地。因此在这些位置必须建立外部防雷系统和金属光伏组件之间的直接等电位连接,一般可以采用4mm2的黄绿双色线。
图5
5、支架阵列间等电位连接
支架间的连接应是持久的电气贯通,一般采用使用直径不低于8mm的圆钢或厚度不小于4mm的扁钢。可采用铜锌合金焊、熔焊、卷边压接、
接地装置都是头等重要的,它是电气系统保护装置的根本保证,安装和运行中都必须符合接地装置的安全要求。
1)接地装置的连接应采用焊接,焊接必须牢固可靠,无虚焊假焊。接至设备上的接地线,应用镀锌螺栓连接有色金属接地线不能采用焊接时,可用螺栓连接。螺栓连接处的接触面应平整并镀锡处理凡用螺栓连接的部位,应有防松装置,以保持良好接触的长久性。
2)接地装置的焊接应采用搭接焊,其搭接长度必须符合规定:
1)扁钢为其宽度的二倍,且至少有3个棱边焊接。
2)圆钢为其直径的六倍,且应在圆钢的接触部位双面焊接。
3)圆钢与扁钢连接时,其长度为圆钢直径的六倍,且应在圆钢接触部位的两面焊接。
4)扁钢或圆钢与钢管、扁钢或圆钢与角钢焊接时,为了连接可靠,除应在其接触部位两侧进行焊接外,并将扁钢或圆钢弯成弧形或直角与钢管或角钢焊接。
(3)利用建筑物的金属结构、混凝土结构的钢筋、生产用的钢结构架梁及配线用的钢管、金属管道等作为接地线时,应保证其全长为良好的电气通路,在其伸缩缝、接头及串接部位焊接金属跨接线,金属跨接线的截面积应符合要求。
(4)必须保证接地装置全线畅通并具有良好的导电性,不得有断裂、接触不良或接触电阻超标的现象。接地装置使用的材料必须有足够的机械强度,以免折断或裂开,其导体截面应符合热稳定和机械强度的要求,见表,大中型发电厂、110kV
及以上的变电所接地装置应适当加大截面。保护接零的保护线其导电能力,不得低于相线的1/2。接地干线应在不同的两点及以上与接地网连接,
自然接地体应在不同的两点及以上与接地于线或接地网连接,以保证导电的连续性及可靠性。大接地短路电流电网的接地装置,应校验其发生单相接地短路时的热稳定性,能否承受短路接地电流转换出来的热量而保证稳定而畅通。
(5)必须保证接地装置不受机械损伤,特别是明设的接地装置要有保护措施。与公路,铁路或管道等交叉及其他可能使装置遭受损伤处,均应用钢管或角钢等加以保护。接地线在穿过墙壁、楼板或引出地坪沿墙、沿杆、沿架敷处,均应加装钢管或角钢保护,并涂以15-10Omm宽度相等的绿色和黄色相间的条纹,以
示醒目注意保护。在跨越建筑物伸缩缝、沉降缝处时,应设置补偿装置。补偿装置可用接地线本身弯成弧状代替。
(6)必须保证装置不受有害物的侵蚀,一般均采用镀锌铁件,
凡焊接处均涂以沥青漆防腐,回填土不得有较强的腐蚀性。对腐蚀性较强的土壤,除应将接地线镀锌或镀铜外,还应当增大地线的截面积。因高电阻率土壤的影响而采取化学处理后的土壤,在埋设接地装置时,必须考虑化学物品是否对接地装置有腐蚀作用。
(7)必须保证地下埋设的接地装置与其他物体的允许最小距离。接地体与建筑物的距离不应小于1.5m避雷针的接地装置与道路或建筑物的出人口及与墙的距离应大于3m接地线沿建筑物墙壁水平敷设时,离地面一般为250--340mm,接地线与墙壁的间隙为10--15mm。垂直接地体的间距一般为其长度的2倍,水平敷设时的间距一般为5m。接地装置的敷设,应远离易燃易爆介质的管道低压接地装置与高压侧的接地装置应有足够大的距离,否则,中间应加沥青隔层。
8)接地线不得串联使用,必须并联使用
(9)接地装置的埋深一般应大于0.
6rn,且位于冻土层以下。
(10)接地电阻必须符合要求。推荐一家永安防雷
为了保证系统在雷雨等恶劣天气下能够安全运行,要对这套系统采取防雷措施。主要有以下几个方面:
(1)地线是避雷、防雷的关键,在进行配电室基础建设和太阳电池方阵基础建设的同时,选择光电厂附近土层较厚、潮湿的地点,挖一2m深地线坑,采用40扁钢,添加降阻剂并引出地线,引出线采用35mm2铜芯电缆,接地电阻应小于4Ω。
(2)在配电室附近建一避雷针,高15m,并单独做一地线,方法同上。
(3)太阳电池方阵电缆进入配电室的电压为DC220V,采用PVC管地埋,加防雷器保护。此外电池板方阵的支架应保证良好的接地。
(4)并网逆变器交流输出线采用防雷箱一级保护(并网逆变器内有交流输出防雷器)。
避雷控制系统负责检测每次直接雷击避雷装置动作后入地脉冲电流的强度、雷击电压的极性、雷击次数的计数以及各个防非直接雷避雷装置的动作损坏情况。它根据上位机的指令,将各种数据传给上位机进行相应处理也可以根据用户的按键命令,进行复位、显示和打印简单报表等操作。下位机中智能监测仪的前端处理分为两个部分:一部分用于检测多路防直接雷避雷装置动作后各个参数的变化情况另一部分用于检测多路防非直接雷避雷装置的动作损坏情况。
前端处理(1)中用于检测直接雷击的探头,采用罗哥夫斯基(以下简称为罗氏)线圈。罗氏线圈安装在防直接雷避雷装置的接地引下线上,将大电流强电信号转变为小电流弱电信号进行隔离。信号进入前端处理(1)后,因此时的信号电压高达几十伏甚至上百伏,需要进行两级变换后才能送入智能监测仪处理:第一是进行分压变换,通过阻抗匹配将信号电压降至±0.1v~10v第二是进行非线性变换,将±0.1v~10v的信号变换为±0.3v~5v的信号。进行非线性变换的目的是便于a/d采样和去掉噪声电平的干扰。前端处理(1)的输出信号分成两路,一路经过4051八路选择电路和a/d转换电路测量雷电波形的峰值电压以及极性另一路通过触发电路和保持电路给单片机提供中断信号和直接雷击避雷装置动作路数的信号。一旦某一路遭受直接雷击,单片机就被触发信号中断,中断服务程序中先判断遭受直接雷击的避雷装置的路数,然后通过4051选择读入该路信号,经a/d转换后存入相应内存单元,以备主程序进行处理,相应路数的雷击次数进行累加,如果加满,则再增加时又从1开始循环计数。这样处理完后退出中断程序,由主程序将信息显示出来。只要不掉电或按复位按钮,则最新一次雷击的信息将始终显示在面板上。
前端处理(2)的输入来自防非直接雷避雷装置(如电源避雷箱)的防雷接口信号。该信号通过同轴电缆或光缆接入前端处理(2)中,经过过压保护电路和光电隔离电路后送入智能监测仪的8255接口电路进行处理,如果避雷装置雷击后工作正常,则监测仪将检测到高电平信号,如检测为低电平信号,则表明此避雷装置已被雷击损坏,应立即予以更换。智能监测仪检测直接雷击电流强度的电路部分采用ad1674器件构成采样电路,ad1674的最小采样时间为7.5μs,而一个雷电波形的上升沿一般在l0μs以上,整个雷电的放电波形一般在几十微秒到上百微秒之间,故ad1674理论上完全可以将雷击后的整个放电过程波形采样进来。因每个采样过程都是通过单片机的中断服务程序进行的,这样,cpu就有足够的时间进行其它的数据处理、报警、显示和打印控制等任务。下位机的打印控制部分主要是应用户的要求打印各种实时数据信息和避雷装置的损坏情况的简单报表,该电路部分采用一片8255控制电路来进行打印控制。下位机与上位机的数据通信是通过mc1488、mc1489组成的串行通信电路实现的。
系统的上位机采用pc机作为整个监测系统的数据库管理中心,该部分主要负责统计系统辖区内的各个智能监测仪所检测的避雷装置的各种雷击信息(如雷击电流强度、雷击次数、雷击电压的极性以及避雷装置的损坏、更换情况等等)。它可以模拟显示辖区内防雷系统中各个避雷装置的位置、动作情况及工作状态,也可以按用户要求打印防雷系统中的各个智能监测仪的历史数据报表以及每次雷击后的具体情况的实时报表。它还可以通过向预先设定的电话报警来满足某些需要无人值守的场合。