酸气吸收塔的工作原理
玻璃钢酸气吸收塔能有效去除氯化氢气体(HCl)、氟化氢气体(HF)、氨气(NH3)、硫酸雾(H2SO4)、铬酸雾(CrO3)、氰氢酸气体(HCN)、碱蒸气(NaOH)、硫化氢气体(H2S)、福尔马林(HCHO)等水溶性气体。酸雾废气由风管引入酸雾吸收器,经过填料层,废气与氢氧化钠吸收液进行气液两相充分接触吸收中和反应,酸雾废气经过净化后,再经除雾板脱水除雾后由风机排入大气。吸收液在塔底经水泵增压后在塔顶喷淋而下,最后回流至塔底循环使用。对于腐蚀性气体(如酸、碱性废气)的治理,目前多采用液体吸收法治理。
在湿法烟气脱硫中,设备常常发生结垢和堵塞。设备结垢和堵塞,已成为一些吸收设备能否正常长期运行的关键问题。为此,首先要弄清楚结构的机理,影响结构和造成堵塞的因素,然后有针对性地从工艺设计、设备结构、操作控制等方面着手解决。
一些常见的防止结垢和堵塞的方法有:在工艺操作上,控制吸收液中水份蒸发速度和蒸发量;控制溶液的PH值;控制溶液中易于结晶的物质不要过饱和;保持溶液有一定的晶种;严格除尘,控制烟气进入吸收系统所带入的烟尘量,设备结构要作特殊设计,或选用不易结垢和堵塞的吸收设备,例如流动床洗涤塔比固定填充洗涤塔不易结垢和堵塞;选择表面光滑、不易腐蚀的材料制作吸收设备。
脱硫系统的结构和堵塞,可造成吸收塔、氧化槽、管道、喷嘴、除雾器设置热交换器结垢和堵塞。其原因是烟气中的氧气将CaSO3氧化成为CaSO4(石膏),并使石膏过饱和。这种现象主要发生在自然氧化的湿法系统中,控制措施为强制氧化和抑制氧化。 强制氧化系统通过向氧化槽内鼓入压缩空气,几乎将全部CaSO3氧化成CaSO4,并保持足够的浆液含固量(大于12%),以提高石膏结晶所需要的晶种。此时,石膏晶体的生长占优势,可有效控制结垢。
抑制氧化系统采用氧化抑制剂,如单质硫,乙二胺四乙酸(EDTA)及其混合物。添加单质硫可产生硫代硫酸根离子,与亚硫酸根自由基反应,从而干扰氧化反应。EDTA则通过与过渡金属生成螯合物和亚硫酸根反应而抑制氧化反应。(5)腐蚀及磨损
煤炭燃烧时除生成SO2以外,还生成少量的SO3,烟气中SO3的浓度为10~40ppm。由于烟气中含有水(4%~12%),生成的SO3瞬间内形成硫酸雾。当温度较低时,硫酸雾凝结成硫酸附着在设备的内壁上,或溶解于洗涤液中。这就是湿法吸收塔及有关设备腐蚀相当严重的主要原因。解决方法主要有:采用耐腐蚀材料制作吸收塔,如采用不锈钢、环氧玻璃钢、硬聚氯乙烯、陶瓷等制作吸收塔及有关设备;设备内壁涂敷防腐材料,如涂敷水玻璃等;设备内衬橡胶等。
含有烟尘的烟气高速穿过设备及管道,在吸收塔内同吸收液湍流搅动接触,设备磨损相当严重。解决的主要方法有:采用合理的工艺过程设计,如烟气进入吸收塔前要进行高效除尘,以减少高速流动烟尘对设备的磨损;采用耐磨材料制作吸收塔及其有关设备,以及设备内 壁内衬或涂敷耐磨损材料。近年来,我国燃煤工业锅炉及窑炉烟气脱硫技术中,吸收塔的防腐及耐磨损已取得显著进展,致使烟气脱硫设备的运转率大大提高。
吸收塔、烟道的材质、内衬或涂层均影响装置的使用寿命和成本。吸收塔体可用高(或低)合金钢、碳钢、碳钢内衬橡胶、碳钢内衬有机树脂或玻璃钢。美国因劳动力昂贵,一般采用合金钢。德国普遍采用碳钢内衬橡胶(溴橡胶或氯丁橡胶),使用寿命可达10年。腐蚀特别严重的如浆池底和喷雾区,采用双层衬胶,可延长寿命25%。ABB早期用C-276合金钢制作吸收塔,单位成本为63[wiki]美元[/wiki]/KW,现采用内衬橡胶,成本为22美元/KW。烟道应用碳钢制作时,采用何种防腐措施取决于烟气温度(是否在酸性[wiki]露点[/wiki]或水蒸汽饱和温度以上)及其成分(尤其是SO2和H2O含量)。
脱硫塔最初以花岗岩砌筑的应用的最为广泛,其利用水膜脱硫除尘原理,又名花岗岩水膜脱硫除尘器,或名麻石水膜脱硫除尘器。
优点是易维护,且可通过配制不同的除尘剂,同时达到除尘和脱硫(脱氮)的效果。现在随着玻璃钢技术的发展,脱硫塔逐渐改为用玻璃钢制造。
相比花岗岩脱硫塔,玻璃钢脱硫塔成本低、加工容易、不锈不烂、重量轻,因此成为今后脱硫塔的发展趋势。另外316L不锈钢具有耐腐蚀、耐高温、耐磨损三大优势,也是脱硫塔发展重要趋势之一。
扩展资料
脱硫塔和脱硫除尘器应满足以下的基本要求:
(1)气液间有较大的接触面积和一定的接触时间;
(2)气液间扰动强烈,吸收阻力小,对SO2的吸收效率高;
(3)操作稳定,要有合适的操作弹性;
(4)气流通过时的压降要小;
(5)结构简单,制造及维修方便,造价低廉,使用寿命长;
(6)不结垢,不堵塞,耐磨损,耐腐蚀;
(7)能耗低,不产生二次污染。
参考资料来源:百度百科-脱硫塔
有几个材料可以参考考虑:1.4529,254SMO,AL-6XN,904L,
1.4529是脱硫脱硝六钼钢,超级奥氏体不锈钢:
1.4529(Incoloy 926/UNS N08926)在卤化物介质和含硫氢酸性环境中具有非常高的抗点蚀和缝隙腐蚀能力,能有效抵抗氯离子应力腐蚀,在氧化和还原性介质中同样具有良好的耐腐蚀性,稳定性良好,机械性能略优于904L,可用于-196到400℃的压力容器制造。
热处理:980-1150℃之间保温1-2小时,快速空冷或水冷。
典型工况:60%硫酸,80℃以下,年腐蚀率<0.1mm
1.4529配套焊接材料及焊接工艺:1.4529合金的焊接建议采用AWS A5.14焊丝ERNiCrMo-3或AWS A5.11焊条ENiCrMo-3。
1.4529应用领域:
烟气脱硫装置,磷酸生产用蒸发器、换热器、过滤器和混合器,硫酸输送装置,冷凝器,灭火系统,海水过滤系统,近海工业中的液压和回灌管道系统,纸浆漂泊系统,盐类蒸发冷凝器,电广污染冷却水管道系统,反渗透海水淡化装置,腐蚀性化学品运输存储罐,卤酸催化的有机物生产设备等。
1.4529 的耐腐蚀性:1.4529是与合金904L具有类似化学成分的奥氏体不锈钢,其氮含量提高到了0.2%左右,钼含量约为6.5%。氮和钼含量的提高显著提高了在卤化物介质中的抗点腐蚀和缝隙腐蚀性能。同时,镍和氮不但保证了金相的稳定性,而且比镍氮含量低的合金降低了热加工或焊接过程中晶间相析出的倾向。出色的耐局部腐蚀性能加上25%的镍含量使合金1.4529在氯离子介质中具有尤其突出的耐腐蚀性。在氯化物浓度10000-70000ppm、PH 值5-6、工作温度50-68℃的石灰石浆料的各种FGD 系统中的试验表明,经过1-2 年的试验期,合金1.4529 基本上没有发生点腐蚀和缝隙腐蚀。
1.4529合金在其他的化学介质中也具有很好的抗腐蚀性,以及高温、高浓度介质,包括硫酸、磷酸、酸性气体、海水、盐和有机酸。1.4529合金是位于柏林的德国国家材料研究及试验研究所(BAM)的BAM 目录第6 章“危险品储运容器规范”的选材。另外,只有当材料处于正确的冶金状态和保证清洁的条件下才能具有最佳的耐腐蚀性能。
1.4529主要规格:
1.4529无缝管、1.4529钢板、1.4529圆钢、1.4529锻件、1.4529法兰、1.4529圆环、1.4529焊管、1.4529钢带、1.4529直条、1.4529丝材及配套焊材、1.4529圆饼、1.4529扁钢、1.4529六角棒、1.4529大小头、1.4529弯头、1.4529三通、1.4529加工件、1.4529螺栓螺母、1.4529紧固件
254SMO是一种奥氏体不锈钢 六钼钢。
由于它的高含钼量,故具有极高的耐点腐蚀和耐缝隙腐蚀性能。这种牌号的不锈钢是为用于诸如海水等含有卤化物的环境中而研制和开发的。254SMO也具有良好的抗均匀腐蚀性。特别是在含卤化物的酸中,该钢要优于普通不锈钢。其C含<0.03%,因此叫纯奥氏体不锈钢 。(<0.01%又叫超级奥氏体不锈钢)。超级不锈钢是一种特种不锈钢,首先在化学成分上与普通不锈钢不同,是指含高镍,高铬,高钼的一种高合金不锈钢。其中比较著名的是含6%Mo的254SMo,这类钢具有非常好的耐局部腐蚀性能,在海水、充气、存在缝隙、低速冲刷条件下,有良好的抗点蚀性能(PI≥40)和较好的抗应力腐蚀性能,是Ni基合金和钛合金的代用材料。其次在耐高温或者耐腐蚀的性能上,具有更加优秀的耐高温或者耐腐蚀性能,是304不锈钢不可取代的。另外,从不锈钢的分类上,特殊不锈钢的金相组织是一种稳定的奥氏体金相组织。
由于这种特种不锈钢是一种高合金的材料,所以在制造工艺上相当复杂,一般人们只能依靠传统工艺来制造这种特种不锈钢,如灌注,锻造,压延等等。
主要成分:254SMo含碳(C)≤0.02,锰(Mn)≤1.00,镍(Ni)17.5~18.5,硅(Si)≤0.8磷(P)≤0.03,硫(S)≤0.01,铬(Cr)19.5~20.5,铜(Cu)0.5~1.0,钼(Mo)6.0~6.5
各国标准:UNS S31254、DIN/EN 1.4547、ASTM A240、ASME SA-240
物理性能:密度:8.24g/cm3, 熔点:1320-1390 ℃,磁性:无
机械性能:抗拉强度:σb≥650Mpa,屈服强度σb≥310Mpa:延伸率:δ≥40%,硬度:182-223(HB)
耐腐蚀性:是一种高耐腐蚀超级奥氏体不锈钢,针对卤化物和酸的环境而开发,广泛用于高浓度氯离子介质、海水等苛刻工况环境。在酸性介质的各种工业场合,特别是在含卤化物的酸中,254SMO要远远优于其它不锈钢,某些情况下可以和哈氏合金以及钛相媲美。较低的含碳量和高钼含量,使其具有较好的耐点腐蚀和耐缝隙腐蚀性能、优秀的耐晶间腐蚀能力,是一种高性价比不锈钢,在国内外化工、脱硫环保等领域广泛使用。
配套焊材:ERNiCrMo-3焊丝,ENiCrMo-3焊条
254SMO主要规格:
254SMO无缝管、254SMO钢板、254SMO圆钢、254SMO锻件、254SMO法兰、254SMO圆环、254SMO焊管、254SMO钢带、254SMO直条、254SMO丝材及配套焊材、254SMO圆饼、254SMO扁钢、254SMO六角棒、254SMO大小头、254SMO弯头、254SMO三通、254SMO加工件、254SMO螺栓螺母、254SMO紧固件
AL-6XN六钼超级奥氏体不锈钢
AL-6XN概述:
AL-6XN(N08367)超级奥氏体不锈钢也是一种具有优异的耐氯离子点蚀和缝隙腐蚀能力的超级奥氏体不锈钢,作为一种具有良好的性价比的耐腐蚀合金,其综合耐腐蚀能力相对316L有了很大的跨越,同时相对于C-276等其它耐腐蚀镍基合金其耐腐蚀能力接近,成本优势明显。因为在合金中添加了显著的氮成分,从而使Al-6XN材料相对常规奥氏体不锈钢(如304,316,317等)具有更高的拉伸强度,同时又保持了优异的材料韧性及冲击强度,ASME标准中规定的许用应力值,Al-6XN相对于316L要高出40%,相对于铜-镍合金高出近一倍。
AL-6XN国际通称:
Al-6XN、脱硫脱硝合金、UNS N08367、Cronifer1925hMo、Incoloy alloy25-6HN、NAS 254NM
AL-6XN执行标准:
ASTM B688、ASTM A240、ASTM B676、ASTM B675、ASTM B564
AL-6XN化学成分:
碳C:0.03
镁Mg:2.0
磷P:0.04
硫S:0.03
硅Si:1.0
镍Ni:23.5-25.5
铬Cr:20.0-22.0
钼Mo:6.0-7.0
氮N:0.18-0.25
铜Cu:0.75
AL-6XN物理性能:
密度:8.24g/cm3
熔点:1370-1398℃
弹性模量:290GPa
热导率:90 W/(m•℃)
硬度(HB):280
热膨胀系数( 20-100℃):8.5×10-6/℃
AL-6XN机械性能:
抗拉强度:σb≥650Mpa,屈服强度σb≥295Mpa:延伸率:δ≥35%
AL-6XN热处理:980-1150℃之间保温1-2小时,快速空冷或水冷。
AL-6XN主要特性:
AL-6XN(N08367,1.4501)不锈钢比标准的300系列合金,对氯离子具有较高的抗点蚀、缝隙腐蚀和压力缝隙腐蚀能力,在不锈钢中Cr、Mo、Ni、C分别对不同的介质具有抗腐蚀性。Cr是在自然和氧化环境中抗腐蚀代表,Cr、Mo、Ni的含量增长增加了抗点蚀能力,镍提供了奥氏体结构,镍钼增加了对氯离子的压力缝隙腐蚀能力和对降低环境的抗腐蚀能力。高镍(24%)、钼(6.3%)AL-6XN不锈钢具有较好的抗压力缝隙腐蚀能力。钼具有抗氯离子点蚀能力,镍进一步增强抗点蚀能力,而且能提供比300奥氏体不锈钢更高的强度,因此经常应用于设备中较薄的部分。在AL-6XN不锈钢中,较高含量的铬、钼、和镍也提供了不锈钢的成形和焊接时的抗腐蚀性能力。
另外AL-6XN不锈钢还具有以下特点
1、优异的含氯离子介质环境下的耐点蚀,耐缝隙腐蚀能力。
2、在氯化钠盐溶液介质下极好的耐应力腐蚀能力。
3、高强度,良好的韧性。
AL-6XN主要应用:
AL-6XN高铬、钼、镍和氮使AL-6XN具有较好的抗氯离子点蚀能力、缝隙腐蚀,这就使AL-6XN应用于很多环境:
AL-6XN主要规格:
AL-6XN无缝管、AL-6XN钢板、AL-6XN圆钢、AL-6XN锻件、AL-6XN法兰、AL-6XN圆环、AL-6XN焊管、AL-6XN钢带、AL-6XN直条、AL-6XN丝材及配套焊材、AL-6XN圆饼、AL-6XN扁钢、AL-6XN六角棒、AL-6XN大小头、AL-6XN弯头、三通、AL-6XNAL-6XN加工件、AL-6XN螺栓螺母、AL-6XN紧固件
904L超级不锈钢概述:
904L超级奥氏体不锈钢属低碳高镍、钼奥氏体不锈耐酸钢,为引进法国H·S公司的专有材料。具有很好的活化—钝化转变能力,耐腐蚀性能极好,在非氧化性酸如硫酸、醋酸、甲酸、磷酸中具有很好的耐蚀性,在中性含氯离子介质中具有很好的抗点蚀性,同时具有良好的抗缝隙腐蚀及抗应力腐蚀性能。适用于70℃以下各种浓度硫酸,在常压下耐任何浓度、任何温度的醋酸及甲酸与醋酸的混酸中的耐腐蚀性也很好。超级奥氏体不锈钢904L是一种含碳量低的高合金的奥氏体不锈钢,在稀硫酸中有很好抗腐蚀性,专为腐蚀条件苛刻的环境而设计。具有较高的铬含量和足够的镍含量,铜的加入使它具有很强的抗酸能力,尤其对氯化物间隙腐蚀和应力腐蚀崩裂有高度抗性,不易出现蚀损斑和裂缝,抗点蚀能力略优于其他钢种,具有良好的可加工性和可焊性,可用于压力容器。
904L超级不锈钢牌号及标准:
00Cr20Ni25Mo4.5Cu(国标) 、UNS N08904(美国机动车工程师学会和美国材料与试验协会于1967年共同设计的标准)、DIN1.4539(德国标准)、ASTM A240(美国材料与试验协会标准;全新标准将其归为不锈钢系列,原有标准ASME SB-625将其归为镍基合金系列)、SUS890L。
904L超级不锈钢金相结构:
904L是完全奥氏体组织,舆一般含钼量高的奥氏体不锈钢相比,904L对铁素体和α相的析出不敏感。
904L超级不锈钢加工性能:
焊接性能
与一般的不锈钢一样,904L可以采用各种各样的焊接方式进行焊接。最常用的焊接方式为手工电弧焊或隋性气体保护焊,焊条或焊丝金属基于母材的成分且纯度更高,钼的含量要求高于母材。焊前一般无须进行预热,但是在寒冷的户外作业,为避免水汽的凝集,接头部位或临近区域可作均匀加热。注意局部温度不要超过 10 0℃,以免导致碳集聚,引起晶间腐蚀。焊接时宜采用小的线能量、连续及快的焊接速率。焊后一般无须热处理,如需进行热处理,须加热至110 0~ 1150℃后迅速冷却。
配套焊接材料及焊接工艺:904L的焊接选用ER385焊丝和E385焊条
机加工性能
904L的机加工特点类似于其他奥氏体不锈钢,加工过程中有粘刀及加工硬化的趋势。须采用正前角硬质合金刀具,以硫化及氯化油作为切削冷却液,设备及工艺应以减少加工硬化为前提。切削过程中应避免用慢的切削速度及进刀量。
耐腐蚀性及主要使用环境
904L是为腐蚀条件苛刻的环境所设计的一种含碳量很低、高合金化的奥氏体不锈钢,比316L和317L具有更好耐腐蚀性性,同时兼顾了价格与性能,性价比较高。因添加1.5%的铜,对于硫酸和磷酸等还原性酸而言,具有优秀的耐腐蚀性。对氯离子引起的应力腐蚀、点蚀和缝隙腐蚀也具有优良的耐腐蚀性能,有着良好的耐晶间腐蚀能力。在0-98%的浓度范围内纯硫酸中,904L的使用温度可高达40摄氏度。在0-85%浓度范围内的纯磷酸中,其抗腐蚀性能是非常好的。在湿法工艺生产的工业磷酸中,杂质对抗腐蚀性能有很强的影响。在所有各种磷酸中,904L抗腐蚀性优于普通的不锈钢。在强氧化性的硝酸中,904L与不含钼的高合金化的钢种相比,抗腐蚀性能较低。在盐酸中,904L的使用仅限于较低的浓度1-2%。在这个浓度范围。904L的抗腐蚀性能好于常规不锈钢。904L钢具有很高的抗点腐蚀能力。在氯化物溶液中其抗缝隙腐蚀能。力也是很好的。904L的高镍含量,降低了在麻坑和缝隙处的腐蚀速度。普通的奥氏体不锈钢在温度高于60摄氏度时,在一个富氯化物的环境中对应力腐蚀可能是敏感的,通过提高不锈钢的镍含量,可以降低这种敏化性。由于高的镍含量,904L在氯化物溶液,浓缩的氢氧化物溶液和富硫化氢的环境中,具有很高的抗应力腐蚀破裂能力。
904L应用领域
石油、石化设备,如石化设备中的反应器等,硫酸的储存与运输设备,如热交换器等,发电厂烟气脱硫装置,主要使用部位有:吸收塔的塔体、烟道、档门板、内件、喷淋系统等,有机酸处理系统中的洗涤器和风扇,海水处理装置,海水热交换器,造纸工业设备,硫酸、硝酸设备,制酸、制药工业及其他化工设备、压力容器,食品设备,制药厂:离心机,反应器等,植物食品:酱油罐,料酒,盐罐,设备和敷料,对稀硫酸强腐蚀介质904L是匹配的钢种。
904L主要规格:
904L无缝管、904L钢板、904L圆钢、904L锻件、904L法兰、904L圆环、904L焊管、904L钢带、904L直条、904L丝材及配套焊材、904L圆饼、904L扁钢、904L六角棒、904L大小头、904L弯头、904L三通、904L加工件、904L螺栓螺母、904L紧固件
篇幅有限,如需更多更详细介绍,欢迎咨询了解。
1) 煤的洗选(可脱硫30-60%)
2) 其他原料煤的脱硫技术(化学法,物理法,微波法,生物法。。。。。。)
3) 煤的转化(液化,气化,高纯水煤浆,燃气-蒸汽联合循环[wiki]IGCC[/wiki])
4) 燃料电池,等离子。。。。。。
燃烧中脱硫
1) 型煤
2) 流化床燃烧: 鼓泡床(BFBC),循环床(CFBC),增压床合循环(PFBC-CC)
3) 炉内喷钙
燃烧后烟气脱硫(FGD)
1) 干法烟气脱硫
a) 炉内喷钙+尾部增湿活化(LIFAC)--下关,钱清,沾化
b) 旋转喷雾法(SDA)—白马,黄岛
c) 循环流化床烟气脱硫(CFB-FGD)恒运,漳山,榆社
d) 增湿灰循环法(NID)--衢州[wiki]化工[/wiki]
e) 荷电干粉喷射法(CDSI)--德州, 杭钢二热
f) 其他
2)湿法烟气脱硫
a) 石灰石/石灰—抛弃/石膏法—珞璜,太原。。。。。。
b) 海水法—深圳西,后石
c) 氨法—内江
d) 镁法---
e) 磷氨法—豆坝
f) 其他
3)其他脱硫法 (同时脱硫和脱硝)
a) 电子束—成都
b) 脉冲电晕
c)活性炭
(3)烟气的预冷却
大多数含硫烟气的温度为120~185℃或更高,而吸收操作则要求在较低的温度下(60℃左右)进行。低温有利于吸收,高温有利于解吸。因而在进行吸收之前要对烟气进行预冷却。通常,将烟气冷却到60℃左右较为适宜。常用冷却烟气的方法有:应用热交换器间接冷却;应用直接增湿(直接喷淋水)冷却;用预洗涤塔除尘增湿降温,这些都是较好的方法,也是目前使用较广泛的方法。通常,国外湿法烟气脱硫的效率较高,其原因之一就是对高温烟气进行增湿降温。
我国目前已开发的湿法烟气脱硫技术,尤其是燃煤工业锅炉及窑炉烟气脱硫技术,高温烟气未经增湿降温直接进行吸收操作,较高的吸收操作温度,使SO2的吸收效率降低,这就是目前我国燃煤工业锅炉湿法烟气脱硫效率较低的主要原因之一。
(4)结垢和堵塞
在湿法烟气脱硫中,设备常常发生结垢和堵塞。设备结垢和堵塞,已成为一些吸收设备能否正常长期运行的关键问题。为此,首先要弄清楚结构的机理,影响结构和造成堵塞的因素,然后有针对性地从工艺设计、设备结构、操作控制等方面着手解决。
一些常见的防止结垢和堵塞的方法有:在工艺操作上,控制吸收液中水份蒸发速度和蒸发量;控制溶液的PH值;控制溶液中易于结晶的物质不要过饱和;保持溶液有一定的晶种;严格除尘,控制烟气进入吸收系统所带入的烟尘量,设备结构要作特殊设计,或选用不易结垢和堵塞的吸收设备,例如流动床洗涤塔比固定填充洗涤塔不易结垢和堵塞;选择表面光滑、不易腐蚀的材料制作吸收设备。
脱硫系统的结构和堵塞,可造成吸收塔、氧化槽、管道、喷嘴、除雾器设置热交换器结垢和堵塞。其原因是烟气中的氧气将CaSO3氧化成为CaSO4(石膏),并使石膏过饱和。这种现象主要发生在自然氧化的湿法系统中,控制措施为强制氧化和抑制氧化。 强制氧化系统通过向氧化槽内鼓入压缩空气,几乎将全部CaSO3氧化成CaSO4,并保持足够的浆液含固量(大于12%),以提高石膏结晶所需要的晶种。此时,石膏晶体的生长占优势,可有效控制结垢。
抑制氧化系统采用氧化抑制剂,如单质硫,乙二胺四乙酸(EDTA)及其混合物。添加单质硫可产生硫代硫酸根离子,与亚硫酸根自由基反应,从而干扰氧化反应。EDTA则通过与过渡金属生成螯合物和亚硫酸根反应而抑制氧化反应。(5)腐蚀及磨损
煤炭燃烧时除生成SO2以外,还生成少量的SO3,烟气中SO3的浓度为10~40ppm。由于烟气中含有水(4%~12%),生成的SO3瞬间内形成硫酸雾。当温度较低时,硫酸雾凝结成硫酸附着在设备的内壁上,或溶解于洗涤液中。这就是湿法吸收塔及有关设备腐蚀相当严重的主要原因。解决方法主要有:采用耐腐蚀材料制作吸收塔,如采用不锈钢、环氧玻璃钢、硬聚氯乙烯、陶瓷等制作吸收塔及有关设备;设备内壁涂敷防腐材料,如涂敷水玻璃等;设备内衬橡胶等。
含有烟尘的烟气高速穿过设备及管道,在吸收塔内同吸收液湍流搅动接触,设备磨损相当严重。解决的主要方法有:采用合理的工艺过程设计,如烟气进入吸收塔前要进行高效除尘,以减少高速流动烟尘对设备的磨损;采用耐磨材料制作吸收塔及其有关设备,以及设备内 壁内衬或涂敷耐磨损材料。近年来,我国燃煤工业锅炉及窑炉烟气脱硫技术中,吸收塔的防腐及耐磨损已取得显著进展,致使烟气脱硫设备的运转率大大提高。
吸收塔、烟道的材质、内衬或涂层均影响装置的使用寿命和成本。吸收塔体可用高(或低)合金钢、碳钢、碳钢内衬橡胶、碳钢内衬有机树脂或玻璃钢。美国因劳动力昂贵,一般采用合金钢。德国普遍采用碳钢内衬橡胶(溴橡胶或氯丁橡胶),使用寿命可达10年。腐蚀特别严重的如浆池底和喷雾区,采用双层衬胶,可延长寿命25%。ABB早期用C-276合金钢制作吸收塔,单位成本为63[wiki]美元[/wiki]/KW,现采用内衬橡胶,成本为22美元/KW。烟道应用碳钢制作时,采用何种防腐措施取决于烟气温度(是否在酸性[wiki]露点[/wiki]或水蒸汽饱和温度以上)及其成分(尤其是SO2和H2O含量)。
日本日立公司的防腐措施是:烟气再热器、吸收塔入口烟道、吸收塔烟气进口段,采用耐热玻璃鳞片树脂涂层,吸收塔喷淋区用不锈钢或碳钢橡胶衬里,除雾器段和氧化槽用玻璃鳞片树脂涂层或橡胶衬里。
(6)除雾
湿法吸收塔在运行过程中,易产生粒径为10~60m的“雾”。“雾”不仅含有水分,它还溶有硫酸、硫酸盐、SO2等,如不妥善解决,任何进入烟囱的“雾”,实际就是把SO2排放到大气中,同时也造成引风机的严重腐蚀。因此,工艺上对吸收设备提出除雾的要求。被净化的气体在离开吸收塔之前要进行除雾。通常,除雾器多设在吸收塔的顶部。
目前,我国相当一部分吸收塔尚未设置除雾器,这不仅造成SO2的二次污染,对引风机的腐蚀也相当严重。脱硫塔顶部净化后烟气的出口应设有除雾器,通常为二级除雾器,安装在塔的圆筒顶部(垂直布置)或塔出口的弯道后的平直烟道上(述评布置)。后者允许烟气流速高于前者。对于除雾器应设置冲洗水,间歇冲洗除雾器。净化除雾后烟气中残余的水分一般不得超过100mg/m3,更不允许超过200mg/m3,否则含沾污和腐蚀热交换器、烟道和风机。
(7)净化后气体再加热
在处理高温含硫烟气的湿法烟气脱硫中,烟气在脱硫塔内被冷却、增湿和降温,烟气的温度降至60℃左右。将60℃左右的净化气体排入大气后,在一定的气象条件下将会产生“白烟”。由于烟气温度低,使烟气的抬升作用降低。特别是在净化处理大量的烟气和某些不利的气象条件下,“白烟”没有远距离扩散和充分稀释之前就已降落到污染源周边的地面,容易出现高浓度的SO2污染。为此,需要对洗涤净化后的烟气进行二次再加热,提高净化气体的温度。被净化的气体,通常被加热到105~130℃。为此,要增设燃烧炉。燃烧炉燃烧天然气或轻柴油,产生1000~1100℃的高温燃烧气体,再与净化后的气体混对。这里应当指出,不管采用何种方法对净化气体进行二次加热,在将净化气体的温度加热到105~130℃的同时,都不能降低烟气的净化效率,其中包括除尘效率和脱硫效率。为此,对净化气体二次加热的方法,应权衡得失后进行选择。
吸收塔出口烟气一般被冷却到45~55℃(视烟气入口温度和湿度而定),达饱和含水量。是否要对脱硫烟气再加热,取决于各国环保要求。德国《大型燃烧设备法》中明确规定,烟囱入口最低温度为72℃,以保证烟气扩散,防止冷烟雾下沉。因吸收塔出口与烟囱入口之间的散热损失约为5~10℃,故吸收塔出口烟气至少要加热到77~82℃。据ABB或B&W公司介绍,美国一般不采用烟气再加热系统,而对烟囱采取防腐措施。如脱硫效率仅要求75%时,可引出25%的未处理的旁通烟气来加热75%的净化烟气,
德国第1台湿法脱硫装置就采用这种方法。德国现在还把净化烟气引入自然通风冷却塔排放的脱硫装置,籍烟气动量(质量 速度)和携带热量的提高,使烟气扩散的更好。
烟气再加热器通常有蓄热式和非蓄热式两种形式。蓄热式工艺利用未脱硫的热烟气加热冷烟气,统称GGH。蓄热式换热器又可分为回转式烟气换热器、板式换热器和管式换热器,均通过载热体或热介质将热烟气的热量传递给冷烟气。回转式换热器与电厂用的回转式空气预热器的工作原理相同,是通过平滑的或者带波纹的金属薄片载热体将热烟气的热量传递给净化后的冷烟气,缺点是热烟气会泄露到冷烟气中。板式换热器中,热烟气与冷烟气逆流或交*流动,热交换通过薄板进行,这种系统基本不泄露。管式加热器是通过中间载体水将热烟气的热量传递给冷烟气,无烟气泄露问题,用于年满负荷运行在4000~6500h的脱硫装置。 非蓄热式换热器通过蒸汽、天然气等将冷烟气重新加热,又分为直接加热和间接加热。直接加热是燃烧加热部分冷烟气,然后冷热烟气混合达到所需温度;间接加热是用低压蒸汽(≥2×105Pa)通过热交换器加热冷烟气。这种加热方式投资省,但能耗大,使用于脱硫装置年运行时间4000h-6500h的脱硫装置。
(8)脱硫风机位置的选择
安装烟气脱硫装置后,整个脱硫系统的烟气阻力约为2940Pa,单*原有锅炉引风机(IDF)不足以克服这些阻力,需设置一助推风机,或称脱硫风机(BUF)。脱硫风机有四种布置方案。脱硫引风机处于低烟温段,风机容量相当,由于风机位于再热器后,烟气中水份得到改善,对风机防腐无特殊要求。脱硫系统在负压下运行,有利于环境保护。(9)石灰石制备系统
将块状石灰石应用干磨或湿磨研磨成石灰石粉,或从石粉制造厂购进所需要的石灰石粉,由罐车运到料仓存储,然后通过给料机、输粉机将石灰石粉输入浆池,加水制备成固体质量分数为10%-15%的浆液。对石灰石粉粒度要求一般是90%通过325目筛(45m)或250目筛。石灰石纯度须大于90%。工艺对其活性、可磨性也有一定的要求。
(10)氧化槽
氧化槽的功能是接受和储存脱硫剂、溶解石灰石,鼓风氧化CaSO3,结晶生成石膏。循环的吸收剂在氧化槽内的设计停留时间一般为4-8min,与石灰石反应性能有关。石灰石反应性能越差,为使之完全溶解,则要求它在池内滞留时间越长。氧化空气采用罗茨风机或离心风机鼓入,压力约5×104-8.6×104Pa一般氧化1mo1SO2需要1mo1 O2。