硫代乙酰胺溶于乙二醇吗
固溶体是指溶质原子溶入溶剂晶格中而形成的单一、均匀的晶态固体且仍保持溶剂类型的合金相。固溶体半导体材料是指某些元素半导体或者化合物半导体相互溶解而形成的一种具有半导体性质的固态溶液材料,又称为混晶半导体或者合金半导体。两种化合物若离子半径相近、晶格结构相似则可以通过调节比例制备带隙连续变化的可见光响应的光催化剂。由于硫化物半导体拥有较窄的带隙和较高的稳定性等优点,近年来备受关注。硫化锌(ZnS)是一种典型的Ⅱ-Ⅵ型半导体材料,由于其优异的氧化能力和低的二次污染,受到了人们的广泛关注。然而,ZnS由于其具有宽的直接带隙(3.6eV)仅在紫外光区具有活性,且由于较快的光生电子-空穴复合率,其光催化效率还不够高。与窄带隙半导体构建异质结是拓宽宽带隙半导体的可见光吸收以及光催化性能的一种有效方法。MoS2作为一种新兴的光催化剂具有禁带窄、边缘结构复杂、比表面积大、高不饱和性能等特点,合成ZnS-MoS2异质结光催化剂可以抑制光生电子-空穴的复合,从而提高光催化活性。然而,异质结的晶格和能带结构匹配较差。半导体异质结固溶体可以调节固溶体的晶格常数和能带结构匹配的能带结构,是一种避免晶格失配引起的界面应力的有效途径。因而本课题组合成了一系列的ZnS-MoS2固溶体,其光催化活性远高于纯ZnS和MoS2,但由于ZnS-MoS2固溶体的光催化活性较差,其性能仍不理想。因此,对ZnS-MoS2固溶体光催化剂进行修饰进而提高其光催化效率是非常必要的。
石墨烯是由sp2杂化的苯六元环组成的二维(2D)周期性蜂窝状晶格结构,是目前最理想的二维纳米材料。在室温下石墨烯具有在优异的电荷载体、优良的热导率、高比表面积和良好的化学稳定性等,能促进ZnS-MoS2固溶体光生电子-空穴的分离、转移和迁移,抑制光载流子的复合;此外,石墨烯能吸附大量的污染物,为光催化反应提供更多更理想的反应位点,且能够抑制ZnS-MoS2纳米颗粒团聚,使其均匀的生长在石墨烯薄膜上,因此,结合固溶体的优点和石墨烯优异的性能,我们尝试制备了一种新型的rGO/ZnS-MoS2三元固溶体促进电荷分离以及增强稳定性。
技术实现要素:
ZnS-MoS2纳米颗粒较大且接触紧密,容易团聚,比表面积较小,提供的反应活性位点较少,容纳的污染物分子有限,进而造成光催化效率较低,本发明的目的在于针对现有的不足,提出一步溶剂热法制备具有可见光催化活性的rGO/ZnS-MoS2纳米固溶体光催化剂,rGO的引入一方面可作为电子载体促进光生电子-空穴的分离、转移和迁移,从而抑制光载流子的复合率;另一方面石墨烯的加入能抑制ZnS-MoS2纳米颗粒聚合,使ZnS-MoS2纳米颗粒能够均匀地生长在石墨烯薄膜上,为光催化反应提供更多更理想的反应位点。此外,这种 rGO/ZnS-MoS2纳米固溶体光催化剂的禁带宽度较窄,且具有较大的比表面积,在可见光下有较强的光吸收和光催化能力,提高了对光的利用效率,并且具有较高的稳定性和再生能力。
本发明是通过以下技术方案实现的。一种具有可见光催化活性的石墨烯/ZnS-MoS2纳米固溶体光催化剂的方法,其步骤如下:
一种具有可见光催化活性的石墨烯/ZnS-MoS2纳米固溶体光催化剂的方法,其特征步骤如下:
1)首先用改良Hummers法制备出氧化石墨烯,然后将氧化石墨烯分散到有机溶剂中超声至均匀溶液,超声时间30-60min;
2)以无机锌盐、无机钼盐和硫源作为原料,将它们溶解到有机溶液中,并加入提前制备好的石墨烯溶液;
3)将混合溶液转移到反应釜中,在180-220℃条件下反应24小时;
4)反应结束后,将反应物用去离子水和无水乙醇分别洗涤、离心数次,所得产物在60-100 ℃下真空干燥6-24小时,即得具有可见光催化活性的rGO/ZnS-MoS2纳米固溶体光催化剂。
所述无机锌盐为醋酸锌、氯化锌、硝酸锌和硫酸锌中的一种或几种。
所述无机钼盐为钼酸钠、钼酸铵和磷钼酸中的一种或几种。
所述硫源为硫代乙酰胺、硫脲和Na2S中的一种或几种。
所述有机溶剂为乙醇、丙醇、丁醇、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、乙二醇、丙二醇或丁二醇中的一种或几种。
所述无机锌盐与无机钼盐的摩尔比为20:1~40:1。
所述无机锌盐与硫源的摩尔比为1:2~1:8。
所述石墨烯与ZnS-MoS2的质量百分比为5%~14%。
本发明制备的石墨烯/ZnS-MoS2纳米固溶体光催化剂,处理废水在可见光照射下进行。
本发明制备rGO/ZnS-MoS2纳米固溶体光催化剂的优点:
(1)本发明制备方法制得的rGO/ZnS-MoS2纳米固溶体光催化剂具有独特的表面结构和形貌。
(2)本发明的一步溶剂热法制备一种具有可见光催化活性的石墨烯/ZnS-MoS2纳米固溶体光催化剂较为蓬松具有更大的比表面积,较窄且可连续调节的禁带宽度,能有效地使光生电子-空穴分离、迁移,在可见光下有较强的光吸收和光催化能力,并具有着较高的稳定性和再生性能,可见光照射下可以高效处理实际废水,去除率可达到74.05%。
附图说明
图1为本发明的实施例1所制备的rGO/ZnS-MoS2纳米固溶体光催化剂(a)和单纯的 ZnS-MoS2对比样品(b)的XRD图谱,由图可知,rGO/ZnS-MoS2和ZnS-MoS2的X射线衍射数据相符合,表明石墨烯的负载不影响ZnS-MoS2的晶相,没有出现石墨烯的衍射峰表明由于硫化锌/硫化钼对石墨烯片层的修饰,打乱了石墨烯的有序排列结构。
图2为本发明的实施例1所制备的rGO/ZnS-MoS2SEM图,由图可知ZnS-MoS2纳米粒子能均匀地生长在石墨烯薄膜上并形成了的形貌,实现石墨烯与ZnS-MoS2纳米粒子之间的有效键合。
图3为本发明的实施例1所制备的rGO/ZnS-MoS2纳米固溶体光催化剂(a)和纯ZnS-MoS2样品(b)的氮气吸附-脱附等温线,由图可知,rGO/ZnS-MoS2和纯ZnS-MoS2的氮气吸附-脱附等温线都属IUPAC分类中的IV型,H3滞后环,但rGO/ZnS-MoS2固溶体光催化剂的比表面积接近31.6m2/g,纯ZnS-MoS2的比表面积为18.7m2/g,rGO/ZnS-MoS2纳米固溶体光催化剂的比表面积远大于纯ZnS-MoS2的比表面积。
图4为本发明的实施例1所制备的rGO/ZnS-MoS2纳米固溶体光催化剂(a)和纯ZnS-MoS2 (b)光降解邻硝基苯酚曲线,由图可知,rGO/ZnS-MoS2固溶体光催化剂的催化活性高于纯 ZnS-MoS2。
图5为本发明的实施例1所制备的rGO/ZnS-MoS2纳米固溶体光催化剂在可见光照射下处理实际药物废水的曲线,由图可知,rGO/ZnS-MoS2固溶体光催化剂可以高效处理实际药物废水,在可见光下实际药物废水的COD去除率高达74.05%。
具体实施方式
以下实施旨在说明本发明而不是对本发明的进一步限定。
实施例1
(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后取0.06787g氧化石墨烯到10mL N,N-二甲基甲酰胺溶液中,超声30min备用。
(2)将6.0mmol醋酸锌,0.2mmol钼酸钠,13.3mmol硫代乙酰胺,加入到40mL N,N- 二甲基甲酰胺溶液中并搅拌至溶液透明后加入上述石墨烯溶液。
(3)将溶液转移到100mL反应釜中,210℃,反应时间为24小时。
(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在60℃下真空干燥 12小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。
实施例2
(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后称取0.04936g氧化石墨到10mL乙二醇溶液中,超声40min备用。
(2)将6.0mmol氯化锌,0.2mmol钼酸钠,13.3mmol硫代乙酰胺,加入到40mL乙二醇溶液中并搅拌至溶液透明后加入上述石墨烯溶液。
(3)将溶液转移到100mL反应釜中,200℃,反应时间为24小时。
(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在60℃下真空干燥 12小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。
实施例3
(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后称0.06787g氧化石墨烯分散到10mL乙醇溶液中,超声60min备用。
(2)将5.0mmol硝酸锌,0.25mmol钼酸钠,11.5mmol硫化钠,加入到40mL乙醇溶液中并搅拌至溶液透明后加入上述石墨烯溶液。
(3)将溶液转移到100mL反应釜中,220℃,反应时间为24小时。
(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在60℃下真空干燥 12小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。
实施例4
(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后取0.04936g氧化石墨烯分散到10mL丁醇溶液中,超声30min备用。
(2)将5.0mmol硝酸锌,0.25mmol磷酸钠,11.5mmol硫化钠,加入到40mL丁醇溶液中并搅拌至溶液透明后加入上述石墨烯溶液。
(3)将溶液转移到100mL反应釜中,200℃,反应时间为24小时。
(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在60℃下真空干燥 12小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。
实施例5
(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后称取0.04936g氧化石墨烯分散到10mL丁醇溶液中,超声40min备用。
(2)将6.0mmol硝酸锌,0.2mmol钼酸钠,13.3mmol硫脲,加入到40mL丁醇溶液中并搅拌至溶液透明后加入上述石墨烯溶液。
(3)将溶液转移到100mL反应釜中,220℃,反应时间为24小时。
(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在100℃下真空干燥 8小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。
实施例6
(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后取0.05553g氧化石墨烯分散到10mL丁醇溶液中,超声50min备用。
(2)将5.0mmol醋酸锌,0.14mmol钼酸钠,11mmol硫化钠,加入到40mL丁醇溶液中并搅拌至溶液透明后加入上述石墨烯溶液。
(3)将溶液转移到100mL反应釜中,210℃,反应时间为24小时。
(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在100℃下真空干燥 8小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。
实施例7
(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后称取0.05553g氧化石墨烯分散到10mLN,N-二甲基甲酰胺溶液中,超声30min备用。
(2)将6.0mmol醋酸锌,0.2mmol磷酸钼,13.3mmol硫化钠,加入到40mL N,N-二甲基甲酰胺溶液中并搅拌至溶液透明后加入上述石墨烯溶液。
(3)将溶液转移到100mL反应釜中,200℃,反应时间为24小时。
(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在100℃下真空干燥 8小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。
实施例8
(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后取0.04936g氧化石墨烯分散到10mLN,N-二甲基乙酰胺溶液中,超声40min备用。
(2)将5.0mmol硫酸锌,0.25mmol磷酸钼,11.5mmol硫脲,加入到40mL N,N-二甲基乙酰胺溶液中并搅拌至溶液透明后加入上述石墨烯溶液。
(3)将溶液转移到100mL反应釜中,210℃,反应时间为24小时。
(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在100℃下真空干燥 8小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。
实施例9
(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后取0.05553g氧化石墨烯分散到10mL丙二醇溶液中,超声30min备用。
(2)将6.0mmol氯化锌,0.2mmol钼酸铵,13.3mmol硫脲,加入到40mL丙二醇溶液中并搅拌至溶液透明后加入上述石墨烯溶液。
(3)将溶液转移到100mL反应釜中,200℃,反应时间为24小时。
(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在100℃下真空干燥 8小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。
不局限于此,任何不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。
再多了解一些
二硫化钼,molybdenum disulfide 辉钼矿的主要成分。黑色固体粉末,有金属光泽。化学式MoS2,熔点1185℃,密度4.80克/厘米3(14℃),莫氏硬度1.0~1.5。1370℃开始分解,1600℃分解为金属钼和硫。315℃在空气中加热时开始被氧化,温度升高,氧化反应加快。二硫化钼不溶于水,只溶于王水和煮沸的浓硫酸。 性质 二硫化钼不溶于水、稀酸和浓硫酸,一般不溶于其他酸、碱、有机溶剂中,但溶于热硫酸。400 °C缓慢发生氧化,生成三氧化钼。
【综上所述,二硫化钼难溶于酒精的】
【综上所述,二硫化钼难溶于酒精的】所有一般打磨的效果也不好,所以不推荐这么使用,一般二硫化钼做钨钢的固体润滑涂层还可以,您好,这里是上海固体润滑为您解答,纯手打,谢谢,如果不清楚,可以去百 度搜素下我!
一、实验导读
1.半导体光催化剂
半导体介于导体和绝缘体之间,在未激发的具有能带结构的半导体电子结构中,大多数电子处于价带内,而导带内则因能级较高处于电子缺乏状态。导带和价带的过渡区称为带隙或禁带,其能量之差被称为能隙或禁带宽度,用E g表示,E g的大小代表了价带电子跃迁至导带的难易程度。纳米TiO2等半导体的主要特征——宽禁带的存在,其优异独特的电、磁、光学等性质的表现也是由于它的存在而导致的。
宽禁带半导体其价带上的电子一旦受到一个具有高于其禁带宽度能量hv 的光照射后,能使其分子轨道中的电子(e-)离开价带(VB)跃迁到导带(CB)上,并在价带上产生相应的光生空穴(h+),同时在导带上形成光生电子(e-)。在电场的作用下,两者发生分离,纳米半导体粒子因其尺寸很小,光激发产生的电子和空穴很快到达纳米粒子表面,导致原本不带电的粒子表面的二个不同部分出现了极性相反的二个微区——光生电子和光生空穴。价带空穴是良好的氧化剂,导带电子是良好的还原剂,在半导体光催化反应中,与吸附在催化剂表面的污染物分子发生氧化还原反应。
跃迁到导带上的电子和价带上的空穴可能重新复合,并产生热能或以辐射方式散发掉。但是当半导体光催化剂存在表面缺陷、合适的俘获剂、或者电场作用等因素时,电子和空穴的合并就得到了拟制。同时纳米半导体粒子所具有的量子尺寸效应使其导带和价带能级变为分立的能级,能隙变宽,使其电子-空穴对具有更正的价带电位和更负的导带电位,因而具有更高的氧化能力和还原能力。而且粒子越小,电子和空穴达到粒子表面的速度越快,电荷分离效果越好,电子与空穴复合几率反而越小,从而提高了纳米半导体的光催化活性。
作为半导体光催化剂的材料众多,包括TiO2、ZnO、WO3、SnO2、ZrO2
1
等多种金属氧化物,CdS、FeS、MoS2等多种硫化物半导体。TiO2等半导体纳米微粒,由于其表面的电子结构及晶体结构,具有特殊的表面效应、体积效应、量子尺寸效应、宏观量子隧道效应以及介电限域效应以外,还拥有高效的光催化活性,热稳定性好,价格低廉,对人体无毒、无害、无二次污染等特点,使其成为新兴的环保材料。
目前,国内外关于半导体光催化剂的应用研究已经有大量的报道,主要集中在以下几大方面:
有机污染物及农药的分解;
无机重金属污染物的处理;
光催化抗菌除臭;
废气净化;
光催化分解水,产生H2和O2,提供清洁的能源等等。
其中纳米二氧化钛作为光催化材料,是当前最有应用潜力的一种光催化剂,具有广泛的应用前景。
2. 二氧化钛光催化剂
二氧化钛是一种宽禁带半导体,禁带宽度为3.0~3.2eV。二氧化钛组成结构的基本组元是TiO6八面体,构成二氧化钛的原子排列方式不同使其内在的晶体结构具有板钛矿、锐钛矿、金红石三种不同的晶体结构,用作光催化剂的二氧化钛主要有二种晶相——锐钛矿相和金红石相。
二氧化钛纳米粒子是由内部的晶体组元和表面的组元构成。粒子内部晶体组元中Ti和O原子严格位于晶格位置上,而表面结构中Ti原子缺少O原子的配位。纳米粒子的重要特点是表面效应,粒子越小,比表面积越大,表面原子数量就越多,表面原子配位的不饱和性造成了大量悬键和不饱和键的存在,这种奇异的表面结构导致了二氧化钛纳米粒子表面具有很高的活性。
二氧化钛对光的吸收阈值λg与其禁带宽度E g有关,其关系式为:
λg (nm)=1240/E g(eV)
常用宽禁带半导体吸收波长阈值在紫外光区,比如锐钛矿相的二氧化钛,其吸收阈值为387.5nm,也就是说在波长小于387.5nm紫外光的照射作用下,纳米TiO2可在10-2秒内,能使其分子轨道中的电子(e-)离开价带(VB)激发到导
带(CB)上,并在价带上产生相应的光生空穴(h+),同时在导带上形成光生电子(e-)。光生空穴具有很强的氧化能力,可以将吸附在TiO2表面的水H2O和羟基OH-进行氧化,生成活性极强的羟基自由基(·OH);同样光生电子也可以将吸附在TiO2表面的分子氧(O2)形成多种含氧小分子活性物种自由基(·O2-),最后生成羟基自由基(·OH)。羟基自由基(·OH)是一个极强的氧化剂,很容易与吸附在纳米TiO2表面的污染物分子发生氧化反应。
由于光生电子和光生空穴都有很强的能量,远远高出一般有机污染物的分子链的强度,所以可以轻易将有机污染物分解成最原始的状态。也就是说,在光催化反应体系中,这二种氧化方式产生的羟基自由基(·OH)、超氧粒子自由基(·O2-)以及(·OOH)自由基具有很强的氧化能力,几乎无选择地氧化有机污染物,使水中的难降解的大分子有机污染物降解为小分子产物,甚至直接氧化成为CO2和H2O,即发生了光催化降解的反应过程,二氧化钛光催化降解主要反应过程如图1所示。同时光生空穴也能获取吸附在TiO2表面的有机污染物中的电子,直接氧化部分有机物,生成小分子或者CO2和H2O。
图1 二氧化钛光催化机理示意图
二、实验提要
纳米二氧化钛催化剂在紫外光hv的照射作用下,其光催化降解机理用反应式表示如下:
TiO2 + hv→ TiO2 + h+VB + e-CB
H2O + h+VB→ H+ + OH-
OH- + h+VB→ ·OH
O2 + e-CB→ ·O2-
H2O + ·O2-→ ·OOH + OH-
2·OOH → H2O2 + O2
·OOH + H2O + e-CB→ H2O2 + OH-
H2O2 + e-CB→ ·OH + OH-
工业废水、农业废水和生活废水中含有大量的有机污染物,尤其是工业废水中还含有大量的有毒、有害物质。在目前的工业废水处理中,染料废水是较难处理的一类废水,如酸性红G等酸性染料大部分属于偶氮染料,属于难降解的有机污染物,主要用于制革、印染等工业,其在生产和应用过程中严重地污染了环境,是一种具有代表性的工业生产染色后排放的工业废水。
作为性能优异的光催化剂——纳米TiO2,通常以悬浮或固定形式进行废水处理,悬浮体系是直接将粉状的纳米TiO2与染料废水混合,在实验进行过程中通过超声搅拌或者鼓入空气及氧气的办法,使TiO2催化剂粉体在染料溶液中均匀分散。在这种催化反应体系中,纳米TiO2以较大比表面积与废水中的有机污染物充分接触,将污染物最大限度地吸附在它的表面。同时又以其纳米粒子较大的比表面积吸收紫外光的能量,快速地降解吸附在其表面的污染物达到光催化的目的。
本实验采用纳米TiO2作为一种光反应催化剂,应用于光催化降解亚甲基蓝、酸性红G染料等配制的模拟废水中的有机污染物作为测试反应,在光催化反应装置中,通过紫外光的照射作用后,考察其纳米TiO2对染料废水的催化活性。通过实验了解半导体氧化物光催化氧化技术及其在环保方面的应用,了解光催化剂TiO2对模拟废水降解的过程,掌握用紫外-可见分光光度计检测TiO2光催化剂处理模拟废水性能的测试方法。
三、实验内容
1.药品
纳米二氧化钛粉末(Degussa公司,P-25),亚甲基蓝(分析纯),酸性红G(分析纯),蒸馏水。
2.仪器
Lambda35紫外-可见分光光度计(美国PE),LG10-2.4A台式高速离心机(北京雷勃尔离心机有限公司),紫外光源(XQ 350-500W可调型氙灯电源),85-1磁力搅拌器,KQ-250E型超声波清洗器,电子天平,离心试管,烧杯,容量瓶,
移液管,量筒,滴定管等。
(1) Lambda35紫外-可见分光光度计
紫外-可见分光光度计的基本组成部件一般都由五部分组成:
光源——单色器——样品池——检测器——记录与数据处理系统
光源:在可见光区(400 nm—800 nm)测试时,一般用钨灯或钨卤素灯作光源;在近紫外区(200 nm —400nm)测试时,常采用氢灯或氘灯作光源。
单色器:将光源发出的连续光谱分解为单色光的装置。
样品池:用来放被测样品和参比物的装置。
检测器:将透过吸收池的光信号变为电信号(一般用光电倍增管)。
记录与数据处理系统:将记录的电信号进行数据分析处理,并用图形和数字的形式显示测量结果。
紫外-可见分光光度计的理论基础是朗伯-比尔光吸收定律,即当一束平行单色光通过有吸光物质的稀溶液时,溶液的吸光度与溶液的浓度、液层的厚度乘积成正比,用公式表示为:
A = kCL
式中:k为吸光物质摩尔系数
C为溶液的浓度,mol/L
L为比色皿的厚度,cm。
(2) 光催化反应装置
光催化反应装置基本原理如图2所示:
图2 光催化反应装置图
3.实验步骤
(1)TiO2光催化降解亚甲基蓝溶液实验
A.亚甲基蓝溶液浓度与吸光度关系工作曲线测定
配制亚甲基蓝溶液浓度分别为0(mg/L)、5(mg/L)、10(mg/L)……,依次记为标准溶液C0、C1、……C n。
用紫外-可见光分光光度计在波长650nm下,分别测定标准溶液C0、C1、……C n的吸光度。
用吸光度A对标准浓度C(mg/L)作曲线,得到亚甲基蓝标准溶液浓度的工作曲线。
B. TiO2光催化降解亚甲基蓝染料废水的测定
将100(mg/L)亚甲基蓝溶液稀释至20(mg/L)用于光降解实验。
取20(mg/L)亚甲基蓝模拟染料废水100 mL,加入80mg纳米TiO2催化剂,超声搅拌5min左右,使之催化剂分散均匀。
将分散均匀的混合液放入光催化反应装置中进行光降解实验:
a)混合液置于紫外灯光照下,液面距离光源中心25cm左右。
b)打开紫外灯开始计时反应,实验时间为60min。
c)混合液被紫外光照射的同时采用磁力搅拌器进行不停的搅拌,以
保持催化剂处于悬浮状。
d)每间隔10min从光催化反应装置中取样一次(10mL以内)。
取样放入离心机内,以9000r.min速度离心10min,取上层清液。
采用Lambda 35紫外-可见分光光度计在波长650nm处,测定不同时间清液的吸光度A,观察吸光度随紫外光照时间的变化。
Lambda35紫外-可见分光光度计操作流程:
✧开机,确定仪器与计算机连接。
✧接通电源后,先打开仪器,后打开电脑,预热20分钟。
✧双击“Lambda35”软件程序,自检(程序进行整机初始化)。
✧根据测试需要,在“Application”中选择测试模式,选择“Scan”
(光谱扫描)模式。
✧双击该模式下的方法名(Files)进入,可以在原方法的基础上
¥
5.9
百度文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
纳米二氧化钛
纳米二氧化钛光催化性能的测试
一、实验导读
1.半导体光催化剂
半导体介于导体和绝缘体之间,在未激发的具有能带结构的半导体电子结构中,大多数电子处于价带内,而导带内则因能级较高处于电子缺乏状态。导带和价带的过渡区称为带隙或禁带,其能量之差被称为能隙或禁带宽度,用E g表示,E g的大小代表了价带电子跃迁至导带的难易程度。纳米TiO2等半导体的主要特征——宽禁带的存在,其优异独特的电、磁、光学等性质的表现也是由于它的存在而导致的。
第 1 页
宽禁带半导体其价带上的电子一旦受到一个具有高于其禁带宽度能量hv 的光照射后,能使其分子轨道中的电子(e-)离开价带(VB)跃迁到导带(CB)上,并在价带上产生相应的光生空穴(h+),同时在导带上形成光生电子(e-)。在电场的作用下,两者发生分离,纳米半导体粒子因其尺寸很小,光激发产生的电子和空穴很快到达纳米粒子表面,导致原本不带电的粒子表面的二个不同部分出现了极性相反的二个微区——光生电子和光生空穴。价带空穴是良好的氧化剂,导带电子是良好的还原剂,在半导体光催化反应中,与吸附在催化剂表面的污染物分子发生氧化还原反应。
合理选用冷却润滑液,可以有效地减小切削过程中的摩擦,改善散热条件,而降低切削力,切削温度和刀具磨损,提高刀具耐用度,切削效率和已加工表面质量及降低产品的加工成本。随着科学技术和机械加工工业的不断发展,特别足大量的难切削材料的应用和对产品零件加工质量要求越来越高,这就给切削加工带来了难题。为了使这些难题获得解决,除合理选择别的切削条件外,合理选择切削液也尤为重要。
二、切削的分类
1.水溶液:
其主要成分是水。由于水的导热系数是油的导热系数三倍,所以它的冷却性能好。在其中加入一定量的防锈和汕性添加剂,还能起到一定的防锈和润滑作用。
2.乳化液:
(1)普通乳化液:它是由防锈剂,乳化剂和矿物油配制而成。清洗和冷却性能好,兼有防锈和润滑性能。
(2)防锈乳化液:在普通乳化液中,加入大量的防锈剂,其作用同上,用于防锈要求严格的工序和气候潮湿的地区。
(3)极压乳化液:在乳化液中,添加含硫,磷,氯的极压添加剂,能在切削时的高温,高压下形成吸附膜,起润滑作用。
3.切削油:
(1)矿物油:有5#、7#、10#、20#、30#机械油和柴油,煤油等,适用于一般润滑。
(2)动,植油及复合油:有豆油、菜子油、棉子油、蓖麻油、猪油等。复合油是将动、植、矿三种油混合而成。它具有良好地边界润滑。
(3)极压切削油:它是以矿物油为基础,加入油性,极压添加剂和防锈剂而成。具有动,植物油良好地润滑性能和极压润滑性能。
三、切削液的作用
1.冷却作用:
它可以降低切削温度,提高刀具耐用度和减小工件热变形,保证加工质量。一般的情况下,可降低切削温度50~150℃。
2.润滑作用:
可以减小切屑与前刀面,工件与刀具后刀面的摩擦,以降低切削力,切削热和限制积屑瘤和鳞刺的产生。一般的切削油在200℃左右就失去润滑能力。如加入极压添加剂,就可以在高温(600~1000℃)、高压(1470~1960MPa)条件下起润滑作用。这种润滑叫做极压润滑。
3.清洗作用:
可以将粘附在工件,刀具和机床上的切屑粉末,在一定压力的切削液作用下冲洗干净。
4.防锈作用:
防止机床、工件、刀具受周围介质(水分、空气、手汗)的腐蚀。
四、冷却润滑液中的添加剂
1.油性添加剂:
动植物油、脂肪酸及其皂、脂肪醇及多元醇、酯类、酮类、胺类等化合物。
2.极压添加剂:
含硫、磷、氯等有机化合物。如氯化石腊、四氯化碳、硫化磷酸盐、二烷基二硫代磷酸锌等。含硫的极压切削油在切削过程中和金属起化学反应,生成硫化铁,它的熔点高(1193℃),硫化膜在高温下不被破坏,在切削钢件时,能在1000℃左右的高温下,仍保持润滑性能;含氯的极压添加剂,如氯化石腊(含氯量为40~50%),它的化学性能活泼,在200℃~300℃时和金属起化学反应,氯化物的摩擦系数低于硫化物,有良好地润滑性能,可耐600℃的高温;含磷极压添加剂,与钢铁接触即被吸附,生成磷酸铁化学润滑膜,降低摩擦,比硫氯的效果更为良好。如三种复合使用,润滑效果更为显著。
3.防锈添加剂:
(1)水溶性防锈添加剂:亚硝酸钠、磷酸三钠、磷酸氢二钠、苯甲酸钠、苯甲酸胺、三乙醇胺等。
(2)油溶性防锈添加剂:石油磺酸钡、石油磺酸钠、环烷酸锌、三壬基萘磺酸钡等。
4.防霉添加剂:
苯粉、五氯粉、硫柳汞等化合物。加入万分之几的防霉添加剂,可杀死细菌和抑制细菌生长,以防切削液变质发臭。
5.抗泡沫添加剂:
二甲基硅油。以防止切削液的使用效果。
6.助溶添加剂:
乙醇、丁乙醇、苯二甲酸脂、乙二醇醚等。
7.乳化剂:
(1)阴离子型:石油磺酸钠、油酸钠皂、松香酸钠皂、高炭酸钠皂、磺化蓖麻油、油酸、三乙醇胺。
(2)非离子型:聚氧乙烯脂肪醇醚(平平加)、聚氧乙烯烷基酚醚(0P)、山梨糖醇油酸酯(司本)、聚氧乙烯山梨糖醇油酸酯(吐温)。
8.乳化稳定剂:
乙二醇、乙醇、正丁醇、二乙二醇单正丁基醚、二甘醇、高碳醇、苯乙醇胺、三乙醇胺等。
五、常用冷却润滑液的配方
1.切削油:
(1)矿物油:5#、7#、10#、20#、30#机械油和轻柴油、煤油。机械油的号数越大,粘度越大。
(2)植物油:豆油、菜子油、棉子油、蓖麻油等。
(3)复合油:煤油50%+机械油50%;豆油50%+5。高速机油50%。
(4)极压切削油:
①氯化石腊20%+二烷基二硫代磷酸锌1%+高速机油79%。
②氯化石腊40%+二烷基二硫代磷酸锌1%+石油磺酸钙1%+苯骈三氮唑0.2%+乙醇0.56~0.8%+5#高速机油余量。
③硫化棉子油7%+5#高速机械油93%。
④氯化石腊20%+5#高速机械油80%。
2.乳化液:
(1)普通乳化液:3~5%乳化油(70%+5#机械油+22%脂肪酸及其皂+0.5%松香酸钠皂+4.5%乙醇+3%石油磺酸钠)加水稀释。
(2)极压乳化液:用5~20%极压乳化油(10%石油磺酸钠+6%石油磺酸铅+4%氯化石腊+3%氯化硬脂酸+3%油酸+3%三乙酸胺+20#机械油余量)加水稀释。
(3)防锈乳化液:是在普通乳化液中增加防锈剂的比例而成。
3.水溶液:
(1)用0.25~0.5%亚硝酸钠+0.25~0.3%无水碳酸钠+水余量。
(2)3%油酸钠皂+0.5%亚硝酸钠+水余量。
(3)10%癸二酸+17.5%三乙醇胺+8%亚硝酸钠+水余量。
六、冷却润滑液的选择
1.选择原则
1.1根据工件材料选择
(1)铸铁、青铜在切削时,一般不用切削液。精加工时,用煤油。
(2)切削铝时,用煤油。
(3)切削有色金属时,不宜用含硫的切削液。
(4)切削镁合金时,用矿物油。
(5)切削一般钢时,采用乳化液。
(6)切削难切削材料时,应采用极压切削液。
1.2根据工艺要求和切削特点选择
(1)粗加工时,应选冷却效果好的切削液。
(2)精加工时,应选润滑效果好的切削液。
(3)加工孔时,应选用浓度大的乳化液或极压切削液。
(4)深孔加工时,应选用含有极压添加剂浓度较低的切削液。
(5)磨削时,应选用清洗作用好的切削液。
(6)用硬质合金、陶瓷和PCD、PCBN刀具切削时,一般不用切削液。要用时,必须自始自终地供给。PCBN刀具在切削时,不能用水质切削液。固为CBN在1000℃以上高温时,会与水起化学反应而被消耗。
2.选用
2.1碳钢
(1)粗加工:
a)3~5%乳化液。
b)铅油或红丹粉10%+机械油90%,用于粗车蜗杆。
(2)精加工:
a)10~20%的乳化液。
b)10~15%极压乳化液。
c)硫化棉子油的切削油。
d)20%氯化石腊+80%变压器油或30%豆油+20%煤油+50%高速机械油,用于精车丝杠。
e)ccl420%+80%机械油,用于精车蜗杆。
(3)拉削、攻丝、铰孔:
a)10~20%极压乳化液。
b)含氯的切削油。
c)含硫,氯的切削油。
d)含硫化棉子油的切削油。
e)含硫,氯,磷的切削油。
f)30%煤油+70%机械油,用于光刀。
g)MoS2与机械油混合,用于攻丝。
(4)滚齿,插齿:
a)10~20%极压乳化液。
b)含硫,磷,氯的极压切削油。
(5)钻孔:
a)3~5%乳化液。
b)5~10%极压乳化液。
2.2合金钢
(1)粗加工:
a)3~5%乳化液。
b)5~10%极压乳化液。
(2)精加工:
a)10~20%乳化液。
b)10~15%极压乳化液。
c)含硫化棉子油的切削油。
(3)拉削、攻丝、铰孔:
a)10~20%极压乳化液。
b)含硫、磷、氯极压切削油。
c)40#机械油85%+二烷基二硫代磷酸锌5%+石油磺酸钙7%+二硫化钼1%氯化石腊1%+煤油1%。用于攻丝。效果:Vc从1m/min提高到7m/min,丝锥耐用度提高1~3倍,表面粗糙度由Ra6.3降低为Ra3.2。
(4)滚齿、插齿:
a)10~20%极压乳化液。
b)极压切削油。
(5)钻孔:
a)3~5%乳化液。
b)5~10%极压乳化液。
c)ccl4和煤油的混合液钻膜具钢小孔。
d)氯化石腊20%+二烷基二硫代磷酸锌1%+高速机油79%。
2.3不锈钢
(1)粗加工:
a)3~5%乳化液。
b)10~15%极压乳化液。
c)极压切削油。
d)硫化油(含硫2%的机械油)。
(2)精加工:
a)极压切削油。
b)10~15%乳化液。
c)15~20%极压乳化液。
d)硫化油或硫化油80~85%+ccl415~20%。
e)矿物油78~80%+黑机油或植物油和猪油18%+硫1.7%。
f)机械油90%+ ccl410%。
h)煤油50%+油酸25%或植物油25%。
i)煤油60%+松节油20%+油酸20%。
(3)拉削、攻丝、铰孔:
a)15~20%极压乳化液。
b)极压切削油。
c)硫化豆油或植物油。
d)在硫化油中加ccl410~20%或在猪油中加20~30%ccl4或在硫化油中加10~15%煤油用于铰孔。
e)在硫化油中加入15~20%ccl4或白铅油加机械油或煤油稀释氯化石腊或MoS2切削膏用于攻丝。
(4)滚齿、插齿:
a)20~25%极压乳化液。
b)极压切削油。
(5)钻孔:
a)10~15%乳化液。
b)10~20%极压乳化液。
c)极压切削油。
d)硫化油。
e)MoS2切削剂。
f)用肥皂涂抹在小钻头上,用于在台钻小孔。
2.4高温合金
(1)粗加工:
a)3~5%乳化液。
b)10~15%极压乳化液。
c)极压切削油。
d)硫化油。
e)硫酸钾2%+亚硝酸钾1%+三乙醇胺7%+硼酸7~10%+甘油7~10%+水余量。
f)葵二酸7~10%+亚硝酸钠5%+三乙醇胺7~10%+硼酸7~10%+甘油7~10%+水余量。
(2)精加工:
a)10~25%乳化液。
b)15~20%极压乳化液。
c)极压切削油。
d)煤油75%+油酸25%。
(3)拉削、攻丝、铰孔:
a)10~20%极压乳化液。
b)极压切削油。
c)参照不锈钢所用切削液。
d)防锈和电解切削液也适合于拉削和铰孔。
(4)钻孔:
a)10~15%乳化液。
b)10~20%极压乳化液。
c)极压切削油。
d)硫化油。
e)MoS2切削剂。
2.5钛合金
(1)粗加工:
a)3~5%乳化液。
b)极压乳化液。
(2)精加工:
a)极压切削油(石油磺酸钠10%+油酸3%+石油磺酸铅6%+三乙醇胺3.5%氯化石腊4%+氯化硬脂酸3%+20#机械油70.5%)。
b)极压水溶液(氯化脂肪酸,聚氯乙烯0.5~0.8%+磷酸三钠0.5%+三乙醇胺1~2%+亚硝酸钠1.2%+水余量)。
c)CCl4+等量的酒精。
(3)拉削、攻丝、铰孔:
a)极压切削油。
b)蓖麻油。
c)油酸。
d)硫化油。
e)氯化油
f)蓖麻油60%+煤油40%
g)聚醚30%+酯类油30%+7#机械油30%+防锈剂与抗泡剂10%,用于拉削。
(4)钻孔:
a)极压乳化液。
b)极压切削油。
c)电解切削液(癸二酸7~10%+三乙醇胺7~10%+甘油7~10%+硼酸7~10%亚硝酸钠3~5%+余下水)。
d)硫化油。
e)30#机械油60%+煤油40%或30#机械油70%+煤油30%。
2.6铸铁、黄铜
(1)粗加工:
a)10~15%乳化液。
(2)精加工:
a)煤油。
b)煤油与矿物油的混合油。
(3)拉削、攻丝、铰孔:
a)10~15%乳化液。
b)10~20%极压乳化液。
c)煤油。
d)煤油与矿物油的混合油。
2.7紫铜
(1)粗、精加工:
a)3~5%乳化液。
b)煤油。
c)煤油与矿物油的混合油。
d)菜子油。
(2)滚齿、插齿:
a)10~25%乳化液。
b)10~20%极压乳化液。
c)煤油。
d)煤油与矿物油的混合油。
(3)钻孔:
a)3~5%乳化液。
b)煤油。
c)煤油与矿物油的混合油。
2.8铝及其合金
(1)粗、精加工:
a)3~5%乳化液。
b)煤油。
c)煤油与矿物油的混合油。
d)菜子油。
(2)拉削、攻丝、铰孔、滚齿、插齿:
a)10~15%乳化液。
b)10~15%极压乳化液。
c)煤油。
d)煤油与矿物油的混合油。
(3)钻孔:
a)3~5%乳化液。
b)煤油与矿物油的混合油。
C)煤油。
2.9青铜
(1)粗精加工及钻孔:
a)一般不用切削液。可用3~5乳化液。
(2)拉削、攻丝、铰孔、滚齿、插齿
a)10~20%乳化液。
b)10~15%极压乳化液。
c)含氯的切削油。
2.10高强度钢
采用合金钢的切削液。用豆油或菜子油攻丝较好。
2.11钼
用ccl4加20#机械油或用MoS2润滑脂。
2.12纯铁
用碳素钢的切削液。精加工时,可用酒精稀释蓖麻油作切削剂。
2.13橡胶
切削时用酒精或蒸馏水。
磨削时,用苏打1%+亚硝酸钠0.25~0.5%+甘油0.5~1%+余下水。
附:
一、固体润滑剂——MoS2
1.特点:
MoS2的摩擦系数很小,仅0.05~0.09,它的润滑膜有很高的抗压能力及附着能力,粘附在金属表面的二硫化钼薄膜,能承受3500MPa的压力不被破坏;有很高的化学稳定性,不易与酸碱起作用;温度稳定性好,在400℃左右才分解,当二硫化铝混于油或脂中,与空气接触不充分,氧化温度还可以提高。
2.应用:
它有油剂,水剂和润滑脂三种,也可将二硫化钼与硬脂酸和石腊制成腊笔。用时将二硫化钼润滑剂涂在刀具表面上,可以成倍地提高刀具耐用度和降低工件表面粗糙度,降低切削力,切削热,抑制积屑瘤的产生。
二、MoS2在切削中的作用
1.在车削方面:
(1)在刀具上涂MoS2,刀具耐用度可提高一倍以上。
(2)在精车蜗杆时,在切削剂中加2%的MoS2,可降低工件表面粗糙度。
(3)铰65Mn孔时,在乳化液中加1%MoS2或铰不锈钢孔时,在乳化液中加3%MoS2,不仅工件表面粗糙度低,而且刀具耐用度高。
2.在磨削方面:
在砂轮表面上涂上MoS2,工件表面粗糙度可降低一级。
3.在切削齿轮方面:
在硫化油中加0.5~1%MoS2油剂后,切屑瘤可消除。
4.在复杂刀具方面:
在拉削和推削加工时,在原切削液中添加15~20%的MoS2油剂后,刀具寿命提高近60倍,工件表面粗糙度可降一级。
5.在攻丝方面:
它是润滑性能良好的攻丝切削剂。特别是在挤压攻丝时,唯有MoS2的润滑效果最好。
6.在锯切方面:
在锯条上涂上MoS2后,锯切时噪音小,锯条不易损坏。
7.在难切削材料方面:
如切削钛合金,高温合金,不锈钢时,在刀具上涂MoS2,效果也十分好。