建材秒知道
登录
建材号 > 乙酸 > 正文

乙酸乙酯能与异氰酸酯发生反应吗

超帅的大地
干净的乌龟
2023-01-27 18:32:39

乙酸乙酯能与异氰酸酯发生反应吗

最佳答案
苗条的电源
大力的过客
2025-07-16 17:08:43

有一定的反应性,只不过位阻效应引起仲羟基活性较低。而实际上异丙醇与异氰酸酯的反应,在锡催化剂存在下,反应速率比胺与同样的异氰酸酯的反应慢很多,时间很长,并且反应速率依赖于醇的浓度。

给你几个较常见的衍生反应作参考吧。

1、苯基异氰酸酯与异丙醇反应生成苯胺灵;

2、由3-氯苯基异氰酸酯与异丙醇作用制得氯苯胺灵

以上两个反应条件比较温和,一般工业上的条件就可以做到,但是由于产率较低,所以上述方法并非工业制备的常用方法。

由上述知异氰酸酯根和异丙醇的反应虽然可以发生,但是不论是哪种异氰酸酯,反应条都不容易进行。。。

最新回答
陶醉的蛋挞
拉长的钢笔
2025-07-16 17:08:43

基于两个概念,以90%的产率设计和合成了4(丙炔-2-基氧基苯基)吡啶(4-(Prop-2-ynyloxy)pyridine(PP))(图S1)。首先,它含有一个用于Ag NP表面改性的附着的吡啶基团;其次它具有用于“点击”反应的端乙炔基团。PP-Ag NPs是在存在4(丙炔-2-基氧基苯基)吡啶溶液的情况下,通过硝酸银与硼氢化钠在室温下反应2h而在水中得到的。叠氮乙酸乙酯(图S2)和催化数量的CuSO4和抗坏血酸钠被添加到上面的PP-Ag NPs溶液中,并在60℃下搅拌2h(图S3)。最后,合成的三氮唑酯改性的银纳米粒子(TE-Ag NPs)通过反复的离心过滤和在水中在分散而进行提纯(方案1)。

合成的银纳米粒子用TEM(扫描电子显微镜)、FT-IR(傅立叶变换红外光谱仪)和UV-vis spectroscopy (紫外可见光谱仪)进行表征。TEM图像表明,TE-Ag NPs在含水溶液中是高度分散而均匀的(图S4)。PP-Ag NPs和叠氮乙酸乙酯之间的点击反应(图1a)由红外光谱仪验证了引起了环加成反应产物。由于端乙炔在2133cm-1处的峰值,图1b清楚表明得到了PP-Ag NPs。如图1c示出的那样,TE-Ag NPs的红外光谱表明了叠氮化物(2110 cm-1)和乙炔(2133 cm-1)的峰值都消失了,

中国武汉(430079)华中师范大学化学学院,教育部农药与化学生物学重点实验室(CCNU)

E-mail: lhbing@mail.ccnu.edu.cn

Tel: þ86 27 67866423

电子辅助资料(ESI)可获得:实验细节和额外数据。参见DOI:10.1039/b908761c

方案1 三氮唑酯改性银纳米粒子的合成

4812 | Chem. Commun., 2009, 4812–4814 This journal is c The Royal Society of Chemistry 2009

4812 化学通讯,2009,4812-4814,本杂志是c 皇家化学学会2009

2110 cm-1)和乙炔(2133 cm-1)的峰值都消失了,而显示出了新的酯的峰值(1635 cm-1),这表明了酯的基团已经通过点击化学成功地附着在Ag-NPs的表面。如图2所示的那样,TE-Ag NPs在室温下可以稳定约10天而不聚集,不过PP-Ag NPs只能保持一天。这是由于TE-Ag NPs的酯基团比PP-Ag NPs的端乙炔基团更亲水。对pH值对TE-Ag NPs吸光度的影响作了研究(图S5)。TE-Ag NPs在3.0-12.0的间隔期内是相当稳定的。

欢呼的饼干
超帅的汉堡
2025-07-16 17:08:43

化学方程式为:CH₃CHO+HCN→CH₃-CH(OH)-CN。

乙醛和氢氰酸的反应是加成反应,CN基团加到碳上,H加到氧上。

离子型加成反应是化学键异裂引起的,加成反应进行后,重键打开,原来重键两端的原子各连接上一个新的基团。

能发生加成反应的官能团:碳碳双键、碳碳三键、碳氧双键、碳氮三键、苯环。

乙醛的分子结构:甲基C原子以sp3杂化轨道成键、醛基C原子以sp2杂化轨道成键(-CHO)、分子为极性分子。

扩展资料

2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,与酒精饮料摄入有关的乙醛在一类致癌物清单中、乙醛在2类致癌物清单中。

乙醛的主要用途

有机合成中,乙醛是二碳试剂、亲电试剂,看作CH₃CH(OH)的合成子,具原手性。它与三份的甲醛缩合,生成季戊四醇C(CH₂OH)₄,与格氏试剂和有机锂试剂反应生成醇。

Strecker氨基酸合成中,乙醛与氰离子和氨缩合水解后,可合成丙氨酸。乙醛也可构建杂环环系,如三聚乙醛与氨反应生成吡啶衍生物。

此外,乙醛可以用来制造乙酸、乙醇、乙酸乙酯,农药DDT就是以乙醛作原料合成的。乙醛经氯化得三氯乙醛,三氯乙醛的水合物是一种安眠药。

参考资料来源:百度百科--加成反应

参考资料来源:百度百科--乙醛

迷人的小白菜
妩媚的火龙果
2025-07-16 17:08:43
1. _ 掌握羧基的结构和羧酸的化学性质

2._掌握诱导效应和共轭效应对羧酸酸性的影响

3._ 掌握羧酸的制备方法

4, 了解重要的羧酸的主要用途

5._ 了解二元羧酸取代羧酸的特性反应

学习要求

学习内容

羧酸化合物的简介

羧酸的分类,命名和结构

羧酸的物理性质和光谱性质

羧酸的化学性质

羧酸的来源和制备

重要的一元羧酸

二元羧酸

取代酸

酸碱理论

化学性质一览表

羧酸可看成是烃分子中的氢原子被羧基(-COOH)取代而生成的化合物.其通式为RCOOH.羧酸的官能团是羧基.

布洛芬

阿司匹林

羧酸是许多有机物氧化的最后产物,它在自然界普遍存在(以酯的形式),在工业,农业,医药和人们的日常生活中有着广泛的应用.

羧酸化合物的简介

故羧基的结构为一 P-π共轭体系

_

第一节 羧酸的分类,命名和结构

一,结构

当羧基电离成负离子后,氧原子上带一个负电荷,更有利于共轭,故羧酸易离解成负离子

_

由于共轭作用,使得羧基不是羰基和羟基的简单加合,所以羧基中既不存在典型的羰基,也不存在着典型的羟基,而是两者互相影响的统一体.

羧酸的性质可从结构上预测,有以下几类:

还原反应

二,命名

1,俗名

酒石酸 马来酸

蚁酸,

蚁酸 安息香酸 草酸 琥珀酸(丁二酸)

柠檬酸(3—羟基—3—羧基戊二酸)

肉桂酸(3—苯基丙烯酸)

()

a.含羧基的最长碳链作为母体,按照主链碳原子数目命名为'某'酸 .

b.编号.从羧基C原子开始编号.(用阿拉伯数字或希腊字母.)

c. 如有不饱和键要标明烯(或炔)键的位次.并主链包括双键和叁键.将取代基的位次,数目,名称依次写在母体名称前面.,数目,名称依次写在母体前面

d. 脂环族羧酸.简单的在脂环烃后加羧酸二字,复杂的环可作为取代基.

e.芳香酸可作脂肪酸的芳基取代物命名.

f.多元羧酸:选择含两个羧基的碳链为主链,按C原子数目称为某二酸.

2,系统命名法

-乙氧基乙酸

4-甲基-4-苯基-2-戊烯酸

丙醛酸

(3-氧代丙酸或3-羰基丙酸)

3-丁酮酸

(3-氧代丁酸或乙酰乙酸)

(1R, 3R)-1,3-环己烷二羧酸

三,分类

1.按烃基的种类可分为:

a.脂肪族羧酸:饱和羧酸,不饱和羧酸

b,脂环族羧酸

c,芳香酸

2.按羧基数目可分为:一元羧酸,二元羧酸,多元羧酸_

_

饱和酸

不饱和酸

芳香酸

一元酸

乙酸

丙烯酸

苯甲酸

二元酸

乙二酸

顺丁烯二酸

邻二苯甲酸

溶解度

羧酸的物理性质

物态:C1~C3 有刺激性酸味的液体,溶于水.

C4~C9 有酸腐臭味的油状液体,难溶于水.

>C9 腊状固体,无气味.

二元羧酸,芳酸为晶体 .

羧酸是极性分子,能与水形成氢键,故低级一元酸(C1~C4)可与水互溶,但随分子量↑,在水中的溶解度↓,从正戊酸开始在水中的溶解度只有3.7 %,>C10的羧酸不溶于水.二元酸易溶于水,芳酸的溶解度也很小.苯甲酸的溶解度为 0.34g / 100gH2O

熔,沸点

①熔点:一元羧酸从C6开始,随分子量↑,呈锯齿形上升.偶数碳原子羧酸的m.p>相邻两个同系物的m.p.出现熔点双曲线.主要是偶数碳的对称性高,分子在晶体中排列整齐,晶格能较大,熔点较高.

②沸点

直链饱和一元羧酸的沸点较分子量相近的醇要高.如:甲酸,乙醇分子量均为46,沸点为100.5℃,78.3℃乙酸,丙醇分子量为60,沸点为117.9℃,97.2℃.

主要原因为:羧酸以氢键彼此缔合, a) 此键键能大于醇之间氢键的键能.(酸中的氢键键能: 30kJ / mol ,醇中氢键键能:25kJ / mol .)b) 低级酸在蒸汽中也是以二聚体存在,所以沸点高.

IR:反映出-C=O和-OH的两个官能团

RCH2COOH R2CHCOOH

1HNMR:RCOOH

羧酸的光谱性质

羧酸的化学性质

由于共轭作用,使得羧基不是羰基和羟基的简单加合,所以羧基中既不存在典型的羰基,也不存在着典型的羟基,而是两者互相影响的统一体.

羧酸的性质可从结构上预测,有以下几类:

一,酸性

二,羧基上的羟基(OH)的取代反应

三,脱羧反应

四,α-H的卤代反应

五,羧酸的还原

羧酸的酸性比水,醇强,甚至比碳酸的酸性还要强.

羧酸离解后生成的RCOO- 负离子,由于共轭效应的存在,氧原子上的负电荷则均匀地分散在两个原子上,因而稳定,容易生成.

一,酸性

羧酸的酸性表现在:

羧酸能与碱作用成盐,也可分解碳酸盐.

此性质可用于醇,酚,酸的鉴别和分离,不溶于水的羧酸既溶于NaOH也溶于NaHCO3,不溶于水的酚能溶于NaOH不溶于NaHCO3,不溶于水的醇既不溶于NaOH也溶于NaHCO3.含羧基的有机物,在碱中可增加水溶性.如:青霉素G是含羧基的有机物,不溶于水.一般制成钾钠盐增加水溶性,易于吸收.

影响羧酸酸性强度的因素

1,电子效应对酸性的影响

2,取代基位置对苯甲酸酸性的影响

3,场效应的影响

1,电子效应对酸性的影响

1°吸电子诱导效应使酸性增强.

FCH2COOH >ClCH2COOH >BrCH2COOH >ICH2COOH >CH3COOH

pKa值 2.66 2.86 2.89 3.16 4.76

2°供电子诱导效应使酸性减弱.

CH3COOH >CH3CH2COOH >(CH3)3CCOOH

pKa值 4.76 4.87 5.05

3°吸电子基增多酸性增强.

ClCH2COOH >Cl2CHCOOH >Cl3CCOOH

pKa值 2.86 1.29 0.65

1)诱导效应

2) 共轭效应 当羧基能与其他基团共轭时,则酸性增强

4°吸电子基的位置距羧基越远,酸性越小.

CH3COOH +C

④ (OH) -I RCH2OH >R2CHOH >R3COH

醇相同时 HCOOH >CH3COOH >RCH2COOH >R2CHCOOH >R3CCOOH

(3) 成酯方式

酯化时,羧酸和醇之间脱水可有两种不同的方式:

究竟按哪种方式脱水,与羧酸和醇的结构及反应条件有关.经同位素标记醇的办法证实:

Ⅰ 伯醇和仲醇与羧酸的酯化是按酰氧键断裂进行的.

Ⅱ 叔醇与羧酸的酯化是按烷氧键断裂进行的.

H2O中无O18,说明反应为酰氧断裂.

(4)酯化反应历程

1°,2°醇为酰氧断裂历程,

3°醇(叔醇)为烷氧断裂历程.

CH3COOH + SOCl2 CH3COCl + SO2 + HCl

亚磷酸不易挥发,故该法适用于制备低沸点酰氯.

磷酰氯沸点较低(105.3℃),故适用于制备高沸点酰氯

该法的副产物均为气体,有利于分离,且产率较高.

2.酰卤的生成

羧酸与PX3,PX5,SOCl2作用则生成酰卤.

因乙酐能较迅速的与水反应,且价格便宜,生成的乙酸有易除去,因此,常用乙酐作为制备酸酐的脱水剂.

1,4和1,5二元酸不需要任何脱水剂,加热就能脱手生成环状(五元或六元)酸酐.

3.酸酐的生成

羧酸在脱水剂作用下加热,脱水生成酸酐.

不对称酸酐用羧酸盐与酰氯反应制备

例如:

_

二元酸的二铵盐受热则发生分子内脱水兼脱氨,生成五元或六元环状酰亚胺.

4.酰胺的生成

在羧酸中通入氨气或加入RNH2,R2NH ,可得到羧酸铵盐,铵盐热解失水而生成酰胺.

_

_

三,脱羧反应

羧酸在一定条件下受热可发生脱羧反应.

饱和一元羧酸在加热下较难脱羧,但低级羧酸的金属盐在碱存在下加热则可发生脱羧反应.

洪塞迪克尔(Hunsdiecker)反应:羧酸的银盐在溴或氯存在下脱羧生成卤代烷的反应.

_此反应可用来合成比羧酸少一个碳的卤代烃.

羧酸与 HgO + Br2 也可得卤烃,称为 克利斯脱反应

羧酸与 (CH3COO)4Pb ·LiCl得氯代烃 称为 柯奇反应

一元羧酸的α碳原子上连有-NO2,-C≡N,

-CO-,-Cl 等强吸电子集团时,易发生脱羧.

某些芳香族羧酸不但可以脱羧,且比饱和一元酸容易.

现可采用气相催化脱羧有羧酸直接来制备酮.

电解羧酸盐溶液可在阳极发生烷基的偶合,生成烃,

该反应称为Kolbe反应.

Kolbe反应用于二元酸单酯电解生成长链二元酸酯也

是成功的例子之一.

脂肪族羧酸的α- 氢原子也可被卤原子取代,但其反应活性要比醛,酮低的多,通常要在少量红磷,硫等催化剂存在下方可进行.

控制条件,反应可停留在一取代阶段.

四,α-H的卤代反应

α-卤代酸很活泼,可以进行亲核取代反应和消除反应.如:

羧酸不易被还原.但在强还原剂LiAlH4作用下,羧基可被还原成羟基,生成相应的1°ROH

该法不仅产率高,而且不影响C=C和C≡C的存在,可用于不饱和酸的还原.

五,羧酸的还原

乙硼烷也可将羧基还原为伯醇

羧酸的来源和制备

来源: 羧酸广泛存在与自然界,常见的羧酸几乎都有俗名.自然界的羧酸大都以酯的形式存在于油,脂,(高级脂肪酸甘油酯)蜡(高级脂肪酸高级一元醇酯)中.油,脂,蜡水解后可以得到多种羧酸的混合物.

制法:

一,氧化法

二,羧化法

三,水解法

_

(一)烃的氧化——有α-H的芳烃才能氧化为苯甲酸

(二) 伯醇或醛的氧化——制备同碳数的羧酸

一.氧化法

甲基酮氧化——制备减少一个碳原子 的羧酸

(四) 烯烃,炔烃的氧化——适用于对称烯烃,炔烃和末端烯烃,炔烃

(五) 无α— H 的醛在浓碱中加热,可得酸和醇

环酮可被氧化为内酯,进而被氧化为二酸

(三).酮的氧化

二,羧化法

(一) Grignard试剂与CO2作用——制备增加一个碳原子的羧酸

(二)烯烃羰基化法——制备增加一个碳原子的羧酸

烯烃在Ni(CO)4催化剂的存在下吸收CO和H2O而生成羧酸.

1°,2°,3°RX都可使用.但乙烯式卤代烃难反应.

三,水解法

此法仅适用于1°RX(2°,3°RX 与NaCN作用易发生消除反应).

_

1._

(二)羧酸衍生物的水解

油脂和羧酸衍生物得羧酸,及副产物甘油和醇.

(三)通过乙酰乙酸乙酯,丙二酸二乙酯合成各种羧酸.

(四) Kolbe-Schmitt反应——制备增加一个碳原子酚酸

(一) 腈的水解——制备增加一个碳原子的羧酸

重要的一元羧酸

甲酸

1.结构

2.特性

① 甲酸的酸性显著高于其它饱和一元酸

② 甲酸具有还原性,能发生银镜反应.

③ 甲酸也能使高锰酸钾溶液退色.

④ 甲酸具有杀菌力,可作消毒或防腐剂.

⑤ 甲酸与浓硫酸加热,则分解生成一氧化碳和水.

乙酸 ,苯甲酸

3. 制法

甲酸的水溶液不能用蒸馏的方法得到纯甲酸,要用

无水甲酸钠加入含硫酸的甲酸中蒸馏得到.或

一,物理性质

1.物态 二元羧酸都是固态晶体,熔点比相近分子量的一元羧酸高得多.随碳原子数目的增加,熔点呈下降趋势,偶数碳比奇数为高.

2.溶解度 比相应的一元酸大,易溶于乙醇,难溶于其他有机溶剂.

二,二元羧酸的化学性质

三,重要的二元羧酸

乙二酸(草酸)具有还原性,易被氧化成二氧化碳和水.

己二酸

丁烯二酸

苯二甲酸

二元羧酸

二,二元羧酸的化学性质

1.具有羧酸的通性

对酸性而言 Ka1 >Ka2或 pKa1〈 pKa2

对于顺与反式丁烯二酸

对于酸性:Ka1(顺) 〉Ka1(反) Ka2(反)〉Ka2(顺)

顺反式结构在其他物理性质方面也有差异,如:水溶性顺式大于反式(顺式偶极矩大),熔点反式高于顺式(反式对称性高,晶格能大)

2.二元羧酸受热反应的规律

Blanc规则(布朗克) :在可能形成环状化合物的条件下,总是比较容易形成五元或六元环状化合物(即五,六元环容易形成).

(1) 乙二酸,丙二酸受热脱羧生成一元酸

(2)丁二酸,戊二酸受热脱水(不脱羧)生成环状酸酐

(3)己二酸,庚二酸受热既脱水又脱羧生成环酮

3.与二元醇反应

二元酸与二元醇反应可生成环酯(但仅限于五元环或六元环)

也可以生成聚酯.

(1) 乙二酸,丙二酸受热脱羧生成一元酸,

_

(2)丁二酸,戊二酸受热脱水(不脱羧)生成环状酸酐,

(3)己二酸,庚二酸受热既脱水又脱羧生成环酮,

取代羧酸

羧酸分子中烃基上的氢原子被其他原子或子团取代后形成的化合物称为取代酸.

取代酸有卤代酸,羟基酸,氨基酸,羰基酸等,其中卤代酸,氨基酸将在有关章节中讨论,这里只讨论羟基酸和羰基酸.

一,羟基酸

1.制法

2.羟基酸的性质

3.重要的羟基酸 (自学)

二, 羰基酸

分子中含有羰基,有含有羧基的化合物称为羰基酸,如丙酮酸,3-丁酮酸等.

1)卤代酸水解 用碱或氢氧化银处理α,β,γ等卤代酸时可生成对应的羟基酸.

3)列佛尔曼斯基(Reformatsky)反应 制备β-羟基酸的方法.

2) 氰醇水解 制α-羟基酸

1,羟基酸制法

_

具有醇和酸的共性,也有因羟基和羧基的相对位置的互相影响的特性反应.主要表现在受热反应规律上.

_

β-羟基酸受热发生分子内脱水,主要生成α-β

不饱和羧酸.

_

α-羟基酸受热时,两分子间相互酯化,生成交酯.

2.羟基酸的性质

γ-和δ-羟基酸受热,生成五元和六元环内酯.

α-和β-羟基酸还有被氧化后再脱羧的性质

α-和β-羟基酸的降解反应:

这是制备高级脂肪醛酮的方法

_____ 自然界中的羟基酸

① 乳酸:

结构:

存在:酸牛奶(外消旋),蔗糖发酵(左旋的),肌肉中(右旋的).

用途:具有很强的吸湿性工业上作除钙剂(钙盐不溶于水)食品工业中作增酸剂钙盐可补钙.

② 苹果酸(α-羟基酸)

结构: _

存在:未成熟的果实内植物的叶子中自然界中存在的是左旋体.

用途:制药和食品工业.

③ 洒石酸

结构

_

存在:多种水果中或以盐的形式存在于水果中.

用途:可用作酸味剂,其锑钾盐有抗血吸虫作用.

④ 柠檬酸

结构:

_

存在:多种植物的果实中动物组织与体液中,为无色晶体.

用途: 食品工业的调味品(有酸味),也用于制药业.

_

注意:羟基与羧基间的距离大于四个碳原子时,受热则生成长链的高分子聚酯.

α-和β-羟基酸还有羟基被氧化后再脱羧的性质.

讨论: 写出下列反应的产物℃

讨论:下列反应的产物是

1,羰基酸具有羰基和羧酸的典型反应.

2,_ 酮酸的特性反应

α-酮酸与稀硫酸共热时,脱羧生成醛.

β-酮酸受热易脱羧生成酮._

_

二, 羰基酸

酸碱理论

一,布伦斯特酸碱理论

凡是能释放质子的任何分子或离子都是酸.

布伦斯特认为酸碱强度可根据电离常数来比较

HAc Ka=1.7*10-5

H2O Ka=1.8*10-16

二,路易斯酸碱理论

路易斯酸是电子对的接受体

路易斯碱是电子对的给予体

化学性质一览表

酸性与成盐

2. 酸酐的生成

1. 酰卤的生成

羧酸衍生物的生成

如:

α-H 卤代反应

脱 羧 反 应

4. 酰胺的生成

3. 酯的生成

背后的毛豆
闪闪的豆芽
2025-07-16 17:08:43
离子方程式,即用实际参加反应的离子符号表示离子反应的式子。

是指可溶性物质可拆的反应。离子方程式不仅表示一定物质间的某个反应,而且表示同一类型的离子反应。

例如,H++OH-=H2O可以表示许多强酸跟强碱的中和反应。

多种离子能否大量共存于同一溶液中,归纳起来就是:一色,二性,三特殊,四反应。书写离子方程式,首先要判断反应是否属于离子反应。

例如,乙酸跟碳酸钠反应是离子反应,乙酸跟乙醇生成乙酸乙酯和水的反应不是离子反应,前者能写离子方程式,后者则不能。

贪玩的大山
合适的冥王星
2025-07-16 17:08:43
硫代硫酸铵又称铵海波,性质:白色结晶,比重1.679,极易溶于水,100℃时溶解度103.3g/100ml水。不溶于醇、醚,微溶于丙酮。加热至150℃则分解形成亚硫酸铵、硫黄、氨、硫化氢及水。有潮解性。

制法:碳酸氢铵法。由碳酸氢铵与二氧化硫和水作用生成亚硫酸铵,再与硫黄反应,经过滤、蒸发、冷却结晶、分离,所得硫代硫酸铵。

2(NH4)HCO3+SO2+H20→(NH4)2SO3+2H2O+2CO2

(NH4)2SO3+S→(NH4)2S2O3

硫氰酸铵-NH4SCN

无色、易潮解晶体。相对密度:1.045,熔点:149.60℃,沸点:1700℃。

性状:无色单斜晶系片状或柱状结晶,有光泽.相对密度1.306,熔点约149℃,易容于水、乙醇、甲醇、吡啶和丙酮,难溶于氯仿,乙酸乙酯,溶于水时呈吸热反应,遇铁盐生成血红色的硫氰化铁,与亚铁盐不反应。在日光作用下溶液呈红色,加热至140℃左右时形成硫脲,170℃时分解为氨、二硫化碳和硫化氢。易潮解,应密封保存。

硫氰酸铵的溶解度 :

水温度/ ℃ 0 20 30 4050 6070 80

溶解度g/100gH2O 54.5 62.7 66.5 70.4 74.1 77.7 80.8 81.7

硫酸铵在25 ℃时,溶解度为767g/L ;在0 ℃时,溶解度为697g/L