哪些东西有剧毒
以急性毒性指标为主,适当考虑剧毒物品的理化性质和其它危险性质,进行综合分析、全面权衡,将剧毒物品分为A、B两级。
A级剧毒物品:具有非常剧烈的毒害危险,急性毒性符合5.2项中A级标准的或急性毒性符合5.2项中B级标准,无明显颜色、气味、味道,易被用于投毒破坏的,及具有遇水燃烧、爆炸、催泪等其它危险性质,易引起治安灾害事故的。
B级剧毒物品:具有严重的毒害危险,急性毒性符合5.2项B级标准,可能引起治安灾害事故的。
剧毒物品按照化学类别和毒性大小分为四类。
第1类A级无机剧毒物
第2类A级有机剧毒物
第3类B级无机剧毒物
第4类B级有机剧毒物
剧毒物品品名表
A级无机剧毒物品
▪ 氰化钠 ( A1001 )▪ 氰化钾 ( A1002 )▪ 氰化钙 ( A1003 )
▪ 氰化钡 ( A1004 )▪ 氰化钴 ( A1005 )▪ 氰化亚钴 ( A1006 )
▪ 氰化钴钾 ( A1007 )▪ 氰化镍 ( A1008 )▪ 氰化镍钾 ( A1009 )
▪ 氰化铜 ( A1010 )▪ 氰化银 ( A1011 )▪ 氰化银钾 ( A1012 )
▪ 氰化锌 ( A1013 )▪ 氰化镉 ( A1014 )▪ 氰化汞 ( A1015 )
▪ 氰化汞钾 ( A1016 )▪ 氰化铅 ( A1017 )▪ 氰化铈 ( A1018 )
▪ 氰化亚铜 ( A1019 )▪ 氰化金钾 ( A1020 )▪ 氰化溴 ( A1021 )
▪ 氰化氢 ( A1022 液化的)▪ 氢氰酸 ( A1023 )▪ 三氧化二砷 ( A1024 )
▪ 亚砷酸钠 ( A1025 )▪ 亚砷酸钾 ( A1026 )▪ 五氧化二砷 ( A1027 )
▪ 三氯化砷 ( A1028 )▪ 亚硒酸钾 ( A1030 )▪ 硒酸钠 ( A1031 )
▪ 硒酸钾 ( A1032 )▪ 氧氯化硒 ( A1033 )▪ 氯化汞 ( A1034 )
▪ 氰氧化汞 ( A1035 )▪ 氧化镉 ( A1036 )▪ 羰基镍 ( A1037 )
▪ 五羰基铁 ( A1038 )▪ 叠氮化钠 ( A1039 )▪ 叠氮化钡 ( A1040 )
▪ 叠氮酸 ( A1041 )▪ 氟化氢 ( A1042 无水)▪ 黄磷 ( A1043 )
▪ 磷化钠 ( A1044 )▪ 磷化钾 ( A1045 )▪ 磷化镁 ( A1046 )
▪ 磷化铝 ( A1047 )▪ 磷化铝农药 ( A1048 )▪ 氟 ( A1101 压缩的)
▪ 氯 ( A1102 液化的)▪ 磷化氢 ( A1103 )▪ 砷化氢 ( A1104 )
▪ 硒化氢 ( A1105 )▪ 锑化氢 ( A1106 )▪ 一氧化氮 ( A1107 )
▪ 四氧化二氮 ( A1108 液化的)▪ 二氧化硫 ( A1109 液化的)▪ 二氧化氯 ( A1110 )
▪ 二氟化氧 ( A1111 )▪ 三氟化氯 ( A1112 )▪ 三氟化磷 ( A1113 )
▪ 四氟化硫 ( A1114 )▪ 四氟化硅 ( A1115 )▪ 五氟化氯 ( A1116 )
▪ 五氟化磷 ( A1117 )▪ 六氟化硒 ( A1118 )▪ 六氟化碲 ( A1119 )
▪ 六氟化钨 ( A1120 )▪ 氯化溴 ( A1121 )▪ 氯化氰 ( A1122 )
▪ 溴化羰 ( A1123 )▪ 氰 ( A1124 液化的)
B级无机剧毒物品
▪ 碘化氰 ( B1001 )▪ 砷 ( B1002 )▪ 亚砷酸钙 ( B1003 )
▪ 亚砷酸锶 ( B1004 )▪ 亚砷酸钡 ( B100S )▪ 亚砷酸铁 ( B1006 )
▪ 亚砷酸铜 ( B1007 )▪ 亚砷酸银 ( B1008 )▪ 亚砷酸锌 ( B1009 )
▪ 亚砷酸铅 ( B1010 )▪ 亚砷酸锑 ( B1011 )▪ 乙酰亚砷酸铜 ( B1012 )
▪ 砷酸 ( B1013 )▪ 偏砷酸 ( B1014 )▪ 焦砷酸 ( B1005 )
▪ 砷酸铵 ( B1016 )▪ 砷酸钠 ( B1017 )▪ 偏砷酸钠 ( B1018 )
▪ 砷酸氢二钠 ( B1019 )▪ 砷酸氢二钠 ( B1019 )▪ 砷酸二氢钠 ( B1020 )
▪ 砷酸钾 ( B1021 )▪ 砷酸二氢钾 ( B1022 )▪ 砷酸镁 ( B1023 )
▪ 砷酸钙 ( B1024 )▪ 砷酸钡 ( B1025 )▪ 砷酸铁 ( B1026 )
▪ 砷酸亚铁 ( B1027 )▪ 砷酸铜 ( B1028 )▪ 砷酸银 ( B1029 )
▪ 砷酸锌 ( B1030 )▪ 砷酸汞 ( B1031 )▪ 砷酸铅 ( B1032 )
▪ 砷酸锑 ( B1033 )▪ 三氟化砷 ( B1034 )▪ 三溴化砷 ( B1035 )
▪ 三碘化砷 ( B1036 )▪ 二氧化硒 ( B1037 )▪ 亚硒酸 ( B1038 )
▪ 亚硒酸氢钠 ( B1039 )▪ 亚硒酸镁 ( B1040 )▪ 亚硒酸钙 ( B1041 )
▪ 亚硒酸钡 ( B1042 )▪ 亚硒酸铝 ( B1043 )▪ 亚硒酸铜 ( B1044 )
▪ 亚硒酸银 ( B1045 )▪ 亚硒酸铈 ( B1046 )▪ 硒酸钡 ( B1047 )
▪ 硒酸铜 ( B1048 )▪ 硒化铁 ( B1049 )▪ 硒化锌 ( B1050 )
▪ 硒化镉 ( B1051 )▪ 硒化铅 ( B1052 )▪ 氯化硒 ( B1053 )
▪ 四氯化硒 ( B1054 )▪ 溴化硒 ( B1055 )▪ 四溴化硒 ( B1056 )
▪ 氯化钡 ( B1057 )▪ 铊 ( B1058 )▪ 氧化亚铊 ( B1059 )
▪ 氧化铊 ( B1060 )▪ 氢氧化铊 ( B1061 )▪ 氯化亚铊 ( B1062 )
▪ 溴化亚铊 ( B1063 )▪ 碘化亚铊 ( B1064 )▪ 三碘化铊 ( B1065 )
▪ 硝酸铊 ( B1066 )▪ 硫酸亚铊 ( B1067 )▪ 碳酸(亚)铊 ( B1068 )
▪ 磷酸亚铊 ( B1069 )▪ 铍 ( B1070 粉末)▪ 氧化铍 ( B1071 )
▪ 氢氧化铍 ( B1072 )▪ 氯化铍 ( B1073 )▪ 碳酸铍 ( B1074 )
▪ 硫酸铍 ( B1075 )▪ 硫酸铍钾 ( B1076 )▪ 铬酸铍 ( B1077 )
▪ 氟铍酸铵 ( B1078 )▪ 氟铍酸钠 ( B1079 )▪ 四氧化锇 ( B1080 )
▪ 氯锇酸铵 ( B1081 )▪ 五氧化二钒 ( B1082 )▪ (三)氯化钒 ( B1083 )
▪ 钒酸钾 ( B1084 )▪ 偏钒酸钾 ( B1085 )▪ 偏钒酸钠 ( B1086 )
▪ 偏钒酸铵 ( B1087 )▪ 聚钒酸铵 ( B1088 )▪ 钒酸铵钠 ( B1089 )
▪ 砷化汞 ( B1090 )▪ 硝酸汞 ( B1091 )▪ 氟化汞 ( B1092 )
▪ 碘化汞 ( B1093 )▪ 氧化汞 ( B1094 )▪ 亚碲酸钠 ( B1095 )
▪ 硝普钠 ( B1096 )▪ 磷化锌 ( B1097 )▪ 溴 ( B1098 )
▪ 溴化氢 ( B1099 )▪ 锗烷 ( B1100 )▪ 三氟化硼 ( B1101 )
▪ 三氯化硼 ( B1102 液化的)
A级有机剧毒物品
B级有机剧毒物品
▪ 三氯硝基甲烷 ( B2134 )▪ 二氧化丁二烯 ( B2135 )▪ 4-己烯-1-炔-3-醇 ( B2136 )
▪ 5(氨基)甲基-3-异恶唑醇 ( B2137 )▪ 4,6-二硝基邻甲(苯)酚 ( B2138 )▪ 4,6-二硝基邻甲酚钠 ( B2139 )
▪ 二硝基邻甲酚铵 ( B2140 )▪ 戊硝酚 ( B2141 )▪ 2,4-二硝基酚 ( B2142 )
▪ N-乙烯基乙撑亚胺 ( B2143 )▪ 甲基苄基亚硝胺 ( B2144 )▪ 丙撑亚胺 ( B2145 )
▪ 乳酸苯汞三乙醇胺 ( B2146 )▪ 溴化双吡己胺 ( B2147 )▪ 一氯乙醛 ( B2148 )
▪ 丙烯醛 ( B2149 )▪ 二氯四氟丙酮 ( B2150 )▪ 丙酮氰醇 ( B2151 )
▪ 1-羟环丁-1-丁烯-3,4-二酮 ( B2152 )▪ 2-甲基-1-丁烯-3-酮 ( B2153 )▪ 苯(基)硫醇 ( B2154 )
▪ 2-巯基丙酸 ( B2155 )▪ 乙酸汞 ( B2156 )▪ 乙酸甲氧基乙基汞 ( B2157 )
▪ 氯化甲氧基乙基汞 ( B2158 )▪ 氢氧化苯汞 ( B2159 )▪ 氯化甲基汞 ( B2160 )
▪ 苯乙酸汞 ( B2161 )▪ 甲基汞 ( B2163 )▪ 二甲基汞 ( B2163 )
▪ 甲酸亚铊 ( B2164 )▪ 乙酸亚铊 ( B2165 )▪ 丙二酸铊 ( B2166 )
▪ 硫酸二乙基锡 ( B2167 )▪ 硫酸三乙基锡 ( B2168 )▪ 酸式硫酸三乙基锡 ( B2169 )
▪ 二丁基氧化锡 ( B2170 )▪ 硫酸三甲基锡 ( B2171 )▪ 乙酸三甲基锚 ( B2172 )
▪ 四乙基锡 ( B2173 )▪ 氯甲酸-2-乙基己酯 ( B2174 )▪ 氯甲酸环丁酯 ( B2175 )
▪ 氯甲酸环己酯 ( B2176 )▪ 氯乙酸乙酯 ( B2177 )▪ 氯乙酸乙烯酯 ( B2178 )
▪ 氰甲基乙酸酯 ( B2179 )▪ 氰基甲酸甲酯 ( B2180 )▪ 氯甲酸甲酯 ( B2181 )
▪ 氯甲酸乙酯 ( B2182 )▪ 溴乙酸甲酯 ( B2183 )▪ 溴乙酸乙酯 ( B2184 )
▪ 氯磺酸乙酯 ( B2185 )▪ 3-氯烯腈 ( B2186 )▪ 3-氯丙腈 ( B2187 )
▪ 羟基乙腈 ( B2188 )▪ 甲基丙烯腈 ( B2189 )▪ 丙腈 ( B2190 )
▪ 溴苯乙腈 ( B2191 一溴苯乙腈除外)▪ 丙烯腈 ( B2192 )▪ 异氰酸-3-氯-4-甲苯酯 ( B2193 )
▪ 氟磷酸二乙酯 ( B2194 )▪ 氯代膦酸-L酯 ( B2195 )▪ 2-氯吡啶 ( B2196 )
▪ N-正丁基咪唑 ( B2197 )▪ 三(1—吖丙啶基)氧化膦 ( B2198 )▪ 乙烯砜 ( B2199 )
▪ N—二乙氨基乙基氯 ( B2200 )▪ 乙酰替硫脲 ( B2201 )▪ 癸硼烷 ( B2202 )
▪ 马钱子碱 ( B2203 及其盐)▪ 次乌头碱 ( B2204 及其它乌头类生物碱及其盐)▪ 可待因 ( B2205 及其盐)
▪ 二氢可待因 ( B2206 )▪ 盐酸二氢羟可待因酮 ( B2207 )▪ 乙基吗啡 ( B2208 及其盐)
▪ (盐酸)阿朴吗啡 ( B2209 )▪ 二氢脱氧吗啡 ( B2210 )▪ 罂粟碱 ( B2211 及其它阿片类生物碱(及其盐))
▪ 箭毒 ( B2212 )▪ (氯化)筒箭毒碱 ( B2213 )▪ 氯化琥珀酰胆碱 ( B2214 )
▪ 氢溴酸后马托晶 ( B2215 )▪ 盐酸吐根碱 ( B2216 )▪ 吐根酚碱(盐酸盐) ( B2217 )
▪ 盐酸育亨宾碱 ( B2218 )▪ 氢溴酸加兰它敏 ( B2219 )▪ 绿藜芦生物碱 ( B2220 )
▪ 氯化氨甲酰胆碱 ( B2221 )▪ 其它生物碱 ( B2222 符合B级标准)▪ 美登木素 ( B2301 )
▪ 溴化新斯的明 ( B2302 )▪ 甲基硫酸新斯的明 ( B2304 )▪ 扑疟喹啉 ( B2305 )
▪ 盐酸哌替啶 ( B2306 )▪ 去氧麻黄碱 ( B2307 及其盐酸盐)▪ 丝裂霉素C ( B2308 )
▪ 金霉酸 ( B2309 )▪ 肾上腺素 ( B2310 )▪ 抗霉素A ( B2311 )
▪ 放线菌素 ( B2312 )▪ 放线菌素A ( B2313 )▪ 放线菌素C ( B2314 )
▪ 放线菌素D ( B2315 )▪ 放线菌素J ( B2316 )▪ 山道年 ( B2317 )
▪ 巴豆油 ( B2318 )▪ 溴化吡斯的明 ( B2319 )▪ 乙酰洋地黄毒甙 ( B2320 )
▪ 甲基狄戈辛 ( B2321 )▪ 乙酰地高辛 ( B2322 )▪ 吉他林 ( B2323 )
▪ 沙群海葵毒素 ( B2324 )▪ 赫曲毒素 ( B2325 )▪ 赫曲毒素A ( B2326 )
▪ 赫曲毒素A乙酯 ( B2327 )▪ 环氯素 ( B2328 )▪ 色素霉A3 ( B2329 )
▪ 黄质霉素 ( B2330 )▪ 刺烟氟菌素 ( B2331 )▪ 盐酸库霉素 ( B2332 )
▪ 比赫罗霉素 ( B2333 )▪ 阿布拉霉素 ( B2334 )▪ 左旋溶肉瘤素 ( B2335 )
▪ 黄青霉素 ( B2336 )▪ 强心甙 ( B2337 符合B级标准的)▪ 生物毒素 ( B2337 符合B级标准的)
▪ 抗菌素 ( B2337 符合B级标准的)▪ 卡巴醌 ( B2338 )▪ 丙亚胺 ( B2339 )
▪ 氨氯吡脒(硫酸)苯丙胺 ( B2340 )▪ 杜廷 ( B2341 )▪ 尿嘧啶芳芥 ( B2342 )
▪ 异丙基吗啉 ( B2343 )▪ 羟间唑啉 ( B2344 盐酸盐)▪ 杰莫灵 ( B2345 )
▪ 卡氮芥 ( B2346 )▪ 枸缘酸芬太尼 ( B2347 )▪ 1-(2-氯乙基)-3-(β′-D-吡喃葡萄糖基亚硝基脲)( B2348 )
▪ 法尼林 ( B2349 )▪ 回苏灵 ( B2350 )▪ 阿密替林 ( B2351 盐酸盐)
▪ 酰胺福林一甲烷磺酰盐 ( B2352 )▪ 氯化二烯丙托锯弗林 ( B2353 )▪ 麦角酰二乙酰胺 ( B2354 )
▪ 其它有机物 ( B2355 符合B级标准的)▪ 久效磷 ( B2400 含量>25%)▪ 甲基对硫磷 ( B2401 含量>15%)
▪ 苯硫磷 ( B2402 含量>15%)▪ 水胺硫磷 ( B2403 含量>50%)▪ 蝇毒磷 ( B2404 含量>30%)
▪ 因毒磷 ( B2405 含量>45%)▪ 对溴磷 ( B2406 含量>90%)▪ 保棉磷 ( B2407 含量>20%)
▪ 杀扑磷 ( B2408 含量>40%)▪ 氯亚磷 ( B2409 含量>10%)▪ 威菌磷 ( B2410 含量>20%)
▪ 硫环磷 ( B2411 含量>15%)▪ 甲胺磷 ( B2412 含量>15%)▪ 益棉磷 ( B2413 )
▪ 扑打杀 ( B2414 含量>50%)▪ 碘吸磷 ( B2415 含量>75%)▪ 磷胺 ( B2416 含量>30%)
▪ 毒虫畏 ( B2417 含量>20%)▪ 百治磷 ( B2418 含量>25%)▪ 保米磷 ( B2419 含量>55%)
▪ 丙胺磷 ( B2420 含量>60%)▪ 甲基异柳磷 ( B2421 含量>50%)▪ 异丙胺磷 ( B2422 )
▪ 内吸磷 ( B2423 禁用)▪ 氧乐果 ( B2424 含量>90%)▪ 甲基氧化乐果 ( B2425 含量>25%)
▪ 毒壤磷 ( B2427 含量>30%)▪ 氯甲硫磷 ( B2428 含量>15%)▪ 甲硫磷 ( B2429 含量>10%)
▪ 乙拌磷 ( B2430 含量>15%)▪ 异丙磷 ( B2431 含量>60%)▪ 三硫磷 ( B2432 含量>20%)
▪ 乙硫磷 ( B2433 含量>25%)▪ 氯甲磷 ( B2434 含量>15%)▪ 灭蚜磷 ( B2435 含量>30%)
▪ 地安磷 ( B2436 含量>55%)▪ 保棉丰 ( B2437 )▪ 发果 ( B2438 含量>15%)
▪ 伐线丹 ( B2440 )▪ 甲基硫环磷 ( B2441 含量>90%)▪ 苯线磷 ( B2442 含量>4%)
▪ 0,0-二乙基-S-(对硝基苯基)磷酸酯( B2443 含量>10%)▪ 涕巴 ( B2444 含量>60%)▪ 硫涕巴 ( B2445 含量>65%)
▪ 福太农 ( B2446 含量>15%)▪ 硫吡唑磷 ( B2447 含量>20%)▪ 砜吸磷 ( B2448 含量>95%)
▪ 氨磺磷 ( B2449 含量>80%)▪ 灭克磷 ( B2450 含量>75%)▪ 敌敌磷 ( B2451 含量>15%)
▪ 硫赶甲基内吸磷 ( B2452 含量>80%)▪ 艾氏剂 ( B2453 含量>75%)▪ 异艾氏剂 ( B2454 含量105%)
▪ 狄氏剂 ( B2455 含量>75%)▪ 异狄氏剂 ( B2456 含量>5%)▪ 五氯苯酚 ( B2457 含量>55%)
▪ 五氯酚钠 ( B2458 含量>55%)▪ 赛力散 ( B2459 含量>35%,禁用)▪ 西力生 ( B2460 含量>50%,禁用)
▪ 氰胍甲汞 ( B2461 含量>55%)▪ 己酮肟威 ( B2462 含量>15%)▪ 灭害威 ( B2463 含量>60%)
▪ 灭多威 ( B2464 含量>30%)▪ 自克威 ( B2465 含量>25%)▪ 伐虫脒 ( B2466 含量>40%)
▪ 肟杀威 ( B2467 含量>30%)▪ 抗虫威 ( B2468 含量>10%)▪ 沙线威 ( B2469 含量>10%)
▪ 敌蝇威 ( B2470 含量>50%)▪ 腈叉威 ( B2471 含量>15%)▪ 恶虫威 ( B2472 含量>65%)
▪ 异索威 ( B2473 含量>20%)▪ 除鼠磷206 ( B2474 含量>35%)▪ 克灭鼠 ( B2475 含量>20%)
▪ 杀鼠灵 ( B2476 含量>2%)▪ 灭鼠优 ( B2477 含量>30%)▪ 安妥 ( B2478 含量>40%)
▪ 毒鼠硅 ( B2479 含量>20%)▪ 氨基硫脲 ( B2480 含量>25%)▪ 除鼠磷203 ( B2481 )
▪ 除鼠磷205 ( B2482 )▪ 鼠甘伏 ( B2483 含量>30%)▪ 灭蚜胺 ( B2484 含量>15%)
▪ 地乐施 ( B2485 含量>80%)▪ 特乐酚 ( B2486 含量>50%)▪ 地乐酚 ( B2487 含量>40%)
▪ 溴胺杀 ( B2588 含量>65%)▪ 四氟代朋 ( B2589 )▪ 硫酰氟 ( B2590 )
▪ 氯甲烷 ( B2591 )▪ 溴甲烷 ( B2592 )
英文:Polychlorinated terphenyls (PCTs)
Chlorine -1 - ethylene (vinyl chloride monomer)
Tricalcium 2,3 - dibromo-propyl
Benzene
Asbestos fibers
Three acridine PI-based - phosphine oxides
Polybrominated biphenyls (PBB)
Tree soap powder (natural saponins) and containing soap grass Glycosides Derivatives
Iron and iron mussels niger root powder
Veratrum Veratrum and root powder
Benzidine and / or their derivatives
O-nitrobenzaldehyde
Wood flour
Ammonium sulfide
Sulfur hydride ammonium
More ammonium sulfide
Methyl bromide
Ethyl bromide
Acetic acid propyl bromide
Bromo butyl acetate
2 - naphthylamine and its salts
Of the Second aminobiphenyl and its salts
4 - nitrobiphenyl
4 - aminobiphenyl
Phenyl-aniline and its salts
Neutral lead carbonate anhydrous (PbCO3)
Third Lead - Second carbonate - lead hydroxide (2PbCO3-Pb (OH) 2)
Lead sulfide
PbSO4
PbxSO4
Mercury compounds
Arsenic compounds
Organotin compounds
Second-μ-oxygen - hydroxy butyltin borane
Dibutyltin hydrogen borane C8H19BO3Sn (DBB)
Five chlorophenols and its salts and esters
Cadmium and its compounds
Monomethyl-tetrachloro diphenylmethane
Monomethyl-dichloro-diphenyl-methane
Bromoxynil methyl toluene
Nickel and its compounds
Cresol oil
Pyrolysis oil (coal tar)
Naphthalene oil
Anthracene oil
Heavy anthracene oil
Tar acid
Crude Phenol
Crude oil
Alkaline low-temperature tar
Chloroform
Carbon tetrachloride
1,1,2 - trichloroethane
1,2,2 - tetrachloroethane
1,1,1,2 - tetrachloroethane
Chloro-pentane
1,1 - dichloroethylene
1,1,1 - trichloroethanetrichloromethane
TA说
γ-氨基丁酸——让人平静的神奇物质 2021-08-11 18:20
经常睡不好、易感焦虑的朋友可能对 γ-氨基丁酸(GABA)应该不陌生。一文了解γ-氨基丁酸是何方神圣和它的神奇魔法,助力我们一起“告别”亚健康。...详情
内容来自
中文名
γ-氨基丁酸
外文名
γ-aminobutyric acid (GABA)
别名
4-氨基丁酸
化学式
C₄H₉NO₂
分子量
103.1
CAS登录号
56-12-2
EINECS登录号
200-258-6
熔点
195 至 204 ℃
沸点
258.0 ℃
水溶性
易溶
密度
1.11 g/cm³
外观
白色结晶性粉末
闪点
103.8 ℃
安全性描述
S26;S36
危险性符号
Xi
危险性描述
R36/37/38
目录
1 制备方法
▪ 化学合成法
▪ 植物富集法
▪ 微生物发酵法
2 物化性质
3 分子结构数据
4 计算化学数据
5 来源及应用
6 允许添加剂量
7 生物学功能
8 GABA相关的研究实验和应用
▪ 实验一:
▪ 实验二:
▪ 应用:
9 植物中代谢途径
▪ GABA支路
▪ 多胺降解途径
10 微生物代谢途径
11 抗逆及调控作用
▪ 对外部酸化的响应
▪ 对昆虫的防御作用
▪ 对高等生物在高温和冷冻下的保护作用
▪ 在抗氧化和氧化过程中的作用
▪ 维持碳氮平衡
▪ 在干旱和水涝中的作用
▪ 其他生理作用
制备方法
编辑
语音
1993有学者第一次通过化学合成的方法成功研制出了GABA。此后的相关研究日益丰富。为了获得更多的GABA,科研人员开始了各种尝试,并获得了诸多成果。 [2]
化学合成法
比较重要的化学合成主要有以下几种:第一种是采用邻苯二甲酰亚氨钾以及γ-氯丁氰或丁内酯作为制作GABA的原料,剧烈反应并水解后得到的最终产物就是GABA;第二种是利用吡咯烷酮作为最初的原料,并通过氢氧化钙以及碳酸氢铵进行水解,最终使其开环得到的产物就是GABA;第三种是把丁酸和氨水作为GABA的原料,使其在γ射线条件下进行光照反应得到GABA;第四种是通过辉光放电的方法,用丙胺和甲酸两种物质进行合成得到GABA;第五种是把溴乙酸甲酯和乙烯作为制备GABA的原料,通过聚合反应得到4-溴丁酸甲酯,最后经过氨解和水解后的产物即为GABA。GABA的化学合成方法都存在反应不容易控制、成本比较高的缺点。 [2]
植物富集法
植物富集法是一种新型开发的合成萃取提纯技术,它是用GABA含量较高的植物进行分离提取,这样便有了既便宜纯度又高的GABA产品。从植物中获取GABA的方法主要有以下两种:其中一种是利用溶剂萃取提纯法,另一种是柱分离制备法。 [2]
(1)溶剂萃取法
溶剂萃取法是利用水或醇作为GABA的提取剂,根据植物在水或者醇中的溶解度以及分配系数不同的原理将GABA提出到水或者醇中,并且经过反复的过滤提纯,可以使植物中绝大多数的GABA都被萃取出来。 [2]
(2)柱分离制备法
柱分离制备法,又被叫做柱色谱法,是一种利用不同的混合物中的组分在固液两相中具有不同分配系数的原理,进行洗脱分离及其他后续操作,它的大分类应该归属于层析法。色谱柱一般采用树脂、硅胶或活性炭等作为填充材料。 [2]
微生物发酵法
微生物发酵法是通过选择品种优良、稳定以及无毒无害的菌种,利用这些菌种在生长繁殖的过程中对GABA进行制备和产出。这种方法虽然对环境的要求比较苛刻,对设备的要求较高,但是此法产出的GABA可作为天然的食品添加剂。利用微生物发酵生产,是食品行业中发展最早,领域最广泛的生产方式之一,最早利用的微生物是大肠杆菌,利用它的脱羧酶可生产GABA,但是由于其本身存在一些安全隐患,使其一直无法直接用于药品或者食品的生产制作。 [2]
随着科学技术的发展,绿色食品越来越受到人们的重视,后来科研人员发现乳酸菌、酵母菌以及曲霉菌等微生物都可以用来代替大肠杆菌,催化生产GABA。而且在较低成本的情况下,还具有产量高、安全性好的优势,此种方法已经逐渐在向产业化生产发展。 [2]
物化性质
编辑
语音
γ-氨基丁酸结构
γ-氨基丁酸结构
γ-氨基丁酸别名4-氨基丁酸(γ-aminobutyric acid,简称GABA),是一个氨基酸,化学式:H2NCH2CH2CH2COOH;分子质量:103.1。GABA呈白色结晶体粉末状,没有旋光性。 [2] 熔点195-204℃(分解) [3] [4] ,与水混溶,微溶于乙醇、丙酮,不溶于苯、乙醚,分解时会失水生成吡咯烷酮。 [3]
GABA在溶液中常以两性离子(带负电荷的羧基和带正电荷的氨基)形式存在,由于正负电荷基团间的静电相互作用,使得GABA在溶液中能够兼具气态(折叠态)和固态(伸展态)时的分子构象,而GABA在溶液中多分子构象共存的形式,使其能够结合多种受体蛋白并发挥多种重要生理功能。 [5]
分子结构数据
编辑
语音
1、 摩尔折射率:25.68
2、 摩尔体积(cm3/mol):92.8
3、 等张比容(90.2K):242.1
4、 表面张力(dyne/cm):46.2
5、 极化率(10-24cm3):10.18
计算化学数据
编辑
语音
1、 疏水参数计算参考值(XlogP):-3.2
2、 氢键供体数量:2
3、 氢键受体数量:3
4、 可旋转化学键数量:3
5、 互变异构体数量:
6、 拓扑分子极性表面积(TPSA):63.3
7、 重原子数量:7
8、 表面电荷:0
9、 复杂度:62.7
10、同位素原子数量:0
11、确定原子立构中心数量:0
12、不确定原子立构中心数量:0
13、确定化学键立构中心数量:0
14、不确定化学键立构中心数量:0
15、共价键单元数量:1
来源及应用
编辑
语音
植物组织中GABA的含量极低,通常在0.3~32.5 μmol/g之间。已有文献报道,植物中GABA富集与植物所经历胁迫应激反应有关,在受到缺氧、热激、冷激、机械损伤、盐胁迫等胁迫压力时,会导致GABA的迅速积累。对植物性食品原料采用某种胁迫方式处理后,或通过微生物发酵作用使其体内GABA含量增加,用这种原料加工成富含GABA的功能产品已成为研究热点。GABA作为一种新型功能性因子,已被广泛应用于食品工业领域。利用富含GABA的发芽糙米、大豆和蚕豆等原料开发的食品已面市。 [1]
允许添加剂量
编辑
语音
欧洲食品安全局(EFSA)虽然允许食物中添加GABA,规定GABA的膳食摄入量上限为550mg/d,但是其主要功能特性尚需严格的人群试验结果加以佐证。美国食品药品监督管理局(FDA)根据毒理学实验结果指出食品中添加GABA是安全的,使用范围包含饮料、咖啡、茶和口香糖等,但不允许在婴儿食品、肉制品或含肉产品中添加。中国卫生部2009年12号公告,GABA摄入量不得超过500mg/d,使用范围为饮料、可可制品、巧克力及其饮料、糖果、焙烤食品和膨化食品,但婴儿食品中不能添加。 [6]
生物学功能
编辑
语音
GABA在动植物以及微生物中有较多的发现,其中在1949年首先在马铃薯的块茎中发现,在1950年又在哺乳动物的中枢系统中发现其存在,同时被认为是哺乳动物、昆虫或者某些寄生蠕虫神经系统中的神经抑制剂,对神经元的兴奋程度有着重要的影响。 [2] 研究发现 , GABA 是在人脑能量代谢过程中起重要作用的活性氨基酸 ,它具有激活脑内葡萄糖代谢、促进乙酰胆碱合成、降血氨、抗惊厥、降血压、改善脑机能、精神安定、促进生长激素分泌等多种生理功能。 [9]
GABA相关的研究实验和应用
编辑
语音
实验一:
研究口服给予γ-氨基丁酸对改善小鼠睡眠的影响。方法:将小鼠分为A,B,C三批进行实验,每批五组,分别为阴性对照组,阳性对照组和低、中、高剂量组.连续给予γ-氨基丁酸(50,100,150mg/kg)30天,进行了四项睡眠功效评价实验。结果:中、高剂量γ-氨基丁酸口服后,可以延长睡眠时间,增加阈下剂量入睡动物数,不能缩短睡眠潜伏期.各组均无直接睡眠作用.结论:本实验条件下,γ-氨基丁酸经口服具有改善睡眠的功效。 [10]
实验二:
富含GABA酸奶80 mg/kg,160 mg/kg剂量组小鼠入睡率均由0显著提高至60%(p<0.05);富含GABA酸奶(80 mg/kg)组能将小鼠睡眠时长由43.40 min显著延长至156.20 min(p<0.05)在失眠实验中,与失眠模型组比,富含GABA酸奶能够显著增加失眠小鼠脑组织中抑制性氨基酸GABA和Gly的含量(p<0.05),GABA含量升至1.10 ng/mL,Gly含量升至28.78 ng/mL.本研究结果显示,富含GABA酸奶能够有效延长ICR小鼠的睡眠时长,改善小鼠的失眠状态,其机制与增加小鼠脑内抑制性递质GABA及Gly的含量有关。 [11]
应用:
良好的睡眠对于维持人体的生理健康及精神健康至关重要。目前用于治疗失眠的镇静催眠药普遍存在一定的安全隐患,对其应用造成了限制。一些食品及药食两用植物中的活性成分可以作用于人体中枢神经系统,改善睡眠质量,且服用方式符合人们的日常饮食习惯,安全性高,是改善轻度睡眠障碍的有效替代方法。 [12]
根据《保健食品检验与评价技术规范》对改善睡眠保健食品的判定依据,酪蛋白水解物与y-氨基丁酸的复配制剂具有一定的改善睡眠作用。 [13]
近年来,富含γ-氨基丁酸食品的研究与开发,成为国内外研究的热点。.γ-氨基丁酸(γ-amino butyric acid,GABA)是一种重要的功能性非蛋白质氨基酸,他具有增进脑活力,安神,调解激素分泌,改善脂质代谢,降血压等生物学功能,因此,GABA在食品上的开发应用具有广阔的前景。 [14]
植物中代谢途径
编辑
语音
在植物体中有两条GABA合成和转化途径:一条是谷氨酸经谷氨酸脱羧酶(glutamic acid decarboxylase,GAD)催化谷氨酸脱羧合成GABA,称为GABA支路(GABA shunt);另一条是由多胺降解产物转化形成GABA,称为多胺降解途径(polyamine degradation pathway)。 [1]
植物代谢途径
植物代谢途径
GABA支路
在高等植物中,GABA的代谢主要由三种酶参与完成,首先在GAD作用下,L-谷氨酸(glutamic acid,Glu)在α-位上发生不可逆脱羧反应生成GABA,然后在GABA转氨酶(GABA transaminase,GABA-T)催化下,GABA与丙酮酸和α-酮戊二酸反应生成琥珀酸半醛,最后经琥珀酸半醛脱氢酶(succinic semialdehyde dehydrogenase,SSADH)催化,琥珀酸半醛氧化脱氢形成琥珀酸最终进入三羧酸循环(krebs circle)。这条代谢途径构成了TCA循环的一条支路,称为GABA支路。 [1]
在植物中,存在于细胞质中的GAD和线粒体中的GABA-T、SSADH共同调节GABA支路代谢,其中GAD是合成GABA的限速酶。植物GAD含有钙调蛋白(CaM)结合区,GAD活性不仅受Ca2+和H+浓度的共同调控,还受到GAD辅酶——磷酸吡哆醛(PLP)以及底物谷氨酸浓度的影响。这种双重调节机制将GABA的细胞积累与环境胁迫的性质和严重程度联系起来。冷激、热激、渗透胁迫和机械损伤均会提高细胞液中Ca2+浓度,Ca2+与CaM结合形成Ca2+/CaM复合体,在正常生理pH条件下能够刺激GAD基因表达,提高GAD活性;而酸性pH刺激GAD的出现是由于应激降低细胞的pH,减缓细胞受到酸性危害。植物中GABA支路被认为是合成GABA的主要途径。目前,大多数研究集中在如何提高GAD活性实现GABA富集。 [1]
多胺降解途径
多胺(polyamine,PAs)包括腐胺(putrescine,Put)、精胺(spermine,Spm)和亚精胺(spermidine,Spd),其中以腐胺作为多胺生物代谢的中心物质。多胺降解途径是指二胺或多胺(PAs)分别经二胺氧化酶(diamine oxidase,DAO)和多胺氧化酶(polyamine oxidase,PAO)催化产生4-氨基丁醛,再经4-氨基丁醛脱氢酶(4-amino aldehyde dehydrogenase,AMADH)脱氢生成GABA的过程,多胺降解途径最终与GABA支路交汇后参与TCA循环代谢。其中二胺氧化酶和多胺氧化酶是分别催化生物体内Put和Spd、Spm降解的关键酶。蚕豆发芽期间,厌氧胁迫可诱导多胺合成的关键性酶活性的提高,促进多胺的积累,同时多胺氧化酶活性也随之提高,通过多胺降解途径促进了GABA的合成与积累,提高了蚕豆的抗逆境能力。研究表明,大豆根中游离多胺含量在盐胁迫下增加,DAO活力提高,GABA富集量增加11~17倍。尽管多胺降解途径被认为是合成GABA的另一条重要途径,但其在单子叶植物中合成GABA的能力远低于GABA支路。 [1]
微生物代谢途径
编辑
语音
在微生物中,GABA代谢是通过GABA支路完成的,利用微生物体内较高的GAD活性,将Glu脱羧形成 GABA,然后在GABA-T、SSADH作用下,GABA进入下游的分解过程生成琥珀酸半醛、琥珀酸参与微生物的生理代谢。微生物富集GABA就是通过对培养基的优化以及菌株的改良使其具有较高的GAD活性,增加GABA合成率,降低分解率来实现的。大量研究已证明GAD在原核到真核微生物中都有存在,此外,利用微生物中的GAD脱羧形成GABA不受资源、环境和空间的限制,与其他方法相比具有显著的优势。 [1]
抗逆及调控作用
编辑
语音
GABA长久以来被认为与植物多种应激和防御系统有关。GABA会随着植物受到刺激而升高,被认为是植物中响应于各种外界变化、内部刺激和离子环境等因素如pH、温度、外部天敌刺激的一种有效机制。GABA还可以调节植物内环境如抗氧化、催熟、保鲜植物等作用。近年来GABA在植物中也被发现作为信号分子在植物中传递扩大信息。GABA曾在大豆、拟南芥、茉莉、草莓等植物中相继发现。低浓度的GABA有助于植物生长发育,高浓度下又会起相反的作用。 [7]
对外部酸化的响应
低pH下GABA会在细胞内快速增加,这种GABA的积累在微生物和动物中也存在。植物在酸性pH下细胞内 H+随之升高,诱导细胞内GABA含量增加。该GABA的合成过程消耗H+,使得细胞内酸化得到缓解。在微生物中也存在这种快速的反应机制,在产生GABA的同时,会增加质子呼吸链复合物的表达,促进ATP合成。并且上调 F1F0-ATP水解酶活性,促进酸性条件下ATP依赖的H+排出过程。在动物中,细胞也会向外排出GABA和谷氨酸以此来改变细胞外环境的pH。更重要的是,GABA在生理环境下为两性离子,因此在酸碱调节中发挥着一定作用。 [7]
对昆虫的防御作用
GABA有助于植物对外界天敌的防御。当昆虫取食时由于植物受伤导致细胞破裂和组织受伤,这种机械切割会刺激植物中Ca2+的增加,植物在Ca2+刺激下分泌GABA作为一种抵御昆虫取食的措施。在此过程中不存在茉莉酸类信号参与GABA的积累。昆虫存在离子型GABA受体,其中果蝇的GABA门控氯离子通道亚基RDL(resistant to dieldrin)是许多杀虫剂药物的作用靶标。GABA诱导使得GABA受体的单电流降低。具体为GABA在无脊椎动物中通过GABA受体门控的氯离子通道起作用,与大多数杀虫剂相同,通过GABA受体氯离子通道,使Cl-在电化学梯度的驱使下流向下游,导致质膜超极化,并抑制昆虫取食。而在过量表达GABA的烟草植物中,接种北方线虫,发现其雌性成年线虫的繁殖能力整体下降,这种方式可以使植物达到防御天敌的效果。在对女贞子被草食女娥幼虫取食过程中,发现女贞子会降低自身赖氨酸活性使得蛋白质无营养,而女娥幼虫在此期间会分泌甘氨酸、β-丙氨酸、胺等分子抑制植物赖氨酸的减少,这种植物与草食昆虫的交流过程也证明了GABA作为信号分子的功能。 [7]
对高等生物在高温和冷冻下的保护作用
在小麦开花期间喷洒GABA(200 mg/L),可以调节膜稳定性,增加抗氧化能力等,减少了小麦高温下的损失;外源GABA的施用对黄瓜幼苗生长也有明显的作用。高温会抑制中枢GABA能神经元活性,激活胆碱类神经系统并引起体温升高。长期处于高温下,下丘脑的GABA能神经元活性会增加以适应环境和调节体温。GABA会在血浆中升高进而抑制冷敏神经核血浆中儿茶酚胺的浓度,达到降低食道温度的目的。 [7]
低温会降低植物的生物合成能力,对重要功能造成干扰,并产生永久性伤害。动物在低温下也会导致损伤甚至造成更严重的伤害。低温下生物GABA表达会上调,这与低温的耐受性存在关联。在低温下,75%的代谢物会增加,包括氨基酸、糖类、抗坏血酸盐、腐胺和一些三羧酸循环中间体。能量代谢涉及的氨基酸代谢,酶类的转录丰度均会增加。可以通过增强GABA分流途径产生ATP以及积累GHB。另外低温下利用褪黑霉素可以使精胺、亚精胺和脯氨酸积累,促使二胺氧化酶表达升高。通过腐胺途径合成GABA,使得H2O2积累和苯丙烷途径通量下降以达到防腐和抗寒的效果。 [7]
在抗氧化和氧化过程中的作用
GABA分流作为三羧酸循环分支途径的中间产物,与能量循环关系密切。同时GABA作为氧化代谢物的调控者发挥作用。将拟南芥SSADH突变体暴露于高温下生长,发现其活性氧中间体(reactive oxygen intermediate,ROI)积累,使得植株死亡, [7] 证明ROI与GABA存在关系。同样SSADH和GABA-T基因的突变株在高温下存在大量的ROI,利用ROI消除剂N-叔丁基-α-苯基硝酮(PBN)可使GABA大量积累,从而提高酵母的存活率。因此,认为GABA分流途径在抑制高温下ROI具有作用。在GABA分流过程中,SSA可以经由GLYR/SSAR转化为GHB,而GHB与ROI存在密切关系。在SSADH缺失突变株中的GHB与ROI存在大量积累,而瓜巴特林可以抑制这种GHB与ROI的积累,并抑制了过氧化死亡。GABA分流过程可以减少ROI的积累使得生物免于高温带来的氧化损伤以及过氧化衰亡。 [7]
维持碳氮平衡
碳氮代谢平衡涉及许多生理过程,包括能量代谢、氨基酸代谢等。由于GABA合成和分流途径涉及氮代谢,GABA也是能量循环中三羧酸循环的重要组成部分,GABA分流途径与呼吸链竞争SSADH,因此长时间以来 GABA被认为是碳氮代谢的重要一环。三羧酸循环分支的谷氨酸合成GABA途径是植物快速响应外部刺激的关键因素之一。绝大部分NH3+是通过谷氨酰胺合成酶/谷氨酸合成酶途径合成(glutamine synthetase/gluta-mate synthetase,GS/GOGAT),被认为是氨基酸的主要合成途径。游离的氨基分子大部分通过谷氨酰胺固定,谷氨酸被认为是植物老根中氮主要的积累形式,氮存储于精氨酸等氨基酸中,同时精氨酸也可用于运输,满足生物体的氮需求。同样氨基酸也通过转化为三羧酸循环的前体或中间体参与能量代谢过程。在对菠菜的研究中发现脯氨酸占总游离氨基酸的8.1%~36.%,GABA占12.8%~22.2%,谷氨酸占5.6% ~21.5%。谷氨酸是GABA和脯氨酸的前体物质,低温下植物会使谷氨酸的氮分流进入GABA和脯氨酸调控氮的代谢途径。另外在50mmol/L GABA下培养的拟南芥中除NADP+依赖性柠檬酸脱氢酶、根和芽中谷氨酰胺合成酶、芽中磷酸烯醇丙酮酸羧化酶外,几乎所有的初级氮代谢和硝酸盐吸收有关的酶活性均受到影响。而在NaCl条件下培养的拟南芥中,发现GABA积累的同时带动拟南芥整体氨基酸的增加。在分别利用不同氮化合物(10mmol/L NH4Cl,5mmol/L NH4NO3,5mmol/L谷氨酸和5mmol/L的谷氨酰胺)作为唯一氮源培养的拟南芥叶片中,其GAD活性和蛋白质水平不同,说明GAD在氮代谢中发挥作用。 [7]
在NO胁迫下的香蕉中也发现了GAD活性上升、GABA和香蕉多巴胺增加的现象。盐胁迫下谷氨酸脱氢酶活性与GAD的表达瞬时上升,进而提高GABA分流等相关途径的通量以调节碳氮平衡。应激下NADH:NAD+和 ADP:ATP的比值也能影响GABA-T,从而使GABA积累。盐胁迫下植物更多地利用C/N平衡途径缓解压力。 [7]
在干旱和水涝中的作用
20世纪末,人们就发现干旱可以降低根的固氮和O2的扩散,使得植物缺氧而导致GABA的积累。低氧条件下谷氨酸和天冬氨酸含量增加。干旱下GAD活性提高,GABA-T快速积累。干旱条件下,根系、茎的生长和叶面积伸展被抑制,活性氧增加,低分子渗透调节物质如GABA等氨基酸、多元醇、有机酸产量增加,以及抗氧化损伤的酶表达均上调。研究表明,干旱条件下,与细胞内稳态、活性氧的清除、结构蛋白稳定保护、渗透调节剂、转运蛋白等有关的基因表达上调。外源GABA使得植物保持较高的相对含水量,降低电解质渗漏、脂质、过氧化物、碳代谢并能提高膜稳定性。此外,外源GABA也可以诱导GABA-T和α-戊酸脱氢酶活性上升,抑制GAD活性使得GABA和谷氨酸增加。同时GABA加速多胺合成,抑制多胺分解,并进一步激活σ-1-吡咯林-5-羧酸合成酶和脯氨酸脱氢酶以及鸟氨酸-σ-氨基转移酶活性,致使GABA预富集物的高度积累和代谢。GABA还可以通过促进叶绿素表达,进而使得过氧化氢酶(catalase,CAT)、过氧化物酶(peroxidase,POX)活性增加,提高脯氨酸和糖含量,调节渗透和降低氧化。植物在水涝下pH会下降。长时间水涝会使土壤缺氧且短时间内水涝使得GABA升高。而水涝下气孔关闭与脱落酸存在直接关系。由于H+上升和缺氧会导致GABA增加。同时丙氨酸的积累可提高缺氧条件下植物的生存能力。在缺氧条件下GABA可以通过间接调节使得光合作用增强,降低气孔限制值,使得通氧量加大。缺氧条件下GAD活性上升,而GABA可以缓解缺氧对植物幼苗的伤害,而且外源GABA可以使低氧条件下根生长抑制得以缓解,快速生长出不定根。不定根生长也可以缓解植物的缺氧情况。 [7]
另外,水涝缺氧条件下除GABA、谷氨酸以及丙氨酸外其他与三羧酸循环有关的氨基酸水平均下降。GABA与谷氨酸可作为丙氨酸的直接合成底物,通过这种厌氧途径生成2倍于糖酵解产生的ATP,保证供能。GABA还具有消除活性氧中间体以及为植物解毒和间接通过H2O2信号作用防止细胞程序性死亡(programmed cell eath,PCD),以及发挥其他作用。 [7]
其他生理作用
50mmol/L GABA和不同盐浓度会对植物幼苗产生不同的影响,当NO3-离子低于40mmol/L时,GABA会刺激根伸长,当NO3-离子大于40mmol/L时GABA会抑制根伸长。并且GABA刺激低浓度的NO3-吸收,抑制高浓度NO3-的摄取,而GS等酶被氮调控,以上研究认为氮对调控植物生长有一定作用。在NaCl(50mmol/L)刺激下,植物的糖基化代谢会发起变化,并影响包括三羧酸循环、GABA代谢、氨基酸合成和莽草酸介导的次级代谢等发生变化。较高的盐离子会导致大豆的多胺氧化降解为GABA。植物GABA受体具有调节pH和Al3+的根耐受性。 [7]
细菌侵染过程中的植物GAD表达量和γ-羟基丁酸转录丰度会上升,致使GABA升高。高GABA合成水平的烟草对根癌土壤杆菌C58感染敏感性有所下降。GABA可诱导农杆菌ATTKLM操纵子表达,使得N-(3-氧代辛酰基)高丝氨酸内酯的浓度减少,群体感应信号(或激素)下调,影响其对植物的毒性。GABA在植物与细菌的信号交流中也发挥作用,GABA可以抑制细菌内Hrpl基因表达(Hrpl基因编码蛋白使得植物致敏或引起其组织疾病),同时抑制植物体内hrp基因表达,使得植物免于过敏反应(hrp:控制植物病原体致病能力,并引起过敏反应)。 [7]
此外,GABA还具有催熟作用。GABA可以通过刺激1-氨基环丙烷-1-羧酸(ACC)合成酶转录丰度刺激乙烯生物合成。而水涝下乙烯可以通过促进不定根的生长为植物提供氧气。高浓度GABA可抑制植物和细菌GABA转氨酶(GABA-T,GABT)突变体的生长,高浓度下可抑制细菌在植物内的繁殖。番茄中的GABA-T被抑制会导致GABA的积累,使番茄出现矮小症
山东千里宏生物科技股份有限公司是2004-05-19在山东省滨州市邹平县注册成立的股份有限公司(非上市、自然人投资或控股),注册地址位于邹平县码头镇炭刘村。
山东千里宏生物科技股份有限公司的统一社会信用代码/注册号是91371626762872737P,企业法人唐兴禄,目前企业处于开业状态。
山东千里宏生物科技股份有限公司的经营范围是:生产、销售:莠灭净、莠去津、扑灭津、扑草净;生产、销售:大蒜素系列产品、乙酸烯丙酯系列产品(苯氧乙酸烯丙酯、2-环己氧基乙酸烯丙酯);销售矿石产品(不含贵重金属);生产、销售:二甲基二烯丙基氯化铵、聚烯丙基胺盐酸盐、二氯丙烯胺、聚烯丙基胺、烯丙基胺盐酸盐、乙螨唑、α-乙酰基苯乙酸甲酯(不含化学危险品,不含监控化学危险品,不含易制毒化学危险品);批发(禁止储存):四氢呋喃、异丙醚、乙硫醇、2-甲基四氢呋喃、2-溴戊烷 、3-溴-1-丙烯 、丙酰氯 二异丙胺、氟代苯、甲基丙烯酸甲酯[稳定的]、氯代叔丁烷 、氯代异丁烷、三氟乙酸乙酯、碳酸二甲酯 、乙腈、乙酸甲酯、原乙酸三甲酯 、乙酸烯丙酯 、乙酸乙酯、乙酸异丙烯酯 、正丁酰氯 、3-氯-2-甲基丙烯、氯代异丁烷、四氢吡咯、乙酸异丁酯 、乙酰氯 、乙酸异戊酯 、异戊醛 、N,N-二甲基甲酰胺、叔戊醇、异戊酸乙酯、1,3-二氯丙烷 、1,4-二氯丁烷 、1,5-二氯戊烷、1-溴丙烷 、 2,2,2-三氟乙醇、2,4-戊二酮、N,N-二甲基丙醇胺、丙烯酸正丁酯[稳定的] 、甲基丙烯酸正丁酯[稳定的]、糠胺 、三烯丙基胺 、溴代正戊烷 、正丁醇 、N,N-二乙基乙醇胺 、异丁醇、 3,5-二甲基吡啶、1-甲基萘 、2,4-二硝基氯化苄 、2,6-二硝基苯酚[含水≥15%]、4-亚硝基苯酚、六亚甲基四胺、偶氮二甲酰胺、 4-亚硝基-N,N-二甲基苯胺 、硫化钠 、氯化苄、氯代叔戊烷 、1,2-二氯乙氧基乙烷、1-氯-2-溴乙烷、1-氯-3-溴丙烷、2,2-二氯二乙醚 、2-呋喃甲醇 、2-硫代呋喃甲醇 、2-氯-1-丙醇 、2-氯苯酚 、2-羟基苯甲醛(水杨醛) 、2-溴丙酸 、3-氯-1,2-环氧丙烷、3-氯-1-丙醇 、3-氯苯胺 、4,4'-二氨基二苯基甲烷 、4-氯苯胺 、苯肼、苯乙醇腈、苄硫醇 、丙二腈 、对甲苯胺 、二氯甲烷 、二溴甲烷 、甲基丙烯酸二甲基氨基乙酯 、间苯三酚 、磷酸三甲苯酯 、氯乙基溴(1-氯-2-溴乙烷) 、氯乙酸甲酯 、三氯乙酸甲酯 、氯乙酸乙酯 、三氯乙烯 、三溴甲烷 、氯溴甲烷 、溴乙酸甲酯 、溴乙酸叔丁酯 、溴乙酸乙酯 、N-(2-乙基-6-甲基苯基)-N-乙氧基甲基-氯乙酰胺 、乙二酸二甲酯 、乙二酸二乙酯 、4-溴苯磺酰氯 、间二氯苯 、1-氯-2-丙醇 、氯甲酸苯酯 、次磷酸 、邻氯苯甲酰氯 、三氯乙酰氯 、2-溴丙酰溴 、丙烯酸[稳定的] 、二氯乙酰氯 、呋喃甲酰氯 、己酸 、甲基磺酸 、氯乙酰氯 、氢溴酸、三氟乙酸 、三甲基乙酰氯 、三溴化磷 、硝酸羟胺 、溴乙酸 、溴乙酰溴 、亚磷酸 、乙二酰氯 、戊酰氯 、对苯二甲酰氯 、氢氧化锂 、1,2-乙二胺 、2-氨基乙醇 、二正丁胺 、哌嗪 、氢氧化钠 、氯甲酸苄酯 、氯甲酸烯丙基酯[稳定的] 、四氯邻苯二甲酸酐、3-氯丙烯、二烯丙基胺 、1-氯-2-丁烯 、3,5-二硝基苯甲酰氯(有效期以许可证为准);收购大蒜。(依法须经批准的项目,经相关部门批准后方可开展经营活动)。本省范围内,当前企业的注册资本属于一般。
山东千里宏生物科技股份有限公司对外投资1家公司,具有0处分支机构。
通过百度企业信用查看山东千里宏生物科技股份有限公司更多信息和资讯。
中文名称
(4-溴-2-甲酰基苯氧基)乙酸甲酯
英文名称
Methyl
(4-bromo-2-formylphenoxy)acetate
英文别名
(4-bromo-2-formylphenoxy)acetic
acid
methyl
estermethyl
(4-bromo-2-formylphenoxy)acetate(SALTDATA:
FREE)acetic
acid,(4-bromo-2-formylphenoxy)-,methyl
ester
CAS号
24581-99-5
合成路线:
1.通过溴代乙酸乙酯和5-溴水杨醛合成(4-溴-2-甲酰基苯氧基)乙酸甲酯,收率约98%;
2.通过溴乙酸甲酯和5-溴水杨醛合成(4-溴-2-甲酰基苯氧基)乙酸甲酯
更多路线和参考文献可参考http://baike.molbase.cn/cidian/1526998
中文名称
(4-乙酰基苯基)乙酸甲酯
英文名称
methyl
2-(4-acetylphenyl)acetate
英文别名
p-Methoxycarbonylmethyl
acetophenoneMethyl
p-acetylphenylacetatep-Acetyl-phenylessigsaeure-methylester
CAS号
20051-06-3
合成路线:
1.通过溴乙酸甲酯和4-乙酰基苯硼酸合成(4-乙酰基苯基)乙酸甲酯,收率约67%;
2.通过四甲基锡合成(4-乙酰基苯基)乙酸甲酯,收率约67%;
更多路线和参考文献可参考http://baike.molbase.cn/cidian/1573760
代后
做成
格氏试剂
,与
溴乙酸甲酯
反应生成
戊酸甲酯
,再水解即得戊酸。
中文名称
N,N-二羟乙基甘氨酸
中文别名
N,N-
二-羟乙基甘氨酸N,N-双(2-羟乙基)甘氨酸N,N-二-羟乙基甘氨酸二羟乙甘胺酸二乙醇甘氨酸N,N-双(2-羟乙基)甘氨酸(Bicine)N,N-二(2-羟乙基)甘氨酸N-二(2-羟乙基)甘氨酸
英文名称
N,N-bis(2-hydroxyethyl)glycine
英文别名
Diethanol
glycineN,N-Di(2-hydroxyethyl)glycineBicineBICINE
bufferDihydroxyethylglycineDiethylolglycine2-[bis(2-hydroxyethyl)amino]acetic
acidBiceneN,N-Di(2-hydroxyethyl)glycine
[Good's
buffer
componentN,N-Bis(2-hydroxyethyl)glycineBICINE[N,N-Di(2-hydroxyethyl)glycine]N,N-Bis(2-hydroxyethyl)glycine,BICINE,PEG
Grid
ScreeningDiethanolglycineN,N-Bis(2-hydroxyethyl)glycine
(Bicine)N,N-Dihydroxyethyl
glycine
CAS号
150-25-4
合成路线:
1.通过溴乙酸甲酯和二乙醇胺合成N,N-二羟乙基甘氨酸
2.通过二乙醇胺合成N,N-二羟乙基甘氨酸,收率约93%;
更多路线和参考文献可参考http://baike.molbase.cn/cidian/28784