纤维素接枝丙烯酸的合成反应中,用到了过硫酸钾,硝酸铈铵,亚硫酸钠,这里面硝酸铈铵是做催化剂还是引发
硝酸铈铵、过硫酸钾和过硫酸钾/亚硫酸钠都是引发剂 全部是引发剂在一起是对引发作用进行对比。
同时比较了不同条件下三种引发剂的接枝效果,结果表明,过硫酸钾/亚硫酸钠的接枝效果最好,但均聚物含量高硝酸铈铵作为引发剂虽然接枝效果不及前两者,但均聚物含量很低。
http://www.cnki.com.cn/Article/CJFDTOTAL-XWSK200801005.htm
过硫酸盐需要放在密封的干燥器内。
1.过硫酸盐与空气接触会被氧化生成硫酸盐。
2.过硫酸盐分为过硫酸铵,过硫酸钠,过硫酸钾。过硫酸铵有强氧化性和腐蚀性。完全干燥的过硫酸铵不易分解,潮湿的空气会分解放出氧气和臭氧。
3.过硫酸盐易溶于水,水溶液在室温下也会分解。与金属接触也会分解。过硫酸钠过硫酸钾外观是白色晶状粉末,无臭与金属接触会分解。能溶于水下面。
过硫酸盐的用途:过硫酸铵氧化剂和漂白剂,脱浆剂;过硫酸铵用作蚀刻,引发剂,制作双氧水等;过硫酸钾用作乙酸乙烯酯、丙烯酸酯类、丙烯腈、苯乙烯、氯乙烯等单体乳液聚合的引发剂;过硫酸钾用作消毒剂和漂白剂。
过硫酸盐的物理性质:白色晶体;65*C熔化并有分解,熔点338K(分解);易吸湿、有强吸水性,极易溶于水,热水中易水解,先得过一硫酸继而得过氧化氢。
过硫酸盐的化学性质:在室温慢慢地分解,放出氧气。具有强氧化性,强于过一硫酸。酸及其盐的水溶液全是强氧化剂,常用作强氧化剂。能氧化氯、溴、碘离子为单质,将铁(II)氧化为铁(III),锰(II)氧化为二氧化锰,氨转化为氮,苯胺转化为苯胺黑等等。
下午好,丙烯腈和丙烯酸、甲基丙烯酸甲酯相近均可被氧自由基引发,水溶液做悬浮聚合时用过硫酸钾或者过硫酸钠引发,海波具有一定钝化作用可防止因为浓度和温度变化造成不良爆聚。非水相的有机溶剂聚合丙烯腈也适用过氧化甲乙酮或者过氧化苯甲酸叔丁酯等有机过氧化物。
中午好,过硫酸钾和过硫酸钠一样属于无机强氧化剂,它们和过氧化甲乙酮相近利用自由基可对一些活性单体引发聚合俗称固化剂,水相悬浮聚合丙烯酸酯或者苯乙烯时比较常见。凡是过氧化物都属于易燃易爆的危化品管控范围。
低分子量聚丙烯酸钠的制备
低分子量聚丙烯酸钠的合成主要有以下三种方法:①中和法;②聚合法;③皂化法。
1)中和法 中和法是指在引发剂和链转移剂的作用下,丙烯酸在其水溶液中发生聚合反应,生成聚丙烯酸,然后用氢氧化钠水溶液中和,生成聚丙烯酸钠。
2)聚合法 聚合法是指先用氢氧化钠水溶液中和单体丙烯酸,生成丙烯酸钠单体,然后在引发剂的和链转移剂的作用下,在水溶液中聚合,生成聚丙烯酸钠:
3)皂化法皂化法是指先由丙烯酸与甲醇反应生成丙烯酸甲酯,在引发剂和链转移剂的作用下聚合为聚丙烯酸甲酯,再在聚丙烯酸甲酯的悬浮液或乳液中加入氢氧化钠水溶液,并加热至100℃维持几个小时,(或者先与氢氧化钠作用,再在引发剂何链转移剂的作用下聚合)即可得聚丙烯酸钠,副产品是烷基醇,可以用气提法除去。由于这种方法工艺流程较长,还需要进一步除去副产物,因此在工业生产中应用不太多。
据文献U.S.P4301266报道,采用APS引发剂体系,在异丙醇一水混合溶剂体系中,丙烯酸均聚合,可得分子量小于2x1护的低分子量聚丙烯酸。
国外有机分散剂产品的分散性能最好的为美国大洋公司的产品SN-5040。近年来,国内有机分散剂的开发应用比较活跃,其中北京的DC分散剂,上海的YH分散剂为开发较成功的产品。YH分散剂采用的工艺是:自由基水溶液聚合,异丙醇作链转移剂,过硫酸按作引发剂,引发游离基的聚合反应,固含量为30-38%.,分散性能良好,但固含量太低,生产成本高。DC分散剂采用的工艺是:聚合、蒸馏(除去链转移剂和水的混合物)、中和,其固含量虽达要求,但生产周期长,成本高。
上述传统的生产工艺都是在比较高的温度进行,并且要蒸馏回收大量的链转移剂,操作费时、耗能。孙晓日以氧化还原催化剂在较低温度下直接合成了低分子量聚丙烯酸钠,经造纸厂实际应用试验证明,该分散剂可单独或与无机磷酸盐分散剂复配使用,对高岭土、硫酸钡、碳酸钙及其混合体均有良好的分散效果。郭永利等人以水为溶剂,APS-SHS氧化还原引发体系,研究了丙烯酸及其共聚物的合成,结果得到分子量小于2万,且无色或淡黄色透明的低分子量聚合物。
何静月等通过研究影响聚丙烯酸钠分子量的各种因素,使用脂肪酸盐等助剂,采用分步聚合的新工艺合成出分子量为500-700、1000-1500和2000-3000的低分子量聚丙烯酸钠。合成出的聚丙烯酸钠不仅分子量较低,而且分子量分布较窄,分散性良好,应用实验表明其分散效果优于分散剂DC,与进口产品SN-5040相当。
在装有回流冷凝器、温度计、搅拌器和滴液漏斗的250mL四口瓶中依次加入一定量的去离子水和链转移剂(异丙醇或丙酮或四氯化碳等),在室温下搅拌均匀,加热升温至一定温度,开始滴加丙烯酸单体和引发剂(过硫酸钾或过硫酸按)水溶液,3h左右滴定完毕,再保温反应3h,冷却至30℃至40℃后用质量分数的为30%的氢氧化钠水溶液中和至pH=7-,.8,然后将反应装置改为蒸馏装置,加热蒸出链转移剂以回收利用,得浅黄色粘稠低分子量聚丙烯酸钠溶液,洗涤后置于50℃左右的真空干燥箱中,干燥至恒重,粉碎包装。
聚合反应将以极快的速率进行,体系产生大量的积热,在普通的玻璃烧瓶反应器中,体系产生的积热在一分钟内从50℃到达剧烈沸腾状态而发生爆聚。若提高聚合温度,亦即增大了反应速率常数,同时由于单体浓度很高使聚合速率增大而发生爆聚。探索性试验结果与聚合反应动力学原理相符,因此在选择合成工艺时应注意以下问题:
a.因单体中杂质起阻聚作用,单体采用精馏过的产品。
b.氧分子可看作双自由基,对单体有明显的阻聚作用。氧与链自由基反应形成较稳定的过氧自由基。因此,通入氮气驱赶反应器内的氧。
c.防止爆聚,如果将所有组分同时加入反应器内进行聚合,由于烯类单体在聚合时热效应大,而聚合反应速度又快,易产生爆聚。为了控制热量的放出速度以维持一定的聚合温度,可采取回流冷凝交换散热,分批加入引发剂,控制单体滴加速度等措施。
d.控制搅拌速度,使反应物混合均匀。若搅拌速度太快,反应器内物料将出现漩涡和飞溅。
聚合温度对聚合速率和产品质量都有重要影响。反应温度是由引发剂的分解温度决定的。用过硫酸馁为引发剂,其分解温度大约为70℃,温度过低,聚合反应不易发生或反应速率太慢;温度过高,引发剂分解速率过快,聚合反应热量不易散出,易爆聚。
丙烯酸的聚合热为 -67kJ/mol,合成过程中反应产生的积热可以使体系在1分钟内从50℃上升到100℃的沸腾状态,这种现象称为爆聚。爆聚既影响产品质量,还有可能酿成事故。
目前的合成方法主要是以过硫酸盐为引发剂、异丙醇为链转移剂进行动态水溶液聚合,通过大量链转移剂在冷凝回流作用下移走反应热,以及通过滴定单体和引发剂溶液控制反应速度,来防止爆聚的。但这样操作复杂,生产周期长,能耗高,设备利用率低,生产成本高。
静态水溶液聚合法是近年来出现的聚丙烯酸钠合成新方法,这种方法不使用异丙醇,单体浓度高、聚合周期短,有利于降低制造成本。缺点是聚合过程中伴随着凝胶化现象,放热剧烈,有大量自由基向大分子链转移并引起大分子间相互交联,导致产物中有水不溶物,产品质量较差,尚未工业化生产。
静态水溶液聚合法是指将所有组分同时加入自制的平板式反应器中,瞬间混合均匀后,静置于一定温度的水浴中进行聚合的一种合成方法。
向自制的平板式反应器中加入丙烯酸单体,用30%的NaOH溶液中和,冷却至60℃,依次加入链转移剂和引发剂溶液,混合均匀,置于60℃的水浴中,保温反应3h,得浅黄色粘稠溶液,洗涤后置于50℃的真空干燥箱中,干燥至恒重,粉碎包装。若聚合温度低,用少量的链转移剂或直接混合原料都会发生爆聚;只有在高温下,采用连续滴加单体于含有大量的链转移剂的溶液中才可以实现平稳聚合。这与聚合反应动力学原理相符,在发生爆聚的反应过程中,反应放出的热不能及时释放,体系产生大量积热,反应液的温度急剧升高,故发生爆聚:而在发生平稳聚合的反应过程中,一方面连续滴加单体3h左右,减缓了反应速率,另一方面在高温下,大量的链转移剂的冷凝回流带走了大量的反应热,反应液的温度得到有效控制,故反应平稳进行。但是在这样的条件下合成低分子量聚丙烯酸钠,链转移剂用量较大,如果滴定速度不均匀或过快,就会引起分子量分布变宽或爆聚,影响产品质量。所以,传统动态合成法操作复杂,生产周期长,能耗高,设备利用率低,生产成本高。
由上述讨论可知,解决聚合过程中的爆聚问题是导致传统合成方法中链转移剂用量较大,操作复杂,生产周期长,设备利用率低,能耗大等问题的根源,而爆聚是由于反应积热引发的,所以用简便的方法解决积热问题,就可以解决传统动态法合成中存在的问题。
解决积热问题的关键就是使反应热及时排出,实现放热与散热的平衡,从而有效控制反应液的温度,防止爆聚现象的发生。
为了考察反应过程中的放热情况,配制35wt %的丙烯酸钠水溶液,用过硫酸钾作催化剂进行聚合反应。聚合反应放热从50℃开始,在63. 3℃和80. 9℃时分别有两个放热峰,且第二个峰所对应的面积远大于第一个峰所对应的面积。这是因为一方面温度升高,引发剂的分解速率速率增大,聚合反应速率加大另一方面生成的聚丙烯酸钠作为模板发生了自动加速效应。
在普通玻璃烧瓶中聚合,反应液的温度在一分钟内由60℃上升至100℃,体系发生爆聚;而在自制的平板式反应器中聚合,反应液温度达到60℃后变化不大,趋于稳定,体系平稳聚合。这是因为普通的玻璃反应器比表面积小,散热效果差,体系积热,引发爆聚;而平板式反应器散热效果好,实现了放热与散热的平衡,反应液的温度得到有效的控制。
故用平板式反应器代替传统的反应器,可以有效解决积热问题。这样聚合过程无须搅拌和滴定,由传统的动态法转化成静态法,简化了操作,缩短了聚合时间,节约了能源。
不同的链转移剂有不同的聚合温度,其中异丙醇和丙酮的用量较大(单体的200-300% ),其聚合在带有冷凝回流的四口瓶中进行;十二硫醇用量较少(单体的4%),其聚合在平板式反应器中进行。
单体浓度也是引起爆聚的一个重要原因。丙烯酸单体的聚合热大,进行高浓度的聚合,很难实现对聚合过程的控制,故通常聚合浓度在40%以下。实验结果与这相一致,在以异丙醇为链转移剂的传统聚合方法中,虽然单体占水重的100-200%,但是在大量异丙醇存在的整个反应体系中单体浓度只有25-30%,所以结合其他条件可以无爆聚进行。在以十二硫醉为链转移剂的聚合反应中,由于链转移剂用量较少,对单体浓度没有多大影响,实验发现,控制单体浓度为30%较为合适。
由以上分析讨论可知,低聚丙烯酸及其钠盐合成时的防爆聚措施主要有以下四条。一、选择合适的反应器,实现放热与散热的平衡。二、选择合适的聚合温度,由DSC曲线可以看出,控制聚合温度在60℃,反应平缓。三、选择合适的单体浓度,减缓体系积热引起的温度上升。四、选择合适的分子量调节剂,抑制分子量的急剧增加。当然,引发剂浓度也是影响爆聚的重要因素,但是要合成低分子量的聚合物,引发剂浓度不能太低。
综上所述,静态水溶液聚合法是合成低分子量聚丙烯酸钠的一种行之有效的方法。聚合反应器、聚合温度、单体浓度、分子量调节剂的类型等因素对聚合过程和产物的分子量具有重大影响。在平板式反应器中,以十二硫醇为分子量调节剂,用静态水溶液聚合法合成低分子量聚丙烯酸钠,实现了放热与散热的平衡,既有效控制了产物的分子量,又避免了爆聚的发生。当单体浓度为30%,分子量调节剂用量为4%(占单体重),引发剂用量为4%(占单体重),聚合温度为60℃,反应时间为3h,可合成出分子量为5000左右的低分子量聚丙烯酸钠,产物水溶性好,分子量分布窄,且单体转化率在99%以上。
1.4 利用废腈纶制备聚丙烯酸衍生物
1.4.1 腈纶废丝的利用研究综述
腈纶废丝是分子量小于100000的聚合物,其柔软性、卷曲度、拉伸性、弹性等不合格,不能用在纺织品生产上。据统计,每生产1吨的腈睛纶,就会产生1%的废丝。因此,我国每年的睛纶废丝产量相当可观。虽然一部分废丝牵伸后得到重新利用,但仍有相当部分的废丝需另找出路。由于睛纶废丝不能解聚,不能热压成型,燃烧时会散发出有害气体。因此,若能将睛纶废丝水解产物制成高聚丙烯酸衍生物,不仅可以解决废丝的处理问题,而且可以使聚丙烯酸衍生物的成本大大地降低,这不失为一个一举两得的好方法。
1994年合肥联合大学的丁伦汉采用10%A1C13水溶液作为腈纶废丝水解物的交联剂制备高吸水性树脂,A1C13溶液的较佳用量为2.0ml/g。所得高吸水树脂产品可吸收蒸馏水800g/g,生理盐水22g/g,洗涤和烘干过程对吸水率影响较大。
1996年哈尔滨市环境保护科学研究所王凤艳和杨建华等以腈纶废丝为原料.进行碱催化水解,制备污水处理剂一絮凝剂。研究了水解工艺对产物的影响。并用该絮凝剂对选煤厂的污水进行处理,效果良好。
1996年合肥联合大学建工系丁伦汉和彭守宁等将睛纶废丝在碱性条件下水解,经中和、洗涤后,加入交联剂甲醛反应,制得高吸水性树脂。实验表明,甲醛最佳用量为0.22%左右.所得树脂吸水率稳定在600-800g/g。
1998年江苏淮阴工业专科学校化工系李登好和郭迎卫以聚丙烯腈( PAN )废丝为原料,经皂化水解,甲醛交联制备了高吸水树脂,研究了水解工艺条件对水解物的影响以及粘度、交联剂用量等对高吸水树脂的吸水率的影响,最终得到的吸水树脂吸水率为500g/g,生理盐水为61g/g。
1999年西北纺织工学院沈艳琴以腈纶废丝为主,以丙烯酸酯和丙烯酰胺为辅,合成的BY型丙烯类合成浆料,其外观白色粉末,有效成分88%以上,6%水溶液粘度60-100mPa.s ,pH值为6~8,经过试验表明,BY型浆料易溶于水,和淀粉及淀粉+PVA具有良好的混溶性,在淀粉+PVA浆中,BY型浆料可取代15%-20%的PVA。
2003年中原石油勘探局氯化橡胶厂陆颖舟介绍了一种由腈纶废丝常压皂化水解制备水解聚丙烯睛的新工艺路线。研究了氢氧化钠用量、水用量、温度等对水解反应的影响,找出了最佳的水解工艺条件。引入了一种新型的沉析剂处理水解产物,降低了生产成本和排污负荷。同年,中石化股份公司齐鲁分公司研究院的李留忠和于元章等将腈纶水解处理后制备出多种高附加值的产品,文中研究了聚丙烯腈碱法水解工艺的水解过程、水解程度,考察了水解工艺条件和水解配方对产物性能的影响。结果表明,m(PAN)/m(NaOH)/m(H2O) = 1/0.6/5时,在95℃水解4h,得到含羧钠基、酰胺基等多种亲水性基团的均匀透明的无规共聚物水溶液。采用FTIR、 XRF (X荧光光谱)、ZC-NMR等对产物进行了分析表征,进一步验证了试验结果。
PAN废丝的利用国外已有报导),如前苏联将PAN废丝经浓碱皂化水解,得到的水解产物代替纺织工业用的淀粉浆料。日本也将同类型产品作为土质稳定剂等。
一般而言,腈纶废丝在碱性条件下进行水解所得的水解产物可以看成是聚丙烯酸衍生物的多元共聚物,因此,PAN废丝的综合利用在一定程度上可以说是相对应的聚丙烯酸衍生物的应用。
在无机酸、碱、加热、加压条件下,睛纶废丝聚合物链中的侧基氰基(-CN)可以发生水解,使之转变为极性较强的羧基(-COOH )、酰胺基(-CONH2)等官能团,使之由固态转变成了液态,这不仅提高了其流动性,而且由于这些基团还能与其它的一些基团化合或配位,赋予了产物新的性质,从而拓宽了其应用范围。
1.4.2 腈纶废丝的酸法水解
在硫酸、盐酸等强酸和适当的温度下,腈纶废丝即发生如下水解反应。产物的结构与酸的种类及反应温度有关。工业上一般使用浓H2SO4进行催化。如果用75%-95%冷浓硫酸,使腈纶废丝水解4小时,主要产物为聚丙烯酰胺,水解产物中-COOH含量小于1%;用50%硫酸加热到120-140℃,催化水解腈纶废丝10小时,则主要产物是聚丙烯酸,其他基团较少。
该法设备简单,使用耐酸的搪瓷反应釜即可,但要求设备的气密度较高,回流冷凝器热交换效率好。缺点是所用的硫酸太浓,导致成本增加,不利于操作和环境。
1.4.3 腈纶废丝的碱法水解
聚丙烯腈纤维一般采用主单体丙烯睛(约占93%)、改性单体丙烯酸甲酯和第三单体苯乙烯磺酸钠三元共聚合成,是一种疏水性较强的高分子材料。用碱法水解可对设备无特殊要求。在碱性物质的催化和加热条件下,腈纶废丝即发生水解反应。可供选用的碱性催化剂是NaOH、KOH、水玻璃、磷酸三钠、磷酸三钾、硫化钠、氢氧化钙、氨水,这些物质又称为皂化剂。在皂化水解过程中,腈纶废丝由白色转变为黄色,继而转变为橙红色或棕红色,同时有氨气不断逸出,最后纤维状消失,得到浅黄色或乳白色粘稠液体。皂化剂可以单独使用,也可混合使用,但常用NaOH做皂化剂。NaOH可用固体的,也可以用浓度5%以上的液体。如果提高反应釜内压力,NaOH用量可以减少。
将最终反应的黄色或深黄色半透明溶液放置到室温,真空抽滤,除去溶液中的不溶性杂质,将滤液收集在大烧杯中。然后向滤液中倒入等体积的无水乙醇(作沉析剂),并用玻璃棒轻轻搅拌即可得到淡黄色或白色粘稠状膏体沉析物,将此沉析物取出放入小塑料盘中静置,使表面多余的沉析剂挥发掉,然后将沉析物放入真空干燥6-7h,脱除沉析物中残余的乙醇和水分。
干燥后得到的淡黄色固体即为目的产物一部分水解聚丙烯酞胺。用盐酸将睛纶废丝的水解产物调至中性,用上述方法使之干燥。制备成产品絮凝剂PAM。沉析分离后所剩余的分离液通过蒸馏回收,其中的乙醇可以回收净化后重复使用。水解反应中剩余的碱富集于母液中,在母液中再加入一定量的碱又可以投入睛纶废丝进行水解反应。
过硫酸钾分解方程式为2K2S2O8 = 2K2SO4+2SO3↑+O2↑。加热时分解放出氧而变为焦硫酸钾,100℃时完全分解。在潮湿空气中亦分解。温度和pH值对分解速度的影响,温度越高,pH值对分解速度影响越小,有乳化剂和硫醇存在能加速分解。
过硫酸钾是一种无机化合物,化学式为K2S2O8,是一种白色结晶性粉末,溶于水、不溶于乙醇,具有强氧化性,常用作漂白剂、氧化剂,也可用作聚合反应引发剂,几乎不吸潮,常温下稳定性好,便于储存,具有方便和安全等优点。
过硫酸钾主要用作消毒剂和织物漂白剂。用作乙酸乙烯酯、丙烯酸酯类、丙烯腈、苯乙烯、氯乙烯等单体乳液聚合的引发剂(使用温度60~85℃),以及合成树脂聚合促进剂。
以上内容参考:百度百科-过硫酸钾
类别
氧化剂
毒性分级 中毒
急性毒性 口服- 大鼠 LD50: 802 mg/kg
爆炸物危险特性 与还原剂、硫、磷等混合可爆受热、撞击、明火可爆
可燃性危险特性 受热分解氧气燃烧产生有毒氮氧化物烟雾
储运特性 库房通风低温干燥轻装轻卸与有机物、还原剂、硫、磷易燃物分开存放
灭火剂 雾状水、砂土、泡沫
职业标准 TWA 2 mg/ m3
主要用途
1主要用作消毒剂和织物漂白剂;
2.用作乙酸乙烯酯、丙烯酸酯类、丙烯腈、苯乙烯、氯乙烯等单体乳液聚合的引发剂(使用温度60~85℃),以及合成树脂聚合促进剂;
3.用作油井压裂液的破胶剂。在合成树脂、合成橡胶工业中作为乳液聚合的引发剂,用于丁二烯苯乙烯橡胶的合成;
4.过硫酸钾是电解法制过氧化氢的中间体,经分解生成过氧化氢;
5.过硫酸钾用于钢及合金的氧化溶液中及铜的蚀刻与粗化处理,也可用于溶液杂质的处理;
6.用作分析试剂,化工生产中用作氧化剂、引发剂。还用于胶片洗印,用作硫代硫酸钠脱除剂等
定的乳液作为成膜物质,加入颜填料和各种功能性助剂,经分散研磨形成一种混和分散
体系。其组成中有机溶剂含量低,只有2%—8%左右。是一种绿色环保型涂料。目前,
乳胶漆的品种主要有聚醋酸乙烯乳胶漆、乙苯乳胶漆、苯丙乳胶漆、纯丙烯酸酯乳胶漆、
叔碳酸酯乳胶漆等,近年来还出现高弹性和高耐候性的有机硅单体、有机氟单体改性丙
烯酸乳胶漆。乳胶漆由乳液,颜填料,助剂和水四个部分组成。丙烯酸酯类乳胶涂料具
有十分优异的耐候性、保色性和保光性具有比醋酸乙烯类涂料更好的耐水性、耐碱性和
抗污性。对颜料的黏结能力大,施工性能好。
以过硫酸钾作为引发剂,十二烷基苯磺酸钠和吐温-60为乳化剂通过乳液聚合制得丙烯酸酯液,再加入填料及各种助剂,经过高速搅拌、均质而出料。
合成纯丙乳液时选择甲基丙烯酸甲酯、甲基丙烯酸丁酯、丙烯酸等单体作原料。在
这些单体中,甲基丙烯酸甲酯主要为乳液提供必要的硬度,耐大气性和耐洗刷性,甲基
丙烯酸丁酯,提供树脂的弹性、柔韧性、耐冲击性和涂膜的附着力。丙烯酸为分子结构
提高亲水基团可增加涂膜与基材的附着力。
1乳液聚合引发剂的种类
1. 1偶氮类引发剂
偶氮类引发剂是指分子中含有偶氮基的一类化合物,有偶氮二异丁睛引发剂和偶氮二异庚睛引发剂。偶氮二异丁睛是常用的引发剂,一般在45 9C-- 65℃使用,热分解只产生一种自由基,该引发剂分解为一级反应,比较稳定。一般在低于80℃条件下使用较好,因为超过80℃就会激烈分解。 偶氮类化合物作引发剂与过氧化物相比有很多优点,它氧化能力小,在50℃一80℃能以适宜的速度分解,其分解速度受溶剂影响较小,无诱导分解,碰撞时也不会爆炸,产品易提纯,价格便宜。
1. 2有机过氧类引发剂
有机过氧化物分子中存在过氧弱键,可理解为过氧化氢的衍生物。其中一个氢原子被取代的称氢过氧化物,两个氢被取代的称过氧化物。该类引发剂按结构与性能特点常分成以下几类。
1. 2. 1氢过氧化物引发剂
常见的有异丙苯过氧化氢、叔丁基过氧化氢两种,过氧化氢是过氧化物的母体。过氧化物分解后,形成两个氢自由基。该类过氧化物活化能都很高,可用于高温体系中,一般很少单独使用,可与还原剂配合使用构成氧化一还原引发体系,用于室温或低温聚合体系,该类引发剂可按不同方式分解。
1.2.2过氧化二酰类
二酰基过氧化物分解时,一般按两步进行,首先分解成酰氧白由基,若单独存在则引发反应,若不单独存在则进一步分解,生成稳定的碳自由基。苯甲酰(BPO)是常见的过氧化引发剂,分子中0-0键的电子云密度大而相互排斥,容易断裂,一般在60- 80℃分解。它第一步均裂成苯甲酰自由基,第二步分解成苯自由基,并放出CO2,但分解不
完全。二酰基过氧化物引发剂活性较高,活性与其结构关系很大。芳酰类比较稳定,酯酰类活性较大,其a一H越少活性越大,不对称二酰过氧化物的活性更高,一般不单独使用。
1.2.3其它过氧类
包括过氧化二烷类和过氧化二碳酸酯类等。过氧化二烷类有过氧化二异丙苯和过氧化二叔丁基,活性比氢过氧化物高,属低偏中活性引发剂。过氧化二碳酸酯类过氧化物是一类高活性过氧化物,稳定性差,该类过氧化物的特点是烃基结构对其活性影响较小,并存在溶剂效应。
1. 3氧化一还原引发剂
氧化一还原组分是由组成它的氧化剂和还原剂之间发生氧化还原反应而产生能引发的自由基,这类引发剂称为氧化一还原体系。该类引发剂特点是活化能较低,可在低温下引发聚合,而有较快的聚合速率。这类引发剂包括水溶性引发剂和油溶性引发剂。
1. 3. 1水溶性引发剂
这类引发剂体系的氧化剂有过氧化氢、过硫酸盐、氢过氧化物等,还原剂有硫酸亚铁,亚硫酸钠等无机物和醇、胺、草酸和葡萄糖过氧化氢等有机化合物。过氧化氢、过硫酸盐、氢过氧化物与亚铁盐组成氧化一还原体系后,活化能减小,可在较低的温度下引发聚合。高锰酸钾或草酸不能单独做引发剂,但两者混合后可作为引发剂。
1.3.2油溶性氧化一还原引发剂
这类引发剂的氧化剂有氢过氧化物、过氧化二烷基、过氧化二酰基等,用做还原剂的有叔胺、环烷酸盐、硫醇及有机金属化合物等,其中过氧化苯甲酰是常用的引发剂。近年来出现了一些锌、硼、铝等有机化合物与氧配合组成的低氧化一还原引发体系,另外还有过渡金属碳基化合物和鳌合物用作引发剂。
2乳液聚合引发剂的选择
乳液聚合引发剂选择是很复杂的,需要从多方面考虑。选择引发剂时可从以下几个方面考虑。
2. 1溶解性
溶解性是选择引发剂的一个很重要条件,引发剂要求与聚合物有较好的相溶性。在乳液聚合中,应选择过硫酸盐类水溶性较好的引发剂。当乳液聚合需要用氧化还原引发剂时,氧化剂可以是水溶性的也可以是油溶性的,但还原剂一般是水溶性的。
对于溶于水的单体宜选用水溶性引发剂。
2. 2根据聚合温度选择复合引发剂
根据聚合温度选择活性或半衰期的引发剂,使自由基形成速率和聚合速率适中。引发剂分解活化能过高或半衰期过长,则分解速率过低,将使聚合时间延长但活化能过低,半衰期过短,则引发过快,难于控温,有可能引起爆聚,将使聚合时间延长或引发剂过早分解结束,在转化率很低时就停止聚合。所以一般应选择半衰期与聚合时间同数量级或相当的引发剂。通常选择复合引发剂可使反应在较均匀的速度下进行。
2. 3根据pH值选择引发剂
在乳液聚合中采用氧化还原引发剂时应根据反应介质的PH值来选择合适的引发剂二因为pH值能影响氧化还原的电位,从而影响氧化还原的速率。有些氧化还原引发剂只有在一定的pH值范围内才能起引发剂的作用,超过这一范围就无引发作用。
另外,引发剂应与聚合物体系的其它组分无副作用。
3引发剂对乳液聚合的影响
3. 1引发剂种类影响
乳液聚合引发剂一般多为水溶性氧化还原引发剂,它们的引发效率和半衰期都不一样。不同引发剂对乳液聚合有不同的影响。如过氧酸盐一硫醇引发剂中硫醇的加人对苯乙烯一丁二烯乳液聚合反应有显著的促进作用,微量的硫醇可以大大加速聚合反应过程。过硫酸盐一亚硫酸盐氧化还原引发体系在工业上用于丙烯睛等单体的乳液聚合。该引发剂体系氧化还原反应将生成硫酸根离子自由基和亚硫酸根离子自由基,当自由基副反应大于自由基的生成反应时,则硫酸根离子自由基占主导地位,反之亚硫酸根离子引发剂占主导地位。有人研究发现引发剂能影响粒子表面极性,改变聚合物/水相界面引力,从而影响聚合物粒子形态。SharonLee等用两步法合成了RMMA/ PS核壳乳胶,从热力学角度讲,在亲水/疏水聚合物中是很难形成核壳结构的。在两阶段乳液聚合中,若第一阶段生成的聚合物比第二阶段聚合物亲水性更强,则很难形成核一壳结构。如果对体系中的相迁移加以限制,则仍可得到核一壳结构。聚合反应速率将会影响到单体分配,共聚物组成和相对分子质量决定共聚物产量。有人认为所用引发剂种类可能直接影响共聚物组成 。 MASAYUSHI等用过硫酸钾一硫代硫酸钠一硫酸铜为引发剂,进行丙烯酸乙酷和甲基丙烯酸甲酯的合成研究时,发现不添加Cu2+仅用通常的氧化还原引发剂,得不到粒径小于80nm的乳液,但添加微量的Cu2+时,粒径显著变小,在乳化剂为3%(质量分数)以上时,得到粒径80nm以下的微粒子乳液,且粒径随引发剂浓度的增大而增大。如果采用过硫酸盐硫酸亚铁氧化还原体系将第二阶段的聚合温度降低至室温,保持适当的引发速率,可得到PMMA/ PS核一壳结构。
3. 2引发剂用量的影响
引发剂的用量不仅影响反应速率和分子量,对粒度分布也有很大影响。Chen&Lee认为,引发剂浓度对乳液聚合体系影响较大. Aslnazova等:研究了不同引发剂,发现具有表面活性作用的引发剂引发效率高,且粒子成核机理主要是胶束机理,粒子长大过程发生在胶粒中,而且粒子稳定性好,导致聚合反应持续时间长,分子量高. 引发剂用量不同对乳液聚合有不同的影响。引发剂用量过低,则单体的转化率就低用量增大,引发剂浓度增加,初期形成自由基数目增多,粒子碰撞几率增多,导致粒径变大,转化率增大但增大到一定的时候,用量再增大,转化率变化不大,当引发剂用量过大时,容易使乳液聚合过程的稳定性降低,主要是因为过量的引发剂和乳化剂起到了电解质的作用,另一方面,随引发剂用量增加,聚合物的分子量迅速下降,因此我们可通过引发剂的用量来调节分子量。引发剂浓度增大时,自由基增长速率增大,会造成反应物体系中瞬时颗粒过于集中,从而引起集聚,稳定性变差,终止速率亦增大,故使聚合物的平均分子量降低。引发剂用量过低会造成分子量变大,体系粘度增高。一般来讲,适宜的引发剂量为单体总量的0.1%一0.8%(质量分数)。管蓉等研究发现当引发剂用量为0. 2%一0. 4%时,制备的丙烯酸酯类共聚物乳液呈蓝相、乳液粒子的粒度小,并且乳液的稳定性好。
3. 3引发剂加入方式的影响
对于相同的引发剂,加料方式不同,其结果也不一样。以过硫酸铵为引发剂,比较其加人方式对单体转化率的影响,结果表明:引发剂分两次加人可以得到较高的转化率。在一次加入时由于引发剂消耗,反应后期单体不能够完全反应,转化率低引发剂加人到预乳化液时,单体反应比较完全,因此转化率高在第二种方法的基础上再补加一次引发剂,使未反应的剩余单体进行反应,转化率进一步提高。
3. 4其它影响因素
另外,引发剂分解的速率随温度升高而增加,一般情况下半衰期随温度升高而变短,因此温度控制对乳液聚合很重要。在酸性条件下,引发剂的热分解速率随着离子强度的增大而减小。如APS在水中热分解时会产生少量HS04-,该离子进一步电离成H+和SO2-4离子,因而随着聚合反应的进行,体系pH值降低,pH值的改变又会影响到乳化剂的乳化效果和引发剂的引发效率,从而对胶粒大小及分布产生影响。
4结语
引发剂对乳液聚合的影响是复杂的,其作用也是很大的。在实际过程中应考虑乳液聚合引发剂的影响,根据不同的乳液聚合选择不同的引发剂。