二元饱和脂肪醇是啥子东西?
分子中有两个羟基的脂肪醇,二元醇的通式为CnH2n+2O2。乙二醇(ethylene glycol)又名“甘醇”、“1,2-亚乙基二醇”,简称EG。化学式为(HOCH2)₂,是最简单的二元醇。
中午好,脂肪族醚醇(醇醚)是一个大类别总称,PEGME是一种脂肪族醇醚结构,它属于前者,前者包括后者,是一种上下级包含关系请参考。乙二醇、丙二醇和丙三醇都属于脂肪醇大类。
脂肪醇可分为天然脂肪醇和合成脂肪醇两种。
天然脂肪醇以天然的动植物油脂为原料,而合成脂肪醇是从石油中经过提炼、裂解与合成过程得到的。作为合成润湿剂、分散剂、增溶剂、润滑剂等多种精细化学用品的基础化工原料,脂肪醇被广泛用于清洁、个人护理用品及工业行业。
脂肪醇为具有8至22碳原子链的脂肪族的醇类。脂肪醇通常具有偶数的碳原子和一个连接于碳链末端的羟基。一些脂肪醇为不饱和醇,而一些为支链醇。这些醇类都广泛应用于化学工业。
脂肪醇在天然当中并不大量存在,只存在于如:蜡、脂肪酸酯和脂肪醇。
[1] 脂肪醇直到1900年才被发现。他当村通过钠和蜡酯进行布沃-布朗还原反应得到。进入19世纪30年代催化氢化方法开始进入商用领域,该法将脂肪酸酯也就是通常的动物油脂通过氢化反应得到脂肪醇。到了40年代和50年代,石化原料开始成为重要的化工原料,Karl Ziegler发现了乙烯的聚合反应。这两个重要发现打开了合成脂肪醇的大门。
从天然来源制备一个传统并仍然有效的得到脂肪醇的途径是通过脂肪羧酸酯。蜡酯以前就是通过捕获鲸鱼并提取其中的精子油获得的。另外一条路径就是种植荷荷巴。脂肪酸三酯,即熟知的甘油三酯可通过动植物来源获得。这些三酯都可进行酯交换反应得到甲酯,然后氢化得到醇类。典型的动物油脂为C16-C18,植物油脂的链长变化相比更多。更长的脂肪醇链(C20–C22)可通过菜籽油获得;相比更短的脂肪醇链(C12-C14)可通过椰子油获得。
从石化来源制备脂肪醇还可以通过石化原料进行制备。在Ziegler过程中,乙烯在三乙基铝条件下进行低聚化而后进行空气氧化反应。这个过程可以得到偶数碳链的醇类:
Al(C2H5)3 + 18 C2H4 → Al(C14H29)3
Al(C14H29)3 + 1.5 O2 + 1.5 H2O → 3 HOC14H29 + 0.5 Al2O3
此外乙烯还可低聚化得到烯烃混合物,进而进行氢甲酰化反应,该过程可得到奇数碳链的醛,继而可氢化得到奇数碳链醇。例如,从癸烯氢甲酰化得到C11的醇:
C8H17CH=CH2 + H2 + CO → C8H17CH2CH2CHO
C8H17CH2CH2CHO + H2 → C8H17CH2CH2CH2OH
在壳牌高碳烯烃法中,壳牌公司调整了起始烯烃低聚物的碳链长度分布从而迎合市场需求。该法通过中间体复分解反应来达成。[2]得到的混合物进行分馏和氢甲酰化或者氢化进行下一步生产。
应用脂肪醇主要用于生产洗涤剂和表面活性剂。它们是化妆品、食品和工业溶剂的组成部分。由于天然的水油两性,脂肪醇可作为非离子表面活性剂,还可用于化妆品和食品工业中的乳化剂、润滑剂和增稠剂。
营养通过植物蜡和蜂蜡获得的极长链脂肪醇(VLCFA)被报道可以降低人血浆胆固醇。极长链脂肪醇被发现存在于粗谷物,蜂蜡和许多植物衍生的食品。报道还建议每人每天需要摄入5–20 mg的混合C24–C34醇(包括二十八烷醇和三十烷醇),降低21%–29%的低密度脂蛋白(LDL)胆固醇摄取量;提高8%–15%的高密度脂蛋白胆固醇摄取量。蜡酯可以被胆汁盐(依赖于胰腺分泌的羧基酯酶)水解,释放由胃肠道吸收的长链醇和脂肪酸。对成纤维细胞内脂肪醇代谢的研究表明:极长链脂肪醇、脂肪醛和脂肪酸在脂肪醇循环中可进行可逆的互相转化。对于遗传病过氧化物酶体紊乱(包括肾上腺脑白质营养不良和舍格伦-拉森综合征(鳞癣样红皮病))的患者,这些化合物都无法进行代谢
请采纳答案,支持我一下。
1、单硬脂酸甘油:别名,单甘油酯。白色蜡状薄片或珠粒固体,在化妆品及医药膏剂中用作乳化剂,使膏体细腻,滑润。
2、橄榄油:使膏体油性而滋润,作为柔润剂
3、羊毛脂:自羊毛中取得之动物性脂类,呈黄色,其成份包含胆固醇、酯及脂肪酸,对皮肤有滋润效果,附着性佳。
4、甘油:柔软、保湿、卸妆溶剂及润滑剂,用于肌肤时,绝不可直接使用未经稀释的甘油,会造成反效果。
5、苯甲酸钠:苯甲酸钠也是酸性防腐剂,在碱性介质中无杀菌、抑菌作用。
6、柠檬汁:柠檬皮可萃取精油,用于香水,或用于芳香疗法中,具有收敛作用,能舒缓不适、提神、消除疲劳。
7、维生素c和维生素e:具有强抗氧化,美白肤色、淡化色斑,增强美白作用的靶向和精准度等作用。
8、天然植物的抗氧化活性成分:减少炎症,天然淡化色斑,美白肤色。
9、水杨酸类:去角质帮助均匀肤色,保湿并淡化皮肤表面的晦暗色泽。
10、曲酸:避免了过多的黑素合成,淡化皮肤颜色。
扩展资料:
防晒霜
抛弃了防晒霜一贯给人的油腻担心,其宣传语为“没有丝毫黏腻而清爽的使用感”。能有效防止紫外线UV-AB全波段,给予皮肤最坚强保护的防晒霜。专业收缩毛孔防晒霜SPF35PA++纯天然无油配方,安全防晒的同时收缩毛孔。
清爽的夏季,防晒而不再被油油的防晒霜困扰针对粗大的毛孔有神奇的效果,天然植物成分,绝对不含酒精。含有清爽性凉的植物萃取物,如甘草、绿茶、柠檬等,性质非常温和,无刺激性,无油,适合易出油皮肤和问题皮肤。
高原护肤霜
选用疏水性强、润滑涂展性好、能抗高寒气流的聚甲基硅氧烷为主要基质,壬基酚聚氧乙烯醚(OP)为主要乳化剂,附加其他多种防晒护肤成分制得O/W型高原护肤霜。抗紫外线实验采用氯丙嗪在光照下发生光毒反应模型,从光毒反应的减轻程度反映霜剂抗紫外线作用的强弱。
参考资料:百度百科-护肤霜
丙三醇,国家标准称为甘油,无色、无臭、味甜,外观呈澄明黏稠液态,是一种有机物。俗称甘油。
丙三醇,能从空气中吸收潮气,也能吸收硫化氢、氰化氢和二氧化硫。难溶于苯、氯仿、四氯化碳、二硫化碳、石油醚和油类。 丙三醇是甘油三酯分子的骨架成分。相对密度1.26362。熔点17.8℃。沸点290.0℃(分解)。折光率1.4746。闪点(开杯)176℃。急性毒性:LD50:31500 mg/kg(大鼠经口)。
基本介绍中文名 :丙三醇 英文名 :GLYCEROL,GLYCERINE 别称 :1,2,3-丙三醇,甘油 化学式 :C3H8O3 分子量 :92.09 CAS登录号 :56-81-5 EINECS登录号 :200-289-5 熔点 :17.8℃(18.17℃,20℃) 沸点 :290.9℃ at 760 mmHg 水溶性 :任意比例混溶 密度 :1.263-1.303g/cm3 外观 :无色、透明、无臭、粘稠液体 闪点 :177℃ 套用 :用于气相色谱固定液及有机合成等 安全性描述 :无毒,大量可导致似麻醉作用 IUPAC命名 :propane-1,2,3-triol 引燃温度 : 370℃发现历史,编号系统,物性数据,毒理学数据,生态学数据,分子结构数据,计算化学数据,性质与稳定性,贮存方法,安全信息,生产方法,天然甘油,合成甘油,用途,工业用途,日用,野外,医药,植物,中国药典,衍生物,注意事项,操作注意事项,储存注意事项,安全风险,安全术语,风险术语,国家标准, 发现历史 甘油,1779年由斯柴尔(Scheel)首先发现,1823年人们认识到油脂成分中含有Chevreul,希腊语为甘甜的意思,因此命名为甘油(Glycerine)。第一次世界大战期间,因其为制造火药的原料,则产量大增。 编号系统 CAS号:56-81-5 MDL号:MFCD00004722 EINECS号:200-289-5 RTECS号:MA8050000 BRN号:635685 物性数据 1. 性状:无色无臭的黏稠状液体,有甜味。 2. 沸点(ºC,101.3kPa):290,182(2666pa) 3. 熔点(ºC,流动点):20 4. 相对密度(g/mL,15/15ºC):1.26526 5. 相对密度(g/mL,20/20ºC):1.2613 6. 相对密度(g/mL,25/25ºC):1.26170 7. 相对蒸汽密度(g/mL,空气=1):3.1 8. 折射率(15ºC):1.47547 9. 折射率(n20ºC):1.4746 10. 折射率(n25ºC):1.4730 11. 黏度(mPa·s,20ºC):243 12. 黏度(mPa·s,25ºC):56.0 13. 黏度(mPa·s,30ºC):18 14. 黏度(mPa·s,50ºC):18 15. 闪点(ºC,闭口):177 16. 燃点(ºC):523(Pt上);429(玻璃上) 17. 蒸发热(KJ/mol,55ºC):88.17 18. 蒸发热(KJ/mol,b.p.):61.09 19. 生成热(KJ/mol,15ºC,液体):669.05 20. 燃烧热(KJ/mol,25ºC,液体):1656.42 21. 比热容(KJ/(kg·K),15ºC):2.46 22. 电导率(S/m,20ºC):1.0×10-8 23. 热导率(W/(m·K)):0.29 24. 蒸气压(kPa,125.5ºC):0.13 25. 体膨胀系数(K-1):0.000615 26. 溶解性:能吸收硫化氢、氢氰酸、二氧化硫。能与水、乙醇相混溶,1份该品能溶于11份乙酸乙酯、约500份乙醚,不溶于苯、二硫化碳、三氯甲烷、四氯化碳、石油醚、氯仿、油类。易被脱水,失水生成双甘油和聚甘油等。氧化生成甘油醛和甘油酸等。在0℃下凝固,形成有闪光的斜方结晶。在温度150℃左右时,会发生聚合。与无水醋酸酐、高锰酸钾、强酸、腐蚀剂、脂肪胺、异氰酸酯类、氧化剂不能配伍。 27. 相对密度(20℃,4℃):1.2613 28. 相对密度(25℃,4℃):1.255130 29. 临界温度(ºC):576.85 30. 临界压力(MPa):7.5 31. 偏心因子:1.320 32. 溶度参数(J·cm-3)0.5:34.315 33. van der Waals面积(cm2·mol-1):7.650×1010 34. van der Waals体积(cm3·mol-1):51.360 毒理学数据毒性分级中毒急性毒性:口服- 大鼠 LD50:26000 毫克/ 公斤;口服- 小鼠 LC50: 4090 毫克/ 公斤。*** 数据:皮肤- 兔子 500 毫克/ 24小时 轻度; 眼睛 -兔子 126 毫克 轻度。食用对人体无毒。作溶剂使用时可被氧化成丙烯醛而有 *** 性。小鼠静脉注射LC50为7.56g/kg,工作场所最高容许浓度为10mg/m3。大鼠经口LD50:20ml/kg;静脉注射LD50:4.4ml/kg。存于凉爽、干燥处。生态学数据 对水体有一定的危害。对环境没有污染。 分子结构数据 1、 摩尔折射率:20.51 2、 摩尔体积(cm3/mol):70.9 3、 等张比容(90.2K):199.0 4、 表面张力(dyne/cm):61.9 5、 极化率(10-24cm3):8.13 计算化学数据 1.疏水参数计算参考值(XlogP):无 2.氢键供体数量:3 3.氢键受体数量:3 4.可旋转化学键数量:2 5.互变异构体数量:无 6.拓扑分子极性表面积60.7 7.重原子数量:6 8.表面电荷:0 9.复杂度:25.2 10.同位素原子数量:0 11.确定原子立构中心数量:0 12.不确定原子立构中心数量:0 13.确定化学键立构中心数量:0 14.不确定化学键立构中心数量:0 15.共价键单元数量:1 性质与稳定性 1.无色、透明、无臭、粘稠液体,味甜,具有吸湿性。 与水和醇类、胺类、酚类以任何比例混溶,水溶液为中性。溶于11倍的乙酸乙酯,约500倍的乙醚。不溶于苯、氯仿、四氯化碳、二硫化碳、石油醚、油类、长链脂肪醇。可燃,遇二氧化铬、氯酸钾等强氧化剂能引起燃烧和爆炸。也是许多无机盐类和气体的良好溶剂。对金属无腐蚀性,作溶剂使用时可被氧化成丙烯醛。 化学性质:与酸发生酯化反应,如与苯二甲酸酯化生成醇酸树脂。与酯发生酯交换反应。与氯化氢反应生成氯代醇。甘油脱水有两种方式:分子间脱水得到二甘油和聚甘油;分子内脱水得到丙烯醛。甘油与碱反应生成醇化物。与醛、酮反应生成缩醛与缩酮。用稀硝酸氧化生成甘油醛和二羟基丙酮;用高碘酸氧化生成甲酸和甲醛。与强氧化剂如铬酸酐、氯酸钾或高锰酸钾接触,能引起燃烧或爆炸。甘油也能起硝化和乙酰化等作用。 2.无毒。即使饮入总量达100g的稀溶液也无害,在机体内水解后氧化而成为营养源。在动物实验中,如使之饮用极大量时,具有与醇相同的麻醉作用。 3. 存在于烤菸菸叶、白肋烟菸叶、香料烟菸叶、烟气中。 4. 天然存在于菸草、啤酒、葡萄酒、可可中。 贮存方法 1.贮存于清洁干燥处,应注意密封贮存。注意防潮,防水,防热,严禁与强氧化剂混放。可用镀锡或不锈钢容器贮存。 2. 采用铝桶或镀锌铁桶包装或用酚醛树脂衬里的贮槽贮存。贮运中要防潮、防热、防水。禁止将甘油与强氧化剂(如硝酸、高锰酸钾等)放在一起。按一般易燃化学品规定贮运。 安全信息 危险运输编码:UN 1282 3/PG 2 危险品标志:易燃有害 安全标识:S26S39S24/25 危险标识:R11R36R20/21/22 生产方法 甘油的工业生产方法可分为两大类:以天然油脂为原料的方法,所得甘油称天然甘油;以丙烯为原料的合成法,所得甘油称合成甘油。 天然甘油 1984年以前,甘油全部从动植物脂制皂的副产物中回收。至今为止,天然油脂仍为生产甘油的主要原料,其中约42%的天然甘油得自制皂副产,58%得自脂肪酸生产。制皂工业中油脂的皂化反应。皂化反应产物分成两层:上层主要是含脂肪酸钠盐(肥皂)及少量甘油,下层是废碱液,为含有盐类,氢氧化钠的甘油稀溶液,一般含甘油9-16%,无机盐8-20%。油脂反应。油脂水解得到的甘油水(也称甜水),其甘油含量比制皂废液高,约为14-20%,无机盐0-0.2%。近年来已普遍采用连续高压水解法,反应不使用催化剂,所得甜水中一般不含无机酸,净化方法比废碱液简单。无论是制皂废液,还是油脂水解得到的甘油水所含的甘油量都不高,而且都含有各种杂质,天然甘油的生产过程包括净化、浓缩得到粗甘油,以及粗甘油蒸馏、脱色、脱臭的精制过程。 合成甘油 从丙烯合成甘油的多种途径可归纳为两大类,即氯化和氧化。现在工业上仍在使用丙烯氯化法及丙烯不定期乙酸氧化法。 丙烯氯化法 这是合成甘油中最重要的生产方法,共包括四个步骤,即丙烯高温氯化、氯丙烯次氯酸化、二氯丙醇皂化以及环氧氯丙烷的水解。环氧氯丙烷水解制甘油是在150℃、1.37MPa二氧化碳压力下,在10%氢氧化钠和1%碳酸钠的水溶液中进行,生成甘油含量为5-20%的含氯化钠的甘油水溶液,经浓缩、脱盐、蒸馏,得纯度为98%以上的甘油。 丙烯过乙酸氧化法 丙烯与过乙酸作用合成环氧丙烷,环氧丙烷异构化为烯丙基醇。后者再与过乙酸反应生成环氧丙醇(即缩水甘油),最后水解为甘油。过乙酸的生产不需要催化剂,乙醛与氧气气相氧化,在常压、150-160℃、接触时间24s的条件下,乙醛转化率11%,过乙酸选择性83%。上述后两步反应在特殊结构的反应精馏塔中连续进行。原料烯丙醇和含有过乙酸的乙酸乙酯溶液送入塔后,塔釜控制在60-70℃、13-20kPa。塔顶蒸出乙酸乙酯溶剂和水,塔釜得至甘油水溶液。此法选择性和收率均较高,采用过乙酸为氧化剂,可不用催化剂,反应速度较快,简化了流程。生产1t甘油消耗烯丙醇1.001t,过乙酸1.184t,副产乙酸0.947t。目前,天然甘油和合成甘油的产量几乎各占50%,而丙烯氯化法约占合成甘油产量的80%。我国天然甘油占总产量90%以上。 工业级甘油 工业级甘油量用1/2量的蒸馏水稀释,搅拌充分后,加入活性炭,并加热至60~70℃进行脱色处理,然后,真空过滤,保证滤液澄清透明。控制滴加速度,将滤液加到事先处理好的732型强酸阳树脂和717型强碱阴阳树脂混合的柱内,以吸附除去甘油中的电解质和醛类、色素、酯类等非电解质杂质。除去杂质后的甘油溶液进行减压蒸馏,控制真空度93326Pa以上,釜温在106~108℃,蒸出大部分水之后,再将釜温升到120℃快速脱水,不出水时停止加热,所得釜内物料即为成品。 用途 气相色谱固定液(最高使用温度75℃,溶剂为甲醇),分离分析低沸点含氧化合物、胺类化合物、氮或氧杂环化合物,能完全分离3-甲基吡啶(沸点144.14℃)和4-甲基吡啶(沸点145.36℃),适用于水溶液的分析、溶剂、气量计及水压机缓震液、软化剂、抗生素发酵用营养剂、干燥剂、润滑剂、制药工业、化妆品配制、有机合成、塑化剂。可与水以任何比例溶解,低浓度丙三醇溶液可做润滑油对皮肤进行滋润(开塞露)。 工业用途 1、用作制造硝化甘油、醇酸树脂和环氧树脂。 丙三醇键线式 2、在医学方面,用以制取各种制剂、溶剂、吸湿剂、防冻剂和甜味剂,配剂外用软膏或栓剂等。 3、在涂料工业中用以制取各种醇酸树脂、聚酯树脂、缩水甘油醚和环氧树脂等。 4、纺织和印染工业中用以制取润滑剂、吸湿剂、织物防皱缩处理剂、扩散剂和渗透剂。 5、在食品工业中用作甜味剂、菸草剂的吸湿剂和溶剂。 6、在造纸、化妆品、制革、照相、印刷、金属加工、电工材料和橡胶等工业中都有着广泛的用途。 7、并用作汽车和飞机燃料以及油田的防冻剂。 8、甘油可以作为塑化剂用于新型陶瓷工业。 日用 食用级甘油其中最优质一种-生物精化甘油,除含有丙三醇,还有酯类、葡萄糖等还原糖,属于多元醇类甘油;除具有保湿、保润功能外,还具有高活性、抗氧化、促醇化等特殊功效 。 每克甘油完全氧化可产生4千卡热量,经人体吸收后不会改变血糖和胰岛素水平。甘油是食品加工业中通常使用的甜味剂和保湿剂,大多出现在运动食品和代乳品中。 在果汁、果醋等饮料中的套用 不同品质的水果,都含有不同程度的单宁,而单宁又是水果中的苦、涩味来源。 作用:迅速分解果汁、果醋饮料中的苦、涩异味,增进果汁本身的厚味和香味,外观鲜亮,酸甜适口。 添加量:0.8%~1% 果酒行业的套用 用水果或其它干鲜果品酿制或泡制的酒,只是制作方法不同,都称为果酒(乾红、干白),果酒都存在单宁,单宁就是苦、涩味的来源。 作用:分解果酒中的单宁,提升酒品的品质、口感,去除苦、涩味。 添加量:1% 肉干、香肠、腊肉行业的运用 腌腊制品、肉干、香肠的用法: 在加工制作时,将植物精化甘油用50度以上纯粮酒稀释后,均匀喷洒在肉上或切好的肉中,充分搓揉或搅拌。 作用:锁水、保湿,达到增重效果,延长保质期。 添加量:1.2%~1.5% 果脯行业的运用 果脯在加工制作时,因存放问题使产品容易失水,干硬,水果中同样也含有单宁。 作用:锁水、保湿,抑制单宁异性增生,达到护色、保鲜、增重效果,延长保质期。 添加量:0.8%~1% 野外 在野外,甘油不仅可以作为供能物质,满足人体需要。还可以作为引火剂,方法为:在可燃物下堆上5~10克的高锰酸钾固体,再将甘油倒在高锰酸钾上,约半分钟就有火苗冒出。因为甘油粘稠,所以可以事先可用无水乙醇等易燃有机溶剂稀释,但溶剂不宜过多。 医药 稳定血糖和胰岛素 《欧洲套用生理学》杂志登载过一项研究。研究者们将6名身体健康的年轻男性分为三组,分别给予葡萄糖、甘油和安慰剂,然后让他们在健身器上做同样的运动。在运动前45分钟服用葡萄糖的人(每磅体重0.5g葡萄糖),在开始运动时其体内的血糖水平上升了50%,血液中胰岛素水平上升了3倍。在运动前45分钟服用甘油的人(每磅体重0.5g甘油),在开始运动时血液中甘油水平增加了340倍,但血糖和胰岛素水平没有任何变化。 因此,如果你用甘油代替高热量的碳水化合物,就可以避免因进食大量的饼干或蛋糕所带来的不良后果了。可以说,大剂量的服用甘油几乎不会对血糖及胰岛素水平有影响。大量的证据提示,如果你的目标是减少碳水化合物的摄入量,甘油可能是一种理想的糖原。 能量酸 有些科学家还强调指出,如果你想在运动场上有更佳的表现,甘油也是一种不错的补剂。原因在于,当你身体中水分充足时,体能会更强大而且持久。特别是在高温环境中,甘油强大的保水性恰恰有助于身体储存更多的水分。 发表在《国际运动医学》杂志的一项研究显示,甘油可能含有一种产生能量的酸性物质。研究者将甘油和一种名为阿斯帕坦的营养性甜味剂作比较,方法是让被试者分别服用甘油和阿斯帕坦,剂量为每公斤体重1.2g甘油(20%水溶液形式)或26ml阿斯帕坦。结果表明,在亚极限运动负荷下,甘油不但可以降低运动者的心率,还可以将运动时间延长20%。 对于进行高强度体能训练的人,甘油可能给他们带来更出色的表现。对于健美运动员来说,甘油可能帮助他们把体表及皮下的水分转移到血液和肌肉中。 植物 据新的研究表明有的植物的表面有一层甘油,可以使植物在盐碱地生存。 中国药典 2010版中国药典修订增订内容 甘油 Ganyou Glycerol 书页号:2005年版二部-68 [修订] 【检查】 易炭化物 取本品5.0ml,在振摇下逐滴加入硫酸5ml,此时温度不得超过20℃,静置时间为1小时,如显色,与同体积对照溶液(取比色用氯化钴溶液0.2ml、比色用重铬酸钾溶液1.6ml与水8.2ml制成)比较,不得更深。 丙烯醛、葡萄糖与铵盐 取本品4.0g,加10%氢氧化钾溶液5ml,在60放置5分钟,不得显黄色或发生氨臭。 【含量测定】取本品0.1g,精密称定,加水45ml,混匀,精密加入2.14%(g/ml) 高碘酸钠溶液25ml,摇匀,暗处放置15分钟后,加50%(g/ml)乙二醇溶液5ml,摇匀,暗处放置20分钟,加酚酞指示液0.5ml,用氢氧化钠滴定液(0.1mol/L)滴定,并将滴定的结果用空白试验校正。每1ml氢氧化钠滴定液(0.1mol/L)相当于9.21mg的C 3 H 8 O 3 。 [增订] 【检查】二甘醇、乙二醇和其他杂质 照气相色谱法(附录V E)测定。 色谱条件与系统适用性试验 用氰丙基苯基二甲基聚矽氧烷为固定液(或极性相近的固定液)的毛细管柱为色谱柱(30m×0.53mm×3μm)程式升温,于100℃维持4分钟,以50℃每分钟升温至120℃,维持10分钟,再以50℃每分钟升温至220℃,维持6分钟;氢火焰离子化检测器,检测器温度为250℃;进样口温度为200℃;载气为氮气,流速为每分钟4.5ml,分流比为10:1。对照品溶液重复进样所得二甘醇和乙二醇峰面积与内标峰面积比值的相对标准偏差均不得大于5%,系统适用性溶液中各成分峰间的分离度应符合要求。 系统适用性试验溶液的制备 取二甘醇、乙二醇、正己醇和甘油适量,精密称定,用甲醇溶解并稀释制成每1ml中含有甘油400mg、二甘醇、乙二醇、正己醇0.1mg的溶液,即得。 内标溶液的配制 取正己醇适量,加甲醇制成每1ml中约含0.5mg的溶液,即得。 对照品溶液的制备 分取二甘醇、乙二醇适量,精密称定,用甲醇溶解并稀释制成每1ml中含有二甘醇、乙二醇各0.5mg的溶液。精密量取5ml,置25ml量瓶中,精密加入内标溶液5ml,用甲醇稀释至刻度,作为对照品溶液。 供试品溶液的制备 取本品约10g,精密称定置25ml量瓶中,精密加入内标溶液5ml,用甲醇溶解并稀释至刻度,作为供试品溶液。 测定法 分别精密量取供试品溶液、对照品溶液和系统适用性溶液各1μl注入气相色谱仪,记录色谱图,按内标法以峰面积计算,供试品含二甘醇与乙二醇均不得过0.025%;如有其他杂质,扣除内标峰按归一化法计算,单个未知杂质不得过0.1%;杂质总量(包含二甘醇、乙二醇)不得过1.0%。 衍生物 甘油是脂肪醇,具有脂肪醇的化学活性;同时又是多元醇,是最简单的三元醇,因此,甘油的化学性质除了脂肪醇的通性外,还有多元醇的性质。具体说甘油可发生的化学反应有:与无机酸、羧酸、酸酐、酰氯等反应生成盐或酯;与醇生成醚;与环氧乙烷环氧丙烷发生加成反应生成聚醚;与碱金属单质或碱金属氢化物发生醇凎反应生成盐;与多元脂肪族羧酸或多元芳香酸发生分子间缩合反应生成聚酯。 注意事项 操作注意事项 密闭操作,注意通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防毒物渗透工作服,戴橡胶手套。远离火种、热源,工作场所严禁吸菸。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、酸类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项 储存于阴凉、通风的库房。远离火种、热源。应与氧化剂、酸类分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有泄漏应急处理设备和合适的收容材料。 安全风险 甘油如果与强氧化剂混合(比如三氯化铬、氯酸钾、高锰酸钾)可能爆炸。在稀溶液中该反应速度较低,有几种氧化产物生成。有光照或与碱式硝酸铋、氧化锌接触时,甘油变黑。 如果有铁污染物掺杂其中,会导致含有苯酚、水杨酸、丹尼酸的混合物颜色变黑。甘油形成一种硼酸复合物(甘油硼酸),它的酸性要强于硼酸。 小鼠口服毒性LD50=31,500mg/kg。静脉给药LD50=7,560mg/kg。 燃爆危险: 本品可燃,具 *** 性。 危险特性: 遇明火、高热可燃。 安全术语 S24/25Avoid contact with skin and eyes. 避免与皮肤和眼睛接触。 S26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. 不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。 S39 Wear eye / face protection. 戴护目镜或面具。 风险术语 R36 Irritating to eyes. *** 眼睛。 R20/21/22 Harmful by inhalation, in contact with skin and if swallowed. 吸入、皮肤接触及吞食有害。 R11 Highly flammable. 高度易燃。 国家标准 《甘油》(GB/T 13206-2011)《Glycerines》于2012年9月1日实施,替代GB/T 13206-1991。 《食品添加剂 单、双硬脂酸甘油酯》(GB 1986-2007)《Food additive - Glyceryl mono- and distearate》于2008年6月1日实施,代替GB 1986-1989。
第一类溶剂
是指已知可以致癌并被强烈怀疑对人和环境有害的溶剂。在可能的情况下,应避免使用这类溶剂。如果在生产治疗价值较大的药品时不可避免地使用了这类溶剂,除非能证明其合理性,残留量必须控制在规定的范围内,如:
苯(2ppm)、四氯化碳(4ppm)、1,2-二氯乙烷(5ppm)、1,1-二氯乙烷(8ppm)、1,1,1-三氯乙烷(1500ppm)。
第二类溶剂
是指无基因毒性但有动物致癌性的溶剂。按每日用药10克计算的每日允许接触量如下:
2-甲氧基乙醇(50ppm)、氯仿(60ppm)、1,1,2-三氯乙烯(80ppm)、1,2-二甲氧基乙烷(100ppm)、1,2,3,4-四氢化萘(100ppm)、2-乙氧基乙醇(160ppm)、环丁砜(160ppm)、嘧啶(200ppm)、甲酰胺(220ppm)、正己烷(290ppm)、氯苯(360ppm)、二氧杂环己烷(380ppm)、乙腈(410ppm)、二氯甲烷(600ppm)、乙烯基乙二醇(620ppm)、N,N-二甲基甲酰胺(880ppm)、甲苯(890ppm)、N,N-二甲基乙酰胺(1090ppm)、甲基环己烷(1180ppm)、1,2-二氯乙烯(1870ppm)、二甲苯(2170ppm)、甲醇(3000ppm)、环己烷(3880ppm)、N-甲基吡咯烷酮(4840ppm)、。
第三类溶剂
是指对人体低毒的溶剂。急性或短期研究显示,这些溶剂毒性较低,基因毒性研究结果呈阴性,但尚无这些溶剂的长期毒性或致癌性的数据。在无需论证的情况下,残留溶剂的量不高于0.5%是可接受的,但高于此值则须证明其合理性。这类溶剂包括:
戊烷、甲酸、乙酸、乙醚、丙酮、苯甲醚、1-丙醇、2-丙醇、1-丁醇、2-丁醇、戊醇、乙酸丁酯、三丁甲基乙醚、乙酸异丙酯、甲乙酮、二甲亚砜、异丙基苯、乙酸乙酯、甲酸乙酯、乙酸异丁酯、乙酸甲酯、3-甲基-1-丁醇、甲基异丁酮、2-甲基-1-丙醇、乙酸丙酯。
除上述这三类溶剂外,在药物、辅料和药品生产过程中还常用其他溶剂,如1,1-二乙氧基丙烷、1,1-二甲氧基甲烷、2,2-二甲氧基丙烷、异辛烷、异丙醚、甲基异丙酮、甲基四氢呋喃、石油醚、三氯乙酸、三氟乙酸。这些溶剂尚无基于每日允许剂量的毒理学资料,如需在生产中使用这些溶剂,必须证明其合理性。
资料来源http://www.lovetcm.com/data/2006/0831/article_770.htm
常用溶剂的沸点、溶解性和毒性
常用溶剂的沸点、溶解性和毒性
溶剂名称 沸点(101.3kPa) 溶解性 毒性
液氨 -33.35℃ 特殊溶解性:能溶解碱金属和碱土金属 剧毒性、腐蚀性
液态二氧化硫 -10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶 剧毒
甲胺 -6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯 中等毒性,易燃
二甲胺 7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂 强烈刺激性
石油醚 不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶 与低级烷相似
乙醚 34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶 麻醉性
戊烷 36.1 与乙醇、乙醚等多数有机溶剂混溶 低毒性
二氯甲烷 39.75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶 低毒,麻醉性强
二硫化碳 46.23 微溶与水,与多种有机溶剂混溶 麻醉性,强刺激性
溶剂石油脑 与乙醇、丙酮、戊醇混溶 较其他石油系溶剂大
丙酮 56.12 与水、醇、醚、烃混溶 低毒,类乙醇,但较大
1,1-二氯乙烷 57.28 与醇、醚等大多数有机溶剂混溶 低毒、局部刺激性
氯仿 61.15 与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶 中等毒性,强麻醉性
甲醇 64.5 与水、乙醚、醇、酯、卤代烃、苯、酮混溶 中等毒性,麻醉性,
四氢呋喃 66 优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃 吸入微毒,经口低毒
己烷 68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶 低毒。麻醉性,刺激性
三氟代乙酸 71.78 与水,乙醇,乙醚,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物
1,1,1-三氯乙烷 74.0 与丙酮、、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶 低毒类溶剂
四氯化碳 76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶 氯代甲烷中,毒性最强
乙酸乙酯 77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐 低毒,麻醉性
乙醇 78.3 与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶 微毒类,麻醉性
丁酮 79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶 低毒,毒性强于丙酮
苯 80.10 难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶 强烈毒性
环己烷 80.72 与乙醇、高级醇、醚、丙酮、烃、氯代烃、高级脂肪酸、胺类混溶 低毒,中枢抑制作用
乙睛 81.60 与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶 中等毒性,大量吸入蒸气,引起急性中毒
异丙醇 82.40 与乙醇、乙醚、氯仿、水混溶 微毒,类似乙醇
1,2-二氯乙烷 83.48 与乙醇、乙醚、氯仿、四氯化碳等多种有机溶剂混溶 高毒性、致癌
乙二醇二甲醚 85.2 溶于水,与醇、醚、酮、酯、烃、氯代烃等多种有机溶剂混溶。能溶解各种树脂,还是二氧化硫、氯代甲烷、乙烯等气体的优良溶剂 吸入和经口低毒
三氯乙烯 87.19 不溶于水,与乙醇.乙醚、丙酮、苯、乙酸乙酯、脂肪族氯代烃、汽油混溶 有机有毒品
三乙胺 89.6 水:18.7以下混溶,以上微溶。易溶于氯仿、丙酮,溶于乙醇、乙醚 易爆,皮肤黏膜刺激性强
丙睛 97.35 溶解醇、醚、DMF、乙二胺等有机物,与多种金属盐形成加成有机物 高毒性,与氢氰酸相似
庚烷 98.4 与己烷类似 低毒,刺激性、麻醉性
水 100 略 略
硝基甲烷 101.2 与醇、醚、四氯化碳、DMF、等混溶 麻醉性,刺激性
1,4-二氧六环 101.32 能与水及多数有机溶剂混溶,仍溶解能力很强 微毒,强于乙醚2~3倍
甲苯 110.63 不溶于水,与甲醇、乙醇、氯仿、丙酮、乙醚、冰醋酸、苯等有机溶剂混溶 低毒类,麻醉作用
硝基乙烷 114.0 与醇、醚、氯仿混溶,溶解多种树脂和纤维素衍生物 局部刺激性较强
吡啶 115.3 与水、醇、醚、石油醚、苯、油类混溶。能溶多种有机物和无机物 低毒,皮肤黏膜刺激性
4-甲基-2-戊酮 115.9 能与乙醇、乙醚、苯等大多数有机溶剂和动植物油相混溶 毒性和局部刺激性较强
乙二胺 117.26 溶于水、乙醇、苯和乙醚,微溶于庚烷 刺激皮肤、眼睛
丁醇 117.7 与醇、醚、苯混溶 低毒,大于乙醇3倍
乙酸 118.1 与水、乙醇、乙醚、四氯化碳混溶,不溶于二硫化碳及C12以上高级脂肪烃 低毒,浓溶液毒性强
乙二醇一甲醚 124.6 与水、醛、醚、苯、乙二醇、丙酮、四氯化碳、DMF等混溶 低毒类
辛烷 125.67 几乎不溶于水,微溶于乙醇,与醚、丙酮、石油醚、苯、氯仿、汽油混溶 低毒性,麻醉性
乙酸丁酯 126.11 优良有机溶剂,广泛应用于医药行业,还可以用做萃取剂 一般条件毒性不大
吗啉 128.94 溶解能力强,超过二氧六环、苯、和吡啶,与水混溶,溶解丙酮、苯、乙醚、甲醇、乙醇、乙二醇、2-己酮、蓖麻油、松节油、松脂等 腐蚀皮肤,刺激眼和结膜,蒸汽引起肝肾病变
氯苯 131.69 能与醇、醚、脂肪烃、芳香烃、和有机氯化物等多种有机溶剂混溶 低于苯,损害中枢系统,
乙二醇一乙醚 135.6 与乙二醇一甲醚相似,但是极性小,与水、醇、醚、四氯化碳、丙酮混溶 低毒类,二级易燃液体
对二甲苯 138.35 不溶于水,与醇、醚和其他有机溶剂混溶 一级易燃液体
二甲苯 138.5~141.5 不溶于水,与乙醇、乙醚、苯、烃等有机溶剂混溶,乙二醇、甲醇、2-氯乙醇等极性溶剂部分溶解 一级易燃液体,低毒类
间二甲苯 139.10 不溶于水,与醇、醚、氯仿混溶,室温下溶解乙睛、DMF等 一级易燃液体
醋酸酐 140.0
邻二甲苯 144.41 不溶于水,与乙醇、乙醚、氯仿等混溶 一级易燃液体
N,N-二甲基甲酰胺 153.0 与水、醇、醚、酮、不饱和烃、芳香烃烃等混溶,溶解能力强 低毒
环己酮 155.65 与甲醇、乙醇、苯、丙酮、己烷、乙醚、硝基苯、石油脑、二甲苯、乙二醇、乙酸异戊酯、二乙胺及其他多种有机溶剂混溶 低毒类,有麻醉性,中毒几率比较小
环己醇 161 与醇、醚、二硫化碳、丙酮、氯仿、苯、脂肪烃、芳香烃、卤代烃混溶 低毒,无血液毒性,刺激性
N,N-二甲基乙酰胺 166.1 溶解不饱和脂肪烃,与水、醚、酯、酮、芳香族化合物混溶 微毒类
糠醛 161.8 与醇、醚、氯仿、丙酮、苯等混溶,部分溶解低沸点脂肪烃,无机物一般不溶 有毒品,刺激眼睛,催泪
N-甲基甲酰胺 180~185 与苯混溶,溶于水和醇,不溶于醚 一级易燃液体
苯酚(石炭酸) 181.2 溶于乙醇、乙醚、乙酸、甘油、氯仿、二硫化碳和苯等,难溶于烃类溶剂,65.3℃以上与水混溶,65.3℃以下分层 高毒类,对皮肤、黏膜有强烈腐蚀性,可经皮吸收中毒
1,2-丙二醇 187.3 与水、乙醇、乙醚、氯仿、丙酮等多种有机溶剂混溶 低毒,吸湿,不宜静注
二甲亚砜 189.0 与水、甲醇、乙醇、乙二醇、甘油、乙醛、丙酮乙酸乙酯吡啶、芳烃混溶 微毒,对眼有刺激性
邻甲酚 190.95 微溶于水,能与乙醇、乙醚、苯、氯仿、乙二醇、甘油等混溶 参照甲酚
N,N-二甲基苯胺 193 微溶于水,能随水蒸气挥发,与醇、醚、氯仿、苯等混溶,能溶解多种有机物 抑制中枢和循环系统,经皮肤吸收中毒
乙二醇 197.85 与水、乙醇、丙酮、乙酸、甘油、吡啶混溶,与氯仿、乙醚、苯、二硫化碳等男溶,对烃类、卤代烃不溶,溶解食盐、氯化锌等无机物 低毒类,可经皮肤吸收中毒
对甲酚 201.88 参照甲酚 参照甲酚
N-甲基吡咯烷酮 202 与水混溶,除低级脂肪烃可以溶解大多无机,有机物,极性气体,高分子化合物 毒性低,不可内服
间甲酚 202.7 参照甲酚 与甲酚相似,参照甲酚
苄醇 205.45 与乙醇、乙醚、氯仿混溶,20℃在水中溶解3.8%(wt) 低毒,黏膜刺激性
甲酚 210 微溶于水,能于乙醇、乙醚、苯、氯仿、乙二醇、甘油等混溶 低毒类,腐蚀性,与苯酚相似
甲酰胺 210.5 与水、醇、乙二醇、丙酮、乙酸、二氧六环、甘油、苯酚混溶,几乎不溶于脂肪烃、芳香烃、醚、卤代烃、氯苯、硝基苯等 皮肤、黏膜刺激性、惊皮肤吸收
硝基苯 210.9 几乎不溶于水,与醇、醚、苯等有机物混溶,对有机物溶解能力强 剧毒,可经皮肤吸收
乙酰胺 221.15 溶于水、醇、吡啶、氯仿、甘油、热苯、丁酮、丁醇、苄醇,微溶于乙醚 毒性较低
六甲基磷酸三酰胺 233(HMTA) 与水混溶,与氯仿络合,溶于醇、醚、酯、苯、酮、烃、卤代烃等 较大毒性
喹啉 237.10 溶于热水、稀酸、乙醇、乙醚、丙酮、苯、氯仿、二硫化碳等 中等毒性,刺激皮肤和眼
乙二醇碳酸酯 238 与热水,醇,苯,醚,乙酸乙酯,乙酸混溶,干燥醚,四氯化碳,石油醚,CCl4中不溶 毒性低
二甘醇 244.8 与水、乙醇、乙二醇、丙酮、氯仿、糠醛混溶,与乙醚、四氯化碳等不混溶 微毒,经皮吸收,刺激性小
丁二睛 267 溶于水,易溶于乙醇和乙醚,微溶于二硫化碳、己烷 中等毒性
环丁砜 287.3 几乎能与所有有机溶剂混溶,除脂肪烃外能溶解大多数有机物
甘油 290.0 与水、乙醇混溶,不溶于乙醚、氯仿、二硫化碳、苯、四氯化碳、石油醚 食用对人体无毒
资料来源http://drugfocus.net/redirect.php?tid=2927&goto=lastpost