建材秒知道
登录
建材号 > 乙二醇 > 正文

硅灰石(Wollastonite)

专注的飞机
故意的树叶
2023-01-27 15:53:52

硅灰石(Wollastonite)

最佳答案
清脆的猎豹
殷勤的汉堡
2026-01-24 16:59:53

一、概述

硅灰石是一种天然产出的偏硅酸钙(Ca3[Si3O9]),理论化学成分CaO48.3%、SiO251.7%。其中的Ca2+离子易被少量的Fe2+、Mn2+、Mg2+、Sr2+等离子呈类质同象形式替代。硅灰石有三种同质多象变体:两种低温相变体,即三斜晶系硅灰石和单斜晶系副硅灰石;一种高温相即假硅灰石。硅灰石与假硅灰石的转化温度为(1120±20)℃,转化较缓慢,随着温度升高,转化时间将明显缩短。自然界常见的硅灰石主要是低温三斜硅灰石,其他两种象变体很少见。

硅灰石晶体沿b轴多发育为柱状、针状,其长度与直径比值即长径比为(10~7):1,比值高的可达(15~13):1。硅灰石热膨胀特点是沿b轴膨胀系数(25~800℃为6.5×10-6℃-1)低,膨胀随温度改变呈线性变化。假硅灰石的热膨胀系数为11.8×10-6℃-1,明显高于硅灰石的热膨胀系数。因此在硅灰石质陶瓷的烧成过程中应避免硅灰石向假硅灰石的转变。硅灰石的物理-化学性质见表3-6-1。

表3-6-1 硅灰石的主要物化性质

在高温加热条件下,硅灰石的化学性质活泼,可与高岭石等矿物发生固相反应,与陶瓷工业有关的反应包括:

河南省非金属矿产开发利用指南

河南省非金属矿产开发利用指南

由于硅灰石具有针状晶体、低热膨胀系数、低吸油率、色白、绝缘性好、高温化学性质活泼等特点,使其应用在陶瓷工业、填料工业等领域中。

二、资源概况和矿石类型

1.资源概况

硅灰石的成因类型有五种,其中有工业价值的是接触变质类型和区域变质作用类型。接触变质生成的硅灰石产于岩浆侵入体与碳酸盐岩的接触带,由SiO2和CaCO3反应而成。区域变质作用生成的硅灰石是由含钙质的岩层如石灰岩、大理岩经区域变质作用形成。

目前世界各国已查明的硅灰石储量约2亿吨,远景储量约4亿吨。在20多个硅灰石产出国中,美国、印度和墨西哥三国硅灰石矿总储量约占世界已探明总储量(不包括中国)的三分之二。

美国纽约州阿迪龙朗克山北东侧是世界硅灰石重要产地,在该州的威尔斯博罗地区有福克斯诺尔、刘易斯和狄尔赫德三个主要矿床。

墨西哥的硅灰石矿床主要产在萨卡特卡斯和恰帕斯两个州。

印度的硅灰石主要产在拉贾斯坦邦和中央邦,其中有的矿床矿石品位高达96%~97%。

我国的硅灰石矿资源丰富,远景储量为0.5亿~1.0亿吨,探明储量仅次于印度,居世界第二位。我国硅灰石产地比较集中,主要分布在吉林省,占全国总储量44.7%,江西省占17%,青海占13.4%,辽宁占10.3%,其他主要分布在湖北、安徽、浙江、江苏、云南、福建等省。我国硅灰石矿成矿条件好,矿体规模大,成分简单,较富。吉林梨树大顶山硅灰石矿床是我国目前规模最大的矿床。此外,吉林磐石长崴子硅灰石矿床,湖北大冶小箕铺硅灰石矿床规模也较大。

硅灰石矿床的一般工业要求见表3-6-2,开采技术条件见表3-6-3。

表3-6-2 硅灰石矿床一般工业指标

注:①视矿石质量优、差取上、下限;②手选矿石块度要求,暂按直径≥4cm计。

表3-6-3 硅灰石矿床开采技术条件

2.矿石类型

硅灰石矿石类型主要有大理岩型和夕卡岩型两大类。美国的威尔斯鲍罗、刘易斯、格尔赫德硅灰石矿,印度别尔卡巴赫硅灰石矿等是夕卡岩型。墨西哥拉布兰卡硅灰石矿,芬兰拉彭兰塔硅灰石矿等是大理岩型。我国主要硅灰石矿石类型见表3-6-4。国内外部分硅灰石的化学成分分析见表3-6-5。

表3-6-4 我国主要硅灰石矿石类型

三、硅灰石的主要用途及质量标准

由于硅灰石具有许多优异的物化性质,使其被广泛应用于陶瓷工业、化学工业、冶金工业等各工业部门(见表3-6-6)。

迄今为止,硅灰石主要应用于陶瓷工业。其中又以作釉面砖为主,以及生产特种的无线电陶瓷和低介电损耗绝缘体陶瓷等。硅灰石之所以成为陶瓷的重要原料,是由下列因素决定的。

在传统生产陶瓷工艺中,是以铝硅为主要体系的原料,生成的物相以莫来石为主。需采用高温(1250~1300℃)、长周期(30h以上)的烧成工艺。在坯体中加入一定量的硅灰石,构成了以硅-铝-钙为主要成分的低共熔体系,生成的物相主要是钙长石。硅灰石同时是助熔剂,降低了坯体的老化点,整个坯体的快速烧结物均匀一致。因此,硅灰石降低了陶瓷生产的烧成温度,缩短了烧成时间。

表3-6-5 国内外部分硅灰石的化学成分分析

表3-6-6 硅灰石的主要用途

硅灰石的针状晶体为生坯提供水分快速排出的通道,干燥速度加快,从而易压制成型,不分层。焙烧时,硅灰石针状体的不熔残渣构成了阻止坯体体积变化的致密骨架,冷却时,烧结料结晶将它们之间的针状体牢固粘接。坯体具有多孔和网状结构。硅灰石低的热膨胀系数和线性膨胀的特点,有利于坯体抗热冲击。

美国、原苏联等国都已对硅灰石在釉面砖上的应用进行了大量的研究工作。美国年产硅灰石约6万~7万t,其中一半用于釉面砖生产。以硅灰石为主要原料的釉面砖,实现低耗能低温快烧的新工艺,可节省燃料约30%~50%,被誉为节能原料。

在冶金工业中,硅灰石主要用作生产模铸硅钢保护渣和板坯连铸保护渣。武汉钢铁公司钢铁研究所等单位研制的以硅灰石为主要原料的保护渣,可替代从日本进口的“浮光40”保护渣。以天然硅灰石为基料板坯连铸粉状和颗粒状保护渣,具有化学性质十分稳定,含Al2O3很低的特征,能起到稳定连铸操作和改善连铸坯质量的作用。

硅灰石作为电焊条药皮配料,在电焊工业中得到应用,特别适合用来制造高钛型低炭钢电焊条。硅灰石微粉和超细微粉被用于塑料、橡胶、造纸、油漆工业中作填料和涂料,不仅降低了产品成本,而且明显改善了产品的物理-化学性能,尤其是机械力学性能。预计今后作工业填料和涂料用的硅灰石微粉和超细微粉用量将以每年10%的速度增加。

目前我国仅国家建材局于1994年颁布了硅灰石产品质量标准,标准号为JC/T535-94。一些主要的硅灰石产区或企业根据用户要求制定了一些地方或企业标准。

陶瓷、油漆、涂料、冶金、电焊条等应用领域对硅灰石产品质量要求分别见表3-6-7~表3-6-10。

吉林梨树硅灰石矿业公司出口硅灰石块矿和针状硅灰石粉质量标准见表3-6-11和表3-6-12。

表3-6-7 陶瓷工业用硅灰石产品的质量要求

注:建筑陶瓷用硅灰石,一般要求硅灰石矿物含量>60%。

表3-6-8 油漆、涂料用硅灰石产品质量要求

表3-6-9 冶金保护渣用硅灰石产品质量要求

表3-6-10 电焊条工业对硅灰石产品质量要求

表3-6-11 吉林梨树硅灰石矿业公司出口硅灰石块矿质量标准

表3-6-12 H-G系列针状硅灰石粉

吉林四平市硅灰石企业标准(吉Q/SS124-85)适用于油漆涂料、塑料、橡胶、陶瓷等行业,见表3-6-13~表3-6-15。

表3-6-13 吉林四平市硅灰石产品规格

表3-6-14 吉林四平市硅灰石的技术要求

表3-6-15 吉林四平市涂料级硅灰石粉的技术要求

注:以上产品指标,可根据用户特殊要求,双方协商。

湖北大冶非金属矿公司的硅灰石产品质量标准见表3-6-16。国外硅灰石一般工业要求见表3-6-17。美国出售硅灰石的粒度要求见表3-6-18。

表3-6-16 湖北大冶非金属矿公司硅灰石产品质量标准

表3-6-17 国外硅灰石一般工业要求

表3-6-18 美国出售硅灰石的粒度要求

四、硅灰石矿石的选矿和超细粉碎

1.硅灰石矿石的选矿提纯

硅灰石属接触变质矿物,与其共生的主要矿物有方解石、透辉石、石榴子石、透闪石、符山石、石英、黄铜矿、斑铜矿等,硅灰石的选矿方法随着矿石类型不同而有所不同。手选、光电拣选、磁选、浮选、重选等方法广泛应用于硅灰石的加工工艺中。硅灰石的主要选矿方法和原则流程见表3-6-19和表3-6-20。

列举两个实例说明硅灰石矿石的选矿。

表3-6-19 硅灰石的主要选矿加工方法

表3-6-20 硅灰石的主要选矿工艺原则流程

例1 梨树硅灰石矿的选矿工艺

该矿位于吉林省梨树县内。矿石中硅灰石含量为46.50%,方解石41.23%,透辉石3.49%,石英6.67%。在矿石中,硅灰石晶体内有透辉石和石英包体,方解石则呈不规则状分布于硅灰石颗粒及其裂隙之间。根据原矿性质,采用单一浮选流程选别硅灰石。根据硅灰石与方解石、石英的可浮性不同,采用反浮选方法对硅灰石进行选别,选矿流程见图3-6-1。

图3-6-1 梨树硅灰石矿连选试验流程

方解石精矿含方解石95.71%,产率38.78%;硅灰石精矿含硅灰石87.20%,产率44.48%。

例2 威尔斯鲍罗硅灰石选矿厂

选矿厂位于美国纽约州威尔斯鲍罗。矿石主要矿物组成为硅灰石、钙铁石榴子石、透辉石、少量方解石。矿石中硅灰石含量为55%~65%,钙铁石榴子石和透辉石的含量为10%~20%。根据矿石性质,采用单一强磁选工艺流程使硅灰石和钙铁榴石及透辉石分离。工艺流程见图3-6-2。

2.硅灰石的超细粉碎

图3-6-2 威尔斯鲍罗硅灰石选矿流程

硅灰石作为高档无机工业填料,必须深加工成针状超细粉料。国外多采用气流磨对硅灰石精矿进行超细粉碎,产品中高长径比、高比表面的粉量增多。80年代末,吉林梨树硅灰石矿业公司从Alpine公司引进两台630AFG流化床式气流粉碎机,用于生产-10μm的硅灰石超细微粉。随后,该公司与武汉工业大学合作,实现了这种设备国产化,研制成与630AFG性能相同的LPM-680气流磨,并建成了年产200t的超细硅灰石粉生产线,生产线工艺流程见图3-6-3。给料粒度325目,产量280.6kg/h,10μm通过率97.7%。

硅灰石超细粉碎产品有800、1250、2500目等。也可以根据用户的需要加工出平均粒度为10、5、2、1μm级的产品。

五、硅灰石粉料的表面改性

图3-6-3 超细硅灰石生产线工艺流程

1—颚式破碎机;2—传送带;3—颚式破碎机;4—除尘器;5—提升机;6—料仓;7—风机;8—提升机;9—料仓;10—磨机;11—旋流分级机;12一风机;13—提升机;14—料仓;15—风送系统;16—料仓;17—螺旋输送机;18—空压机;19—冷凝器;20—储气罐;21—LPM气流磨;22—收集器;23—风机

粉体表面改性(Surface modification or Surface treatment)是指用物理、化学、机械等方法对粉体物料表面进行处理,根据应用的需要有目的地改善或完全改变物料的物理技术性能或表面物理化学性质,如表面晶体结构和官能团、表面能、表面润湿性、表面吸附和反应特性等,以满足现代新工艺和新技术发展对新材料的需要。粉体的表面处理改性既是一门新技术,又是一门新学科。对于非金属矿物,表面改性能提高其使用价值和开拓应用领域,是最重要的深加工技术之一。

在塑料、橡胶、胶粘剂等高分子材料工业及复合材料领域中,无机矿物填料占有很重要的地位,不仅可以降低生产成本,而且明显改善产品的物理化学性能,如机械力学性能、阻燃性、绝缘性等。但是由于无机矿物与基质,即有机高聚物或树脂等具有不同的膨胀系数、表面张力、抗弯模数等性质,在二者接触处,明显表现出不相容性,因此接触界面是最薄弱的部位,易发生分离。由于相容性差,无机矿物填料难以在基质中均匀分散,直接或过多地填充往往容易导致产品的某些力学性能下降以及易脆化等缺点。因此,用无机矿物作填料,除了对其粒度、粒度分布、颗粒形状有要求外,还必须对矿物填料表面进行改性,提高其与基质,即有机高聚物或树脂的相容性和分散性,以增强产品的机械强度和综合性能。

用来对矿物表面进行改性的化学试剂称为表面改性剂。表面改性剂分为无机试剂和有机试剂两大类。无机试剂主要是一些无机颜料,如铁、钛、铬等的氧化物或含氧盐等。有机表面改性剂的种类较多,主要包括偶联剂类、脂肪酸(或胺)类、烯烃低聚物类以及各种树脂类等。由于矿物填料的种类不同,改性目的不同,所选用的表面改性剂亦不同。

1.矿物填料的有机表面改性剂

1)偶联剂

又称为架桥剂,是一种具有两性结构的物质。它们分子中的一部分基团可与矿物填料表面的各种化学基团反应,形成强有力的化学键合;另一部分基团则有亲有机物的性质,可与有机高分子发生化学反应或形成物理缠绕,在无机矿物与有机高分子之间形成具有特殊功能的“分子桥”,从而把两种性质差异很大的材料牢固结合起来,形成新型的复合材料。

偶联剂是目前应用最广泛的表面改性剂,它适用于各种不同的有机高分子和无机矿物填料的复合材料体系。经偶联剂进行表面处理的无机矿物填料,抑制了填充体系“相”的分离,即使增加填充量,仍可较好地均匀分散,从而改善了制品的综合性能,特别是抗张强度、冲击强度、柔韧性和挠曲强度等。按偶联剂的化学结构可分为硅烷类、钛酸酯类、锆类和有机铬络合物四大类。下面简要介绍前三类。

(1)硅烷偶联剂 硅烷偶联剂是研究得最早应用最广的偶联剂,是由美国联合碳化物公司为发展玻璃纤维增强塑料而开发出来的,至今已有40年的历史。

硅烷偶联剂是一类具有特殊结构的低分子有机硅化合物。其通式为RSiX3,式中R代表与聚合物分子有亲和力或反应能力的活性官能团,如氨基、巯基、乙烯基、环氧基、氰基、甲基、丙烯酰氧基等;X代表能够水解的烷氧基(如甲氧基、乙氧基)或氯。在进行偶联时,X基首先水解形成硅醇,然后再与矿物表面上的羟基反应,形成氢键并缩合成—SiO—M共价键(M表示无机矿物填料表面)。同时,硅烷各分子的硅醇又相互缔合齐聚,形成网状结构的膜覆盖在填料表面,使无机填料有机化。现以甲氨基硅烷偶联剂为例,其偶联作用过程为:

河南省非金属矿产开发利用指南

偶联剂的另一端的R可与聚合物发生反应形成牢固的化学键合。这种化学反应取决于R基的性质和树脂的种类。以环氧硅烷为例,与环氧树脂反应

河南省非金属矿产开发利用指南

硅烷偶联剂可用于许多无机矿物填料的表面改性,其中对含硅酸成分较多的石英粉、玻璃纤维、白碳黑等的效果最好,对高岭土、水合氧化铝效果也较好,对不含游离酸的碳酸钙效果欠佳。硅烷偶联剂产品牌号和品种分类见表3-6-21。

表3-6-21 硅烷偶联剂产品牌号和品种分类

续表

续表

(2)钛酸酯偶联剂 钛酸酯偶联剂是美国肯里奇(Kenrich)石油化学公司70年代开发成功的一类新型偶联剂。它有独特的结构,对热塑性聚合物与干燥填料有良好的偶联效能。

钛酸酯偶联剂的分子结构分为6个功能区,每个功能区都有其特点,在偶联过程中发挥各自的作用。

钛酸酯偶联剂的通式和6个功能区:

偶联无机相·亲有机相

河南省非金属矿产开发利用指南

式中:1≤M≤4,M+N≤6;R—短碳链烷烃基;R′—长碳链烷烃基;X—C、N、P、S等元素;Y—羟基、氨基、环氧基、双键等机团。

各功能区说明如下:功能区1[(RO)M—]—与无机填、颜料偶联作用的基团;

功能区2(Ti—O……—)—酯基转移和交联功能;

功能区3(X—)—联结钛中心带有功能性的基团;

功能区4(R—)—长链的纠缠基团——适用于热塑性树脂;

功能区5(Y—)一固化反应基团——适用于热固性树脂;

功能区6(N—)—非水解基团数。

(RO)M为钛酸酯与矿物填料进行化学键合的官能团,它可与矿物表面结构水和H+作用,形成包围矿物的单分子层。Ti—O部分为钛酸酯的有机骨架,可与聚合物的羧基之间进行相互交换,起酯基和烷基转移和交联作用。X部分是和分子核心钛结合的基团,对钛酸酯的性质有重要影响,具体可分为磷酸酯、五磷酸酯、羧基酸、磺酸基等。

钛酸酯偶联剂按其化学结构可分为三种类型:单烷氧基型、螯合型和配位型。

单烷氧基型 这一类品种最多,价格适中,广泛应用于塑料、橡胶、涂料、胶粘剂工业。这类偶联剂的典型是三异硬脂酰基钛酸异丙酯(TTS)。除含乙醇胺基和焦磷酸酯基的单烷氧基型外,大多数品种耐水性差,适用于不含游离水,仅含化学键合水和物理键合水的干燥矿物填料体系,如碳酸钙、水合氧化铝等。单烷氧基钛酸酯与无机填料的作用机理见图3-6-4。

图3-6-4 单烷氧基钛酸酯与无机填料的作用机理

焦磷酸型钛酸酯偶联剂耐水性好,适用于中等含水的无机填料,如高岭土、滑石粉等。焦磷酸型钛酸酯处理湿填料的吸湿机理见图3-6-5。

图3-6-5 焦磷酸型钛酸酯处理湿填料的吸湿机理

螯合型 这类偶联剂适用于高湿无机填料和含水聚合物体系,如高岭土、滑石粉、水处理玻璃纤维、炭黑等。一般的单烷氧基型钛酸酯水解稳定性差,在高湿体系中偶联效果差。螯合型钛酸酯偶联剂具有极好的水解稳定性,适于在高湿状态下使用。根据螯合环的不同,这类偶联剂分为两种基本类型:螯合100型和螯合200型。前者螯合基为氧代乙酰氧基;后者螯合基为二氧乙撑基。它们的偶联机理见图3-6-6和图3-6-7。

图3-6-6 螯合100型与填料的偶联机理

图3-6-7 螯合200型与填料的偶联机理

配位体型 四价钛酸酯在一些体系中存在副反应,如在环氧树脂中与羟基反应,在聚酯中的酯交换反应等。配位体型钛酸酯中的钛原子由4价键转变为6价键,降低了钛酸酯的反应活性,提高了耐水性。因此,配位体型钛酸酯偶联剂可在溶剂型涂料或水性涂料中使用。配位体型钛酸酯偶联剂与填料的偶联机理见图3-6-8。

图3-6-8 配位型偶联剂与填料的作用机理

国内外钛酸酯偶联剂主要品种见表3-6-22。

表3-6-22 国内外钛酸酯偶联剂主要品种对照

(3)锆铝酸盐偶联剂 锆类偶联剂是美国Cavedon化学公司于80年代开发的一类新型偶联剂,其商品名称为“CavcoMod”,它是以水合氯化氧锆(ZrOCl2·8H2O)、氯醇铝(Al2OH5Cl)、丙烯醇、羧酸等为原料合成的。锆铝酸盐偶联剂分子中含有两个无机部分和一个有机功能配位体。由于分子中无机特性部分的比重大,因此具有更多的无机反应点,使偶联剂有良好的羟基稳定性和水解稳定性。根据分子中的金属含量(即无机特性部分的比重)和有机配位基的性质,将已商品化的锆铝酸盐偶联剂分为7类(见表3-6-23),分别适用于聚烯烃、聚酯、环氧树脂、尼龙、丙烯酸类树脂、聚氨酯、合成橡胶等不同的聚合物,对于矿物填料,可用于碳酸钙、二氧化硅、高岭土、三水合氧化铝、氧化钛等的偶联改性。锆铝偶联剂性能较好,价格较便宜,在很多情况下可代替硅烷偶联剂。

表3-6-23 锆类偶联剂(Cavco Mod)的品种

2)高级脂肪酸及其盐类改性剂

(1)高级脂肪酸及其盐类 高级脂肪酸属于阴离子表面活性剂,其分子通式为RCOOH。分子的一端为长链烷基(C16~C18),这种结构与聚合物分子结构相近似,尤其是与聚烯烃分子结构相近,因而与聚合物基料有一定的相容性。分子的另一端为羧基或其金属盐,可与矿物填料表面发生一定的化学反应和物理吸附。因此,用高级脂肪酸及其金属盐处理矿物填料时,具有类似于偶联剂的作用。

常用的高级脂肪酸及其金属盐类的表面改性剂有硬脂酸、硬脂酸钙、硬脂酸锌等。高级脂肪酸的胺类、酯类与其金属盐类近似,亦可作表面改性剂。

(2)不饱和有机酸类 不饱和有机酸分子具有一个或多个不饱和双键及一个或多个羟基,碳原子数一般在10个以上。常见的不饱和有机酸有丙烯酸、马来酸、衣康酸、醋酸乙烯、醋酸丙烯等。带有不饱和双键的有机酸,对含碱金属离子的矿物填料进行表面改性,具有良好的处理效果。由于分子中存在不饱和双键,在和基体树脂复合时,在残余引发剂或热能、机械能作用下,双键打开,与基体树脂发生“接枝”、交联等一系列化学反应,使矿物填料与树脂较好地结合在一起,提高了产品的物理机械性能。

3)有机低聚物

(1)聚烯烃低聚物 聚烯烃低聚物主要品种有无规聚丙烯和聚乙烯蜡。聚烯烃低聚物有较高的粘附性能,可以和无机填料较好地浸润、粘附、包裹。同时因为基本结构和聚烯烃相似,能与聚烯烃很好地相容结合。因此,聚烯烃低聚物广泛应用于聚烯烃类复合材料中无机填料的表面处理。

(2)聚乙二醇 用聚乙二醇包覆处理硅灰石可显著改善聚丙烯(PP)缺口的冲击强度和低温性能。

2.表面改性剂的选择及用量

目前市场上已有几百种表面改性剂供选择,其选择过程是一个复杂的过程。对于同一种无机矿物填料,影响其填充效果的主要因素有颗粒的形状、粒径大小和粒度分布、填料表面性质等。填料的粒径越小,其补强效果越好。如用325目和2500目碳酸钙作半硬质PVC填料,后者比前者强度提高30%。纤维状、片状填料有助于提高制品的机械强度。在填料粒径、形状确定的情况下,考查填料表面改性效果的主要判据是填料与有机聚合物基体结合的牢固程度、填加量的多少,产品的各种物理-化学性能是否提高了等。这些与表面改性剂的选择和表面改性工艺过程有关。表3-6-24列出了各种表面改性剂的适用范围。

表3-6-24 表面改性剂的适用范围

表面改性剂的用量一般为无机填料量的0.5%~3%。对于某些偶联剂类,可通过计算得到理论加入量。以硅烷偶联剂为例,计算公式为:

河南省非金属矿产开发利用指南

式中:W为硅烷偶联剂用量(g);W1为欲改性的矿物填料重量(g);S1为矿物填料的比表面积(m2/g),可实测获得;S2为偶联剂的最小包裹面积(m2/g),由生产厂家提供。

表3-6-25给出了KH系列硅烷偶联剂的最小包覆面积。

表3-6-25 KH系列硅烷偶联剂最小包覆面积

在生产和试验中主要采用“活化指数”来表征表面处理的效果。无机矿物填料或颜料粉体相对密度较大,而且表面呈极性状态,在水中自然沉降。经表面改性处理后的无机填料粉体表面由极性变为非极性,对水呈现出较强的非浸润性,不沉降。根据上述现象,提出“活性指数”,用H表示,其含义为:

河南省非金属矿产开发利用指南

由上式可见:未经表面活化处理的无机粉体,H=0,活化处理最彻底时,H=1.0,H变化范围为0~1.0。将改性样品放入清水中搅拌10min,然后观察是否有沉淀和沉淀多少,如果在2天内无沉淀或沉淀很少,说明改性成功。改性剂的用量可根据“活化指数”来确定。最佳用量应是表面改性剂在颗粒表面上覆盖单分子层的用量。大于此量,则将形成多层物理吸附的界面薄弱层,从而导致填充物的强度下降;低于最佳用量,则填料颗粒表面改性处理不完全。

液态表面改性剂使用前应稀释,固态表面改性剂应配制成溶液。由于硅烷偶联剂与水的作用是偶联作用的基础,大部分硅烷经水解后成为水溶液。因此,常用水作稀释剂配成溶液使用。一般采用酸性溶液水解硅烷,常用的酸有盐酸、醋酸、月桂酸等。对于水解产物易缩合的硅烷,其水溶液应在使用前临时配制。

钛酸酯偶联剂用惰性溶剂,如白油、石油醚、变压器油等稀释,配成一定浓度的溶液。

锆类偶联剂的溶剂见表3-6-23。

用丙酮溶解硬脂酸制成溶液。

3.矿物填料表面改性工艺及设备

对矿物填料表面进行改性的方式有两种。一种是矿物填料预先涂敷处理改性工艺,在填料与树脂基料混合之前,先对矿物填料表面改性。另一种是所谓的整体处理工艺,将矿物填料和改性剂一起加入到树脂基料中进行混合处理。

预先涂敷处理改性工艺所用的主要设备是高速混合(捏合)机(图3-6-9)。

图3-6-9 高速混合(捏合)机结构

1—回转盖;2—混合锅;3—折流板;4—搅拌叶轮;5—排料装置;6—驱动电机;7—机座

高速混合机工作时,高速旋转的叶轮使物料连续地螺旋状上、下运动,物料运动速度很快。快速运动着的颗粒之间相互碰撞、摩擦,使团块破碎,物料温度相应升高,使物料均匀分散和对改性剂均匀吸附。工作原理见图3-6-10。

高速混合机的改性效果主要与叶轮的形状和回转速度、物料的温度、物料在混合室内的充满程度(即填充率)、混合时间、改性剂的加入方式和用量等因素有关。

填充率一般为0.5~0.7,对于高位式叶轮,填充率可达0.90

温度是影响最终改性效果的重要因素之一,对于不同的矿物填料和所用的表面改性剂,加热温度高低也不同。

图3-6-10 高速混合(捏合)机的工作原理

1—回转盖;2—外套;3—折流板;4—叶轮;5—驱动轴;6—排料口;7—排料气缸;8—夹套

部分国产高速混合机主要技术参数见表3-6-26。

表3-6-26 部分国产高速加热混合(捏合)机主要技术参数及生产厂家

4.硅灰石填料

重碳酸钙、重晶石、滑石、硅灰石等被称为白色非金属矿物颜料、填料。其中,由于硅灰石具高长径比和色泽白的特点,使其成为白色非金属矿物填料的佼佼者。用经硅烷偶联剂、钛酸酯偶联剂表面改性的硅灰石粉料作填料,可明显改善产品的性能。如作聚碳酸脂填料,其弹性模量是未填充时的3倍,强度大约增加15%,填充到聚乙烯、聚丙烯中,产品的拉伸强度、弯曲强度等机械力学性能明显提高。表3-6-27和表3-6-28列出了硅灰石充填PVC硬板和尼龙1010的性能。

表3-6-27 硅灰石充填PVC硬板性能

表3-6-28 不同矿物填充尼龙1010性能对比

西北油漆厂用硅灰石粉代替部分钛白粉或滑石粉,成功地应用到涂料中。

主要参考文献

[1] 《非金属矿工业手册》编辑委员会,非金属矿工业手册(上、下册),冶金工业出版社,1992。

[2] 郑水林,粉体表面改性.中国建材工业出版社,1995。

[3] 李英堂等,应用矿物学,科学出版社,1995。

[4] 孙宝岐等,非金属矿深加工,冶金工业出版社,1995。

[5] 《矿产资源综合利用手册》编辑委员会,矿产资源综合利用手册,科学出版社,2000。

[6] 刘伯元,硅灰石深加工及其产品在塑料中的应用,非金属矿,1997.3期,P21~24。

[7] 李晓琴等,硅灰石质瓷质坯体焙烧过程物相变化研究,非金属矿,1999.1期,P12~13。

最新回答
稳重的耳机
平常的鱼
2026-01-24 16:59:53

目录1 拼音2 英文参考3 国家基本药物4 绒促性素药典标准品名 4.1.1 中文名4.1.2 汉语拼音4.1.3 英文名 4.2 来源(名称)、含量(效价)4.3 制法要求4.4 性状4.5 鉴别4.6 检查 4.6.1 雌激素类物质4.6.2 残留溶剂 4.6.2.1 乙醇 4.6.3 水分4.6.4 乙肝表面抗原4.6.5 异常毒性4.6.6 细菌内毒素 4.7 效价测定4.8 类别4.9 贮藏4.10 制剂4.11 版本 5 绒促性素说明书 5.1 药品名称5.2 英文名称5.3 绒促性素的别名5.4 分类5.5 剂型5.6 绒促性素的药理作用5.7 绒促性素的药代动力学5.8 绒促性素的适应证5.9 绒促性素的禁忌证5.10 注意事项5.11 绒促性素的不良反应5.12 绒促性素的用法用量5.13 绒促性素与其它药物的相互作用5.14 专家点评 6 参考资料附:1 绒促性素相关药物* 绒促性素相关药品说明书其它版本 1 拼音

róng cù xìng sù

2 英文参考

Chorionic Gonadotrophin [湘雅医学专业词典]

chorionic gonadotropic hormone [湘雅医学专业词典]

3 国家基本药物

与绒促性素有关的国家基本药物零售指导价格信息

序号 基本药物

目录序号 药品名称 剂型 规格 单位 零售指

导价格 类别 备注 927 142 绒促性素 注射剂 1000单位,冻干粉(溶媒结晶粉) 瓶(支) 4.4 化学药品和生物制品部分 * 928 142 绒促性素 注射剂 500单位,冻干粉(溶媒结晶粉) 瓶(支) 2.6 化学药品和生物制品部分 929 142 绒促性素 注射剂 2000单位,冻干粉(溶媒结晶粉) 瓶(支) 7.5 化学药品和生物制品部分 930 142 绒促性素 注射剂 5000单位,冻干粉(溶媒结晶粉) 瓶(支) 15.1 化学药品和生物制品部分

注:

1、表中备注栏标注“*”的为代表品。

2、表中代表剂型规格在备注栏中加注“△”的,该代表剂型规格及与其有明确差比价关系的相关规格的价格为临时价格。

4 绒促性素药典标准品名4.1.1 中文名

绒促性素

4.1.2 汉语拼音

Rongcuxingsu

4.1.3 英文名

Chorionic Gonadotrophin

4.2 来源(名称)、含量(效价)

本品为孕妇尿中提取的绒毛膜促性腺激素。每1mg的效价不得少于4500单位[1]。

4.3 制法要求

本品应从健康人群的尿中提取,生产过程应符合现行版《药品生产质量管理规范》要求。本品在生产过程中需经适宜的工艺方法处理,以使任何病毒如肝炎病毒、人免疫缺陷病毒和朊病毒等去除或灭活。[1]

4.4 性状

本品为白色或类白色的粉末。

本品在水中溶解,在乙醇、丙酮或乙醚中不溶。

4.5 鉴别

照效价测定项下的方法,测定结果应能使未成年雌性小鼠子宫增重。[1]

4.6 检查4.6.1 雌激素类物质

取体重18~20g的雌性小鼠3只,摘除卵巢。2~3周后,皮下注射每1ml中含本品1250单位的氯化钠注射液4次,每次0.2ml,第一日下午,第二日上、下午,第三日上午各1次;分别在第四日、第五日、第六日上午用少量氯化钠注射液洗涤各小鼠 *** ,制成 *** 涂片,在低倍显微镜下观察,不得呈阳性反应(阳性反应系指涂片内绝大部分为角化细胞或上皮细胞)。

4.6.2 残留溶剂4.6.2.1 乙醇

取本品0.1g,精密称定,置顶空瓶中,精密加水2ml使溶解,密封,作为试品溶液;另取无水乙醇适量,精密称定,用水定量稀释制成每1ml中含0.25mg溶液,精密量取2ml,置顶空瓶中,密封,作为对照品溶液。照残留溶剂测定法(2010年版药典二部附录Ⅷ P第二法)测定,以聚乙二醇为固定液;起始温度为60℃,维持5分钟,以每分钟50℃的速率升温至200℃,维持15分钟;进样器温度为200℃;检测器温度为250℃;顶空瓶平衡温度为90℃,平衡时间为20分钟,取对照品溶液与试品溶液分别顶空进样,记录色谱图。按外标法以峰面积计算,应符合规定。

4.6.3 水分

取本品,照水分测定法(2010年版药典二部附录Ⅷ M 第一法 A)测定,含水分不得过5.0%。[1]

4.6.4 乙肝表面抗原

取本品,加0.9%氯化钠溶液制成每1ml中含10mg的溶液,按试剂盒说明书测定,应为阴性。

4.6.5 异常毒性

取本品,加氯化钠注射液溶解并制成每1ml中含2000单位的溶液,依法检查(2010年版药典二部附录Ⅺ C),按静脉注射法给药,应符合规定。

4.6.6 细菌内毒素

取本品,依法检查(2010年版药典二部附录Ⅺ E),每1单位绒促性素中含内毒素的量应小于0.010EU。

4.7 效价测定

精密称取本品和绒促性素标准品适量,按标示效价,分别加含0.1%牛血清白蛋白的0.9%氯化钠溶液溶解并定量稀释制成每1ml中含10个单位的溶液,临用新配。照绒促性素生物检定法(2010年版药典二部附录Ⅻ E)测定,应符合规定,测得的结果应为标示量的80%~125%。

4.8 类别

促性腺激素药。

4.9 贮藏

遮光,密封,在冷处保存。

4.10 制剂

注射用绒促性素

4.11 版本

《中华人民共和国药典》2010年版

5 绒促性素说明书5.1 药品名称

绒促性素

5.2 英文名称

Chorionic Gonadotrophin

5.3 绒促性素的别名

宝贝朗源;波热尼乐;类垂体促性腺激素;绒膜激素;普罗兰;安胎素;绒毛膜促性腺素;绒毛膜促性腺激素;Gonatrophin;Prolan;Pregnyl;Profasi

5.4 分类

内分泌系统药物 >性腺疾病用药

5.5 剂型

针剂绒促性素:500U,1000U,2000U,3000U,5000U。

5.6 绒促性素的药理作用

绒促性素可从胎盘中提取,也可以从孕妇尿中获得。与LH作用相似,而FSH样作用甚微。

1.促使卵泡成熟及排卵,并使卵泡排卵后转变为黄体,促使其分泌孕激素。

2.具有促间质细胞激素作用,能促进曲细精管功能,促使性器官和副性征发育、成熟,促使睾丸下降,并促使 *** 生成。

5.7 绒促性素的药代动力学

绒促性素口服能被胃肠道破坏,故仅供注射用。半衰期为双相,分别为11h和23h。给药32~36h内发生排卵。24h内10%~12%以原形经肾随尿排出。肌内注射后6h可达血药峰值。主要分布在性腺。消除呈双相方式时,t1/2分别为6~11h和23~38h。有10%~12%肌内注射用量于24h内随尿排出。

5.8 绒促性素的适应证

1.无排卵性不孕症诱发排卵。

2.黄体功能不足。

3.因黄体功能不足所致先兆流产或习惯性流产。

4.功能失调性子宫出血。

5.隐睾症。

6.男性性功能减退症。

7.用于女性不孕症。

5.9 绒促性素的禁忌证

1.垂体增生或肿瘤。

2.性早熟。

3.诊断未明的 *** 流血、子宫肌瘤、卵巢囊肿或卵巢肿大。

4.血栓性静脉炎。

5.男性前列腺癌或其他雄激素依赖性肿瘤。

6.生殖系统炎症、激素性活动型性腺癌、无性腺(先天性或手术后)患者。

7.卵巢功能低下或缺如的疾病,如Turner’s综合征、单纯性腺发育不良、卵巢早衰。对绒促性素过敏者禁用。

5.10 注意事项

1.用绒促性素促排卵可增加多胎率,从而使新生儿发育不成熟,并有发生早产的可能;

2.使用绒促性素后,虽有死胎或先天性畸形的报道,但未见与绒促性素有直接关系。

3.注射前需作过敏试验。

4.绒促性素不宜长期应用,以免产生抗体和抑制垂体促性腺功能。如连用8周尚不见效,应即停药;又若 *** 早熟或亢进也应停用。

5.绒促性素对肥胖症无效。

6.用药期间,注意液体潴留。

7.连用8周如疗效不显著,应停药。

8.用前应先做皮试。

5.11 绒促性素的不良反应

1.头痛、疲倦、情绪变化、水肿(男性多见)。

2.注射部位可能发生疼痛。

3.治疗隐睾时可能出现性早熟。

4.由于卵巢的过度 *** ,可引起卵巢增大或形成囊肿、急腹痛、腹水、胸腔积液、循环血容量减少和休克。

5.严重者可发生血栓栓塞性疾病。

6.骨骺提前闭合也有报道。

7.过敏反应可能发生。

5.12 绒促性素的用法用量

1.(1)单用绒促性素:轻度垂体及卵巢功能减退者,于月经周期第12~14天,肌内注射3000~5000U,每天2次,共2次,当晚 *** ;(2)与氯菧酚胺伍用:在停用氯菧酚胺后7天左右,加用绒促性素2000~5000U,每次肌内注射,当晚 *** ;(3)与HMG伍用:于月经第6天起,每天肌内注射HMG2支,每次注射,连续7~14天。每天观察宫颈黏液。如注射HMG 7天后,宫颈黏液量增多、稀薄、拉丝度良好时,即停用HMG,肌内注射绒促性素5000~10000U,每次注射,当晚 *** 。如有条件,在应用HMG第7天起,每天或隔日测定24h尿雌激素水平。当雌激素排出量在每天100~200μg时,即停用HMG,注射绒促性素5000~10000U。如24h尿雌激素超过200μg时,则不应注射绒促性素,以免发生过度 *** 。

2.黄体功能不足:于月经第14~16天(基础体温上升1~3天)肌内注射500~2000U,每天1次,共5~6次,减量后停药。

3.因黄体功能不足所致先兆流产或习惯性流产:每天或隔日肌内注射3000~5000U,共5~10次,减量后停药。

4.功能失调性子宫出血:每天肌内注射500~1500U,连用3~5天。

5.隐睾症:10岁以下,每次肌内注射500~1000U,10~14岁,每次肌内注射1500U,每周2~3次,连用4~8周。

6.男性性功能减退症:每次肌内注射4000U,每周3次。

5.13 药物相互作用

(尚不明确)

5.14 专家点评

不安的指甲油
呆萌的过客
2026-01-24 16:59:53

塑料瓶底三角形内的数字1:PET 聚对苯二甲酸乙二醇脂

常见矿泉水瓶、碳酸饮料瓶等 。耐热至70℃易变形,有对人体有害的物质融出。1号塑料品用了10个月后,可能释放出致癌物DEHP。不能放在汽车内晒太阳;不要装酒、油等物质

塑料瓶底三角形内的数字2:HDPE高密度聚乙烯

常见白色药瓶、清洁用品、沐浴产品。不要再用来做为水杯,或者用来做储物容器装其他物品。清洁不彻底,不要循环使用。

塑料瓶底三角形内的数字3:PVC 聚氯乙烯

常见雨衣、建材、塑料膜、塑料盒等。可塑性优良,价钱便宜,故使用很普遍,只能耐热81℃.高温时容易有不好的物质产生,很少被用于食品包装。难清洗易残留,不要循环使用。若装饮品不要购买。

塑料瓶底三角形内的数字4:PE 聚乙烯

常见保鲜膜、塑料膜等 。 高温时有有害物质产生,有毒物随食物进入人体后,可能引起乳腺癌、新生儿先天缺陷等疾病。保鲜膜别进微波炉。

塑料瓶底三角形内的数字5:PP 聚丙烯

常见豆浆瓶、优酪乳瓶、果汁饮料瓶、微波炉餐盒。熔点高达167℃,是唯一可以放进微波炉的塑料盒,可在小心清洁后重复使用。需要注意,有些微波炉餐盒,盒体以5号PP制造,但盒盖却以1号PE制造,由于PE不能抵受高温,故不能与盒体一并放进微波炉。

塑料瓶底三角形内的数字6:PS 聚苯乙烯

常见碗装泡面盒、快餐盒。不能放进微波炉中,以免因温度过高而释出化学物。装酸(如柳橙汁)、碱性物质后,会分解出致癌物质。避免用快餐盒打包滚烫的食物。别用微波炉煮碗装方便面。

塑料瓶底三角形内的数字7:PC其它类

常见水壶、太空杯、奶瓶。百货公司常用这样材质的水杯当赠品。很容易释放出有毒的物质双酚A,对人体有害。使用时不要加热,不要在阳光下直晒。

扩展资料:

塑料瓶主要是由聚乙烯或聚丙烯等材料并添加了多种有机溶剂后制成的。塑料瓶广泛使用聚酯(PET)、聚乙烯(PE)、聚丙烯(PP)为原料,添加了相应的有机溶剂后,经过高温加热后,通过塑料模具经过吹塑、挤吹、或者注塑成型的塑料容器。

主要用于饮料、食品、酱菜、蜂蜜、干果、食用油、农兽药等液体或者固体一次性塑料包装容器。塑料瓶具有不易破碎、成本低廉、透明度高、食品级原料等特点。

塑料瓶是使用聚酯(PET)、聚乙烯(PE)、聚丙烯(PP)为原料,添加了相应的有机溶剂后,经过高温加热后,通过塑料模具经过吹塑、挤吹、或者注塑成型的塑料容器。塑料瓶具有不易破碎、成本低廉、透明度高、食品级原料等特点。

使用塑料制品时特别要注意,不要接触醋、清洁剂等,避免阳光直射、高温等,以免发生化学反应。另外,您在购买塑料餐具时,应当挑选商品上带有PE(聚乙烯)或PP(聚丙烯)标注、装饰图案少、无色无味、表面光洁的塑料制品。

(1)在设计挤压式塑料瓶时,如果材质为高密度聚乙烯或聚丙烯,塑料瓶的横截面应为矩形或椭圆形,对于材质为低密度聚乙烯或其他柔性塑料瓶,其横截面以圆形为好。这样便于内容物从塑料瓶内挤出。与塑料瓶口配合使用的塑料件主要为瓶盖和密封器。

塑料瓶口的设计应重点考虑如何使塑料瓶口能更好地与盖和密封器配合。塑料瓶的底部是塑料瓶力学性能的薄弱部位。因此,塑料瓶的底部一般设计成内凹形;塑料瓶的转角处,及内凹处,均做较大的圆弧过度。为便于塑料瓶的堆放,增加塑料瓶的堆码稳定性,塑料瓶的底部应设计内凹槽。

(2)塑料瓶表面采用标贴时,应使标贴面平整。可在塑料瓶表面设计一个“框格”,使标贴准确定位,不产生移动。在吹塑成型时,型坯吹胀首先接触的部位,总是趋于先行硬化的部位。因此该部位的壁厚也大一些。边缘与转角部位,是型坯吹胀最后接触的部位,该部位的壁厚较小。因此塑料瓶的边缘和抹角部位应设计成圆角。

改变塑料瓶的表面形状,如塑料瓶中部相对地细一些,增加塑料瓶的表面的周向凹槽或凸筋,可提高塑料瓶的刚度和耐弯曲性。纵向的凹槽或加强筋,可消除塑料瓶在长期负荷下的偏移、下垂或变形现象。

(3)塑料瓶的印刷面,是消费者注意力最集中的部位。印刷表面应平整、连续;如果塑料瓶含有手柄、凹槽、加强筋等结构,设计时应注意不能给印刷操作造成不便。椭圆形塑料瓶,刚度也较高,但模具的制造费用较高。因此为保证塑料瓶的刚度,除选择刚度高的材料外,还要通过塑料瓶的外形设计,增强塑料瓶的刚度和耐负荷强度。

(4)由于大多数塑料具有凹口敏感性,塑料瓶在尖角处、口部螺纹的根部、颈部等部位,容易产生裂缝和开裂现象,所以这些部位应设计成圆角。对于矩形塑料瓶的转交处,需要支撑塑料瓶的大部分负荷,因此局部增加该处的壁厚,还有利于提高塑料瓶的刚度和耐负荷强度的。

参考资料:百度百科-塑料瓶

含蓄的秀发
可靠的画板
2026-01-24 16:59:53

中华人民共和国建筑工业行业标准 JG/T 172——2005 弹性建筑涂料 Elastomeric Wall Coatings 1. 范围,本标准规定了弹性建筑涂料的分类、技术指标、试验方法、检验规则及标志、包装、运输、贮存等要求.本标准适用于。

扩展资料:

第一种乙二醇醚及其酯类溶剂涂料,这类直接对人体有杀伤作用,人只要长期接触,重的都会让血液,淋巴受损,更严重的对生殖系统也有巨大危害。

第二种 是带氨基漆的涂料,如果认用这种涂料刷门,刷窗,路人行过都能闻到,有时熏的人头会晕,眼睁不开,危害显而易见。

第三种 一些防腐蚀涂料,有时会要求带一些额外功能,比如船舶使用的涂料,因要求杀海藻的,从而不得不加入一些有毒物质。比如加入重金属物质,能长期毒害一些靠近的工作者。

第四种 带溶剂甲苯的涂料,这种不会让人短期发觉,而是接触久性的,慢慢积累毒素。从而身体出现不适,有一种哑巴吃黄连的感觉,等我们积累多了,发现问题时,那可就晚了。

参考资料:百度百科-涂料

快乐的棒棒糖
忧心的手套
2026-01-24 16:59:53

PET材料做的瓶子不能装酒。

使用塑料容器时,会看到瓶底三角形内标注的数字,三个箭头组成的三角形,一般就印在塑料瓶的底部,当中有一个数字,从1~7不等。

在数字‘1’下面注明着‘PET’,这是一种化学名称为‘聚对苯二甲酸乙二醇脂’的物质,常见用于矿泉水瓶、碳酸饮料瓶等。当PET耐热至70℃,易变形,就会有对人体有害的物质溶出,同时,不能放在汽车内暴晒,不要装酒、油等物质。

因此,饮料瓶等用完了就丢掉,不要再用来做为水杯,或者用来做储物容器乘装其他物品,以免引发健康问题得不偿失。

扩展资料:

塑料瓶底数字“1-7”标识解读:

1号PET制成的饮料瓶可以在短时期内装常温水,但不能装高温水,也不宜装酸碱性饮料。标识为

2号的塑料容器是由HDPE高密度聚乙烯制成,常见于白色药瓶、清洁用品、沐浴产品。此类制品因为不容易彻底清洁,所以不适合用作水杯等,也不要循环使用。

3号PVC(又作“V”)聚氯乙烯、4号LDPE聚乙烯制成的产品,常用于雨衣、建材、塑料膜、塑料盒等。因为这两类材质的可塑性优良、价钱便宜,因此使用较为普遍。

但它们的耐热温度较低,高温分解时有可能释放出有害物质,所以很少被用于食品包装。而且这两类材质的容器本身难以清洗,容易造成残留,不适合装饮品。

5号为PP聚丙烯,可以用来制作微波炉餐盒,也是唯一可以放进微波炉的塑料盒,可以重复使用。

6号标识的塑料制品由PS聚苯乙烯制成,在温度过高时会释放出化学物,不能用于装强酸、强碱性物质。

7号OTHER代表由其他塑料制成,这类容器如果有破损,应该停止使用,因为它们表面的细微坑纹,容易隐藏细菌。

参考资料来源:百度百科-塑料瓶底标示

参考资料来源:人民网-塑料瓶底的数字奥秘 哪种塑料瓶是安全的?

优秀的荔枝
活力的跳跳糖
2026-01-24 16:59:53

郑水林

(中国矿业大学(北京) 化学与环境工程学院,北京 100083)

摘要 本文综述了中国重质碳酸钙的生产、应用现状;重点总结了重质碳酸钙粉碎、分级和表面改性技术现状和进展;并对其市场、技术发展趋势进行了展望。

关键词 重质碳酸钙;生产;应用;加工技术。

作者简介:郑水林,男,(1956—),中国矿业大学(北京)化学与环境工程学院教授,博士生导师;长期从事非金属矿物选矿和深加工的教学与研究。E-mail:shuilinzh@yahoo.com.cn。

中国重质碳酸钙的规模化生产始于20世纪80年代初期,最初的生产厂家大多集中于浙江的富阳和建德地区。经过20多年的发展,生产规模已从最初的年产几万吨增大到2006年的逾500×104t。主要生产地区已从浙江建德、富阳扩展到安徽、广东、广西、四川、湖南、江苏、山东、湖北、江西、辽宁、吉林、黑龙江等地;生产企业由最初的几家增加至目前的300余家;产品品种从最初的“双飞粉”(200目)、“三飞粉”(325目)发展到400目(<38μm)、600目(d97=20μm)、800目(d97=16μm)、1250目(d97=10μm)和2500目(d97=5μm),以及d80≤2μm、d90≤2μm、d97≤2μm等产品;产品已能基本满足国内塑料、造纸、橡胶、涂料、油墨、日化、饲料等应用领域的要求。其发展速度和发展规模已超过轻质碳酸钙。

一、生产与应用

2006年国内重质碳酸钙的总产量达到约510×104t,较上年增长10%以上,其中1250目(d97=10μm)以上的超细重质碳酸钙约200×104t,约占总产量的40%。主要应用领域是塑料、造纸、橡胶、涂料、油墨、胶粘剂、日化等,其中推动重质碳酸钙产量持续快速增长的主要因素是造纸、塑料制品工业需求的显著增长。

塑料制品是重质碳酸钙第一大消费市场,2006年消费量达到约200×104t;特别值得一提的是,2006年活性碳酸钙的产量显著增长,在塑料型材、各种管道、塑料薄膜、电缆等用途中广泛使用超细活性碳酸钙[1]。造纸行业是碳酸钙需求增长最快的行业之一,该领域2006年消费非金属矿物填料和颜料约500×104t,其中重质碳酸钙约190×104t,比上年增长15%左右;其中约有90×104t左右的重质碳酸钙用作造纸填料,其余用作纸张的涂料[2]。2006年重质碳酸钙在涂料和油墨中的消费量约25×104t[3];橡胶消费量约15×104t;牙膏消费量约30×104t;其他约40×104t。2006年,国内碳酸钙出口量达到120878 t,比2005年(74281 t)增加46597 t,增长62%。

二、加工技术

(一)粉碎分级

国内重质碳酸钙的生产工艺主要有干法和湿法两种。

1.干法

干法工艺设备主要是球磨机、辊磨机(包括滚轮磨、环辊磨、雷蒙磨等)、振动磨等。其中球磨机与精细分级机组合不仅可以加工d975~10μm的超细粉体,而且可以根据用户要求在325~2500目之间进行调节。这种重质碳酸钙加工工艺的特点是连续闭路生产、多段分级、循环负荷大(300%~500%)、单机生产能力较大,是国内外大型超细重质碳酸钙生产厂的首选工艺设备。辊磨机主要用于加工200~1000目的细粉,配置精细分级机后可加工出1250目以上的超细粉产品[4]。

环辊磨是近两年在超细重质碳酸钙领域广泛应用的一种中小型超细粉碎设备。其特点是工艺简单,粉碎比大,单位产品能耗较低。给料粒度≤20mm;内设分级装置,产品细度可以在d978~20μm之间调节;单机产量600~1800 t/h;能耗(d97=10μm)≤100 kW·h/t。

滚轮磨的特点是单机生产能力大,用于方解石生产GCC产量可达5~10 t/h;而且内置分级机,产品细度可以在d978~30μm之间调节。

在重质碳酸钙的生产中,特别是在超细重质碳酸钙的生产,精细分级设备是必须的工艺设备之一。其目的是:①控制产品细度及其粒度分布。②将合格的细粒级产品及时分出,防止其过磨,提高粉碎作业的效率;后一点对于球磨机来说是至关重要的。正是因为有了精细分级机及时地将合格细粒级产品分出,显著提高了球磨机的研磨粉碎效率,才有球磨机在该领域的广泛应用。

目前我国主要的工业型分级机有QF-5A型微细分级机、FQZ型超细分级机、MSS型精细分级机、ATP单轮分级机、ATP型多轮分级机。这些分级机基本上都与粉磨机配套使用,其分级粒径可以在d973~20μm的范围内调节。依分级机规格或尺寸的不同,单机生产能力从数百千克/时到5000 kg/h。

自1985年以来,干法分级技术取得了显著进展。1985年最先进的精细分级机的产品细度d97<10μm;1992年,d97<6μm;2000年,d97<3.5μm;2002年,d97<2.5μm,生产能力(d97≤10μm,GCC)。1985年单机生产能力500 kg/h;1990年,1000 kg/h;1995年,2000 kg/h;2000年,4000 kg/h;2005年,7000 kg/h。国产的大型精细分级机有LHB型涡轮式精细分级机组、FJW500×6超细分级机。

2.湿法

中国重质碳酸钙湿法生产工艺1993年以后才陆续投入生产,主要用于生产d60≤2μm、d90≤2μm及d97≤2μm的造纸涂料级产品;研磨设备主要是搅拌磨、砂磨机和研磨剥片机等[5]。

在2000年之前,该领域主要使用国产80~500 L的BP型研磨剥片机及其他搅拌磨机。2002年前后随着国内造纸工业对超细碳酸钙浆料需求量的快速增长,开始在工业上应用1500 L搅拌磨;2003年采用3000 L立式搅拌磨;2005年采用3500~5000 L搅拌磨。单机生产能力(d90≤2μm折干量)由1995年的300 kg/h、2000年的500 kg/h、2003年大于等于1000 kg/h发展到2005年大于等于2000 kg/h;能耗在1995年为250 kW·h/t,2000年为180 kW·h/t,2003年为120 kW·h/t,2005年为90 kW·h/t。

目前国内超细碳酸钙浆料加工领域应用的3000 L以上大型立式搅拌磨有CYM型、LXJM型、MB-5000L。

超细碳酸钙浆料加工技术的重要进展还体现在产品细度和黏度方面:生产的高品质专用面涂级细磨碳酸钙GCC,浆料固含量75%~78%;黏度小于350MPa·s;最大粒度3~5μm,-2μm含量≥97%,1μm含量≥75%;平均粒径0.3~0.5μm。

(二)表面改性

重质碳酸钙是目前高聚物基复合材料中用量最大的无机填料。碳酸钙填料的主要优点是原料来源广泛、价格便宜、无毒性。据统计,塑料制品工业中约70%的无机填料是碳酸钙,包括轻质或沉淀碳酸钙(PCC)和重质或细磨碳酸钙(GCC)。由于碳酸钙填料为无机粉体,与有机高分子的相容性差,直接添加到高分子材料中难以均匀分散,还会影响材料的加工性能和力学性能,因此一般在填充高分子材料之前要对其进行表面改性处理。目前表面改性技术已成为碳酸钙(包括轻质碳酸钙和重质碳酸钙)最重要和必须的深加工技术之一,每年生产的各种不同细度的活性碳酸钙粉体达到150×104t以上[6]。

1.表面改性方法

目前碳酸钙的表面改性方法主要是化学包覆,辅之以机械力化学;使用的表面改性剂包括硬脂酸(盐),钛酸酯偶联剂,铝酸酯偶联剂等。表面改性工艺有干法和湿法两种。

硬脂酸(盐)是碳酸钙最常用的表面改性剂。其改性工艺可以采用干法或湿法。一般湿法工艺要使用硬脂酸盐,如硬脂酸钠。除了硬脂酸(盐)外、其他脂肪酸(酯)、如磷酸盐和磺酸盐等也可用于碳酸钙的表面改性。用一种特殊结构的多聚膦酸酯(ADDP)对碳酸钙进行表面改性后,碳酸钙粒子表面疏水亲油,在油中的平均团聚粒径减小;将改性的碳酸钙填充于PVC塑料体系可显著改善塑料的加工性能和力学性能。据报道,混合使用硬脂酸和十二烷基苯磺酸钠对轻质碳酸钙进行表面处理,可以提高表面改性的效果。

用钛酸酯偶联剂处理后的重质碳酸钙,与聚合物分子有较好的相容性。同时,由于钛酸酯偶联剂能在碳酸钙分子和聚合物分子之间形成分子架桥,增强了有机高聚物或树脂与碳酸钙之间的相互作用,可提高热塑料填充复合材料的力学性能,如冲击强度、拉伸强度、弯曲强度以及伸长率等。

铝酸酯偶联剂也已广泛应用于重质碳酸钙的表面处理和填充塑料制品,如PVC、PP、PE及填充母粒等制品的加工中。经铝酸酯处理后的碳酸钙可使CaCO3、液体石蜡混合体系的黏度显著下降,改性后的碳酸钙在有机介质中的分散性良好。此外,表面改性活化后的重质碳酸钙可显著提高CaCO3、PP(聚丙烯)共混体系的力学性能,如冲击强度、韧性等。

采用聚合物对重质碳酸钙进行表面改性,可以改进重质碳酸钙在有机或无机相(体系)中的稳定性。这些聚合物包括低聚物、高聚物和水溶性高分子,如聚甲基丙烯酸甲酯(PMMA)、聚乙二醇、聚乙烯醇、聚马来酸、聚丙烯酸、烷氧基苯乙烯-苯乙烯磺酸的共聚物、聚丙烯、聚乙烯等。

聚合物表面包覆改性碳酸钙的工艺可分为两种,一是先将聚合物单体吸附在碳酸钙表面,然后引发其聚合,从而在其表面形成聚合物包覆层;二是将聚合物溶解在适当溶剂中,然后对碳酸钙进行表面改性,当聚合物逐渐吸附在碳酸钙颗粒表面上时排除溶剂形成包膜。这些聚合物定向吸附在碳酸钙颗粒表面,形成物理、化学吸附层,可阻止碳酸钙粒子团聚,改善分散性,使碳酸钙在应用中具有较好的分散稳定性。

利用超细粉碎过程的机械力化学作用也可对碳酸钙粉体进行表面改性。碳酸钙在超细粉碎过程中,由于机械力的作用,一方面粒度变细;与此同时,一部分机械能积聚在颗粒内部,引起表面结构和性质的变化,使碳酸钙表面与表面改性剂的作用增强。因此,在超细粉碎过程中添加表面改性剂和助剂可在超细粉碎过程中同时完成碳酸钙的表面化学包覆改性。

2.表面改性设备

重质碳酸钙的表面改性设备可分为干法和湿法两类。目前常用的干法表面改性设备有SLG型连续粉体表面改性机、高速加热混合机、PSC型粉体表面改性机(图1)以及涡流磨等。其中SLG型连续粉体表面改性机、PSC型粉体表面改性机、涡流磨等是连续式粉体表面改性设备;高速加热混合机是间歇式的表面改性设备。常用的湿法表面改性设备为可控温反应罐和反应釜。

目前在超细碳酸钙干法连续表面改性中,SLG型连续粉体表面改性机占主导地位,它是国内具有自主知识产权的连续式表面改性设备。目前已有100 余台设备在超细碳酸钙粉体的表面改性中应用,年生产超细轻质和重质碳酸钙粉体约80×104t[6]。

三、发展趋势

重质碳酸钙的主要原料是方解石、大理石、白垩、优质石灰石等,原料较丰富、市场价格较低;产品是应用范围较广、用量较大的非金属矿物粉体材料。相对低廉的价格、广泛的适用性,决定其在无机填料和颜料市场具有良好的发展前景。随着国内造纸、塑料、涂料、油墨、橡胶工业的快速发展,预计在“十一五”期间国内重质碳酸钙的年平均需求量将以每年10%左右的速度增长,2010年将达到850×104t左右,生产能力将达到900×104t左右,出口量将达到30×104t。

在加工技术方面,提高粉碎和分级效率、降低能耗和磨耗、优化表面改性效果和降低改性成本将是主要发展趋势。

图1 干法表面改性设备

1—给料装置;2—给药装置;3—SLG型连续粉体改性机;4—旋风集料器;5—除尘器

由于用户需求量的增加,为了供应质量稳定的产品,现有粉碎设备及其配套的精细分级设备大型化将是未来重质碳酸钙粉碎加工技术的主要发展趋势。为了降低能耗,除了设备需要大型化外,还将改进现有粉碎和分级设备,提高粉碎、分级设备的效率;为了降低磨耗,除了优化粉碎工艺,还将改进与物料接触的设备的材质。

优化表面改性效果将主要从表面改性方法、改性设备和改性剂配方三个方面着手:①根据粉体的制备工艺和表面改性剂的种类选择,改善碳酸钙粉体和表面改性剂在改性过程中的分散性及相互接触或作用机会的均等性的表面改性方法和工艺;②选择能使粉体和表面改性剂在改性过程中良好分散及相互接触或作用机会的均等的表面改性设备;③根据树脂基料种类和应用要求选择表面改性剂及改性助剂。

降低表面改性成本将主要从表面改性剂、表面改性能耗、表面改性工艺几个方面着手。表面改性剂是碳酸钙表面改性作业的主要成本构成因素之一,为了减少表面改性剂的用量,将提高表面改性剂的分散性,使其尽可能在碳酸钙颗粒表面单层包覆。表面改性大多是需要加热的作业,要消耗电能和热能。为了降低改性过程的能耗,除了简化工艺外,还将改进表面改性设备或装置。改性过程中粉体物料的损失不仅增加了改性产品的生产成本,而且污染车间环境。为此,将尽可能采用连续、密闭的表面改性设备,并尽量减少粉体物料的输送环节和缩短输送距离。

四、结语

2006年国内重质碳酸钙的产量约510×104t,较上年增长10%以上;其中1250目(d97=10μm)以上的超细重质碳酸钙约200×104t,占总产量的40%左右。

塑料制品是重质碳酸钙第一大消费市场,2006年消费量达到约200×104t;造纸行业是重质碳酸钙需求增长最快的行业之一,该领域2006年消费量约190×104t;2006年涂料、油墨、橡胶、牙膏等领域消费重质碳酸钙约110×104t;国内碳酸钙2006年出口量120878 t。

2000年以来,国内重质碳酸钙粉碎分级技术取得了显著进步。大型重质碳酸钙生产厂主要采用球磨与分级组合工艺和滚轮磨生产工艺,中小型超细重质碳酸钙生产厂主要采用辊磨机;湿法超细碳酸钙浆料主要采用3000 L以上的大型搅拌磨机。

表面改性是重质碳酸钙最主要的加工技术之一。目前主要采用表面有机包覆改性方法,主要采用硬脂酸盐、铝酸酯偶联剂、钛酸酯偶联剂等表面改性剂,主要改性设备为SLG型连续粉体表面改性机、高速加热搅拌机、涡旋磨等。

在“十一五”期间,预计国内重质碳酸钙的年平均需求量将以每年10%左右的速度增长,2010年将达到850×104t左右,生产能力将达到900×104t左右,出口量将达到30×104t。

提高粉碎和分级效率、降低能耗和磨耗、优化表面改性效果和降低改性成本将是主要发展趋势。

参考文献

[1]刘英俊.碳酸钙在塑料中应用的若干问题.中国非金属矿工业导刊,2007(3),3-7

[2]宋宝祥,王妍,宋光.造纸非金属矿物材料消费现状与发展趋势.中国非金属矿工业导刊,2007(1),10-14

[3]周铭,侯翠红.碳酸钙在涂料中的研究现状与发展趋势.中国非金属矿工业导刊,2006(2),3-6

[4]郑水林,祖占良.非金属矿物粉碎加工技术现状.中国非金属矿工业导刊,2006(增),3-8

[5]郑水林.非金属矿物材料.北京:化学工业出版社,2007,92-130

[6]郑水林.碳酸钙粉体表面改性技术现状与发展趋势.中国非金属矿工业导刊,2007(2),3-6

Production and Development of Ground Calcium Carbonate in China

Zheng Shuilin

(School of Chemical and Environmental Engineering,China University of Mining and Technology(Beijing Campus),Beijing 100083,China)

Abstract:The production and application of ground calcium carbonate,especially the grinding technology and equipments,classification technology and equipment,surface-modification technology used for production of ground calcium carbonate in China have been reviewed.And the development trends of market and processing technology of ground calcium carbonate have been prospected.

Key word:ground calcium carbonate,production,application,processing technology.

清爽的招牌
安静的故事
2026-01-24 16:59:53
韩国LG化学公司应用纳米技术开发成功高阻隔性工程塑料(EP),这种称为hyperier的塑料对溶剂、水和气体均有很好的阻隔性能,已应用于食品、化妆品、农药和汽车燃料贮箱。通过应用纳米技术,提高了阻隔能力,克服了传统阻隔材料的缺陷,包括需多层使用,从而改进了可模塑性和在水中的耐用性。lg化学公司已使这种EP材料商业化用于化妆品容器,并与汽车生产商合作,生产特殊规格的hyperier塑料用于燃料贮箱,全球这一市场达6.8亿欧元/年。LG化学的发展目标是成为阻隔材料的第一生产商,至2008年拟占全球阻隔材料市场的30%。

한국의 LG 화학 나노기술은 용제, 물, 가스 배리어 특성이 매우 좋은 위치에 hyperier 플라스틱 등, 식품, 화장품, 살충제와 연료 차량에 사용되고 있습니다 높은 장벽 플라스틱 (EP에), 개발 탱크. 나노기술의 응용을 통해,이 레이어는 순서 개선하고 그 물 내구성에 성형 수 사용할 수있는 필수 포함하여 기존의 장벽 자료의 결점을 극복하기 위해 블로킹 능력을 향상시킵니다. 엘지 화학 기업이 EP에 재료 화장품 용기에 사용되는 상용화를 만들었습니다 그리고 자동차 제조 업체, 연료 탱크 플라스틱 hyperier 글로벌 시장을위한 특수 사양의 생산 협력 680,000,000유로이 / 올해에 도달했습니다. LG 화학 기술의 개발 목표는 장벽의 첫 번째 제조 업체 소재 장벽 소재 2008 년 세계 시장 30 %를 차지하고있을가 될 것입니다.

韩国的石油化学工业

韩国的石油化学工业始于20世纪60年代后半期。1966年11月,韩国政府颁布实施了“石油化学工业开发计划”,次年正式定为重点发展的产业部门。1968年开始将蔚山石油化工基地的13家企业联合起来,予以重点扶植。1972年,蔚山石油化工联合企业全部建成。从此,韩国的石油化学工业获得了迅速的发展,石化工业品的自给率达47%。

从1976年开始,韩国着手兴建丽川石化基地的十大系列化工厂,该工程于1979年12月全部竣工投产,从而使韩国石油化工产品的自给率提高到64%,乙烯的年生产能力达到50多万吨,从世界第24位上升到14位。

第二次石油危机使韩国的石油化工工业受到极大冲击,出现了亏损,石化工业面临着原料供应不足、生产效率低、自给率下降的问题。1983年以后,由于原油市场的稳定以及世界经济的恢复,石化产品的需求不断增长,韩国的石油化工工业又得到了迅速的发展,石油化工工业产品的生产能力大大提高。到20世纪80年代末,其生产能力提高为世界第五位。

目前,韩国石油化学工业所需原油全部依赖进口。因此,韩国的石化工业中心集中分布在沿海地带。丽川为韩国最大的石化工业中心,其次是蔚山、釜山。

化肥工业在20世纪60年代是韩国化学工业的主要部门,韩国第一个化肥生产厂家清州肥料公司于1961年投产。在20世纪60年代后5年化肥工业就实现了自给自足。在20世纪70年代,化肥工业通过扩大副产品的生产发展成为一个综合性产业。然而由于国内消费的迅速增长,化肥产量供不应求,韩国对部分化肥的需求还要靠进口满足。

한국의 석유 화학 산업

한국의 석유 화학 산업은 60 년대의 20 세기의 반을 시작했다. 11 월 1966 년 한국 정부, "공식적으로 내년에 산업 부문의 개발에 초점을"석유 화학 산업 발전 프로그램을 공포. 1968 울산 석유 화학 기지는 13 일 기업 지원에 초점을지게되는 것입니다. 1972 년 울산 석유 화학은 합작 투자의 모든 지어졌습니다. 그 이후로, 한국의 석유 화학 산업은 47 %의 산업 자급 자족 율이 석유 화학의 신속한 개발을 즐기고 있습니다.

1976 년 이래로, 한국은 Yeocheon에게 10 시리즈의 화학 석유 화학 기지를 건설하기 시작,이 프로젝트는 1979년 12월 모든 생산, 그래서 석유 화학 제품의 한국의 자급 자족 률이 64 %로 증가 완성, 에틸렌의 연간 생산 능력 50 개 이상의 만 톤부터 세계 최초의 24 14.

한국의 석유 화학 산업의 두 번째 석유 위기는 석유 화학 산업의, 거기되었습니다 손실 원료의 부족에 직면하는 압도적인 영향을 가져, 생산 효율이 낮은 경우, 자급 자족을 감소의 문제. 1983 년, 때문에 원유 시장은 세계 경제의 회복을, 석유 화학 제품, 한국의 석유 화학 산업의 수요 성장과 급속히의 개발에서 얻은, 석유 제품, 화학 공업 생산 능력 稳定 크게 증가했다. 20 세기 위해, 80 년대 후반, 그의 세계 생산 능력의 5.

현재, 한국 석유 화학 산업은 석유 수입에 필요한 모든 의존. 때문에, 한국의 석유 화학 산업의 중심이 해안 영역에 집중. Yeocheon 국내 최대 규모의 석유 화학 산업 중심으로, 울산 부산 입력하십시오.

20 세기에 비료 산업, 한국 60 주요 화학 산업 분야, 한국 최초의 화학 비료 제조 업체는 명확하게 회사를 작업에 1,961에 넣어 주. 20 세기에, 5 년 후 60 년 동안은 비료 업계에서 자급 자족을 달성하기 위해. 포괄적인 산업으로 부산물의 생산을 확대하여 20 세기의 70는, 비료 산업. 짧은 공급 국내 소비의 급속한 성장하지만, 인해, 비료 생산, 한국은 비료의 부품에 대한 수입 또한 수요를 충족합니다.