改性塑料是什么材料?
塑料改性是利用物理、化学和机械方法改进或增加石化公司生产的大量通用树脂的功能。用于电、磁、光、热、耐老化、阻燃、机械性能等方面。一方面,在特殊环境条件下使用的功能性改性塑料是一个技术含量高、用途广泛的塑料工业领域,塑料改性技术,共混和增强改性几乎是所有塑料制品的原材料。为了降低塑料制品的成本,提高其功能性,塑料改性技术离不开生产各种规格和品种的原树脂改性塑料母粒。根据不同的需要,塑料通常需要进行改性以适应各种实际要求。常用的方法主要有:1填充改性在塑料中加入一定量的填料是降低塑料价格、提高性能的重要方法。例如,酚醛树脂填充木屑。将其用纸制成实用的胶木材料,克服了脆性的弱点。2以一定比例混合两种或两种以上具有类似改性性质的聚合物化合物,以制备聚合物混合物3。共聚改性将两个一个或多个单体聚合得到共聚物,如乙烯和丙烯共聚得到弹性好的乙丙橡胶;丙烯腈、丁二烯和苯乙烯共聚得到ABS树脂
改性塑料凭借着优越的性价比在汽车、家电等行业得到了广泛的应用。那么改性塑料与普通塑料相比有哪些优势呢?接着往下看:
1、改性塑料通过给普通塑料加入增韧剂共混以提高塑料的韧性;
2、改性塑料将玻璃纤维等与塑料共混以增加塑料的机械强度;
3、改性塑料给普通塑料树脂里面添加阻燃剂,使得塑料具有阻燃特性;
4、改性塑料将矿物等填充物与塑料共混,使塑料的收缩率、硬度、强度等性质得到改变;
5、改性塑料添加一些耐低温增韧剂改变塑料在低温下的脆性从而增加塑料在低温下的强度和韧性
普通的塑料往往会有它自身的特性和缺陷
改性塑料就是给塑料改变一下性质:
1、增强
用玻纤给塑料的强度改变一下。
2、填充
给普通塑料填充一些矿物质,使塑料的性质得到改变。
3、增韧
给普通塑料加入一些增韧剂使得这些塑料可以韧性很强,改性后的产品像:铁轨垫片
4.阻燃
给普通塑料树脂里面加阻燃剂,即可使塑料具有阻燃特性.一般阻燃剂有溴+锑系,P系,N系,还有无机阻燃体系.
5.耐寒
一般指塑料在低温下的耐寒能力,由于塑料固有的低温脆性,使塑料在低温下变脆,所以像汽车里面的塑料件,一般要求耐寒.
改进耐寒性,一般往塑料里面加入增韧剂,使其耐寒能力增强
重量问题。同样满足强度的金属和塑料件,无疑塑料件在轻量化方面更具优势
尼龙的缺点:1.易吸水。吸水性大,饱和水可以达到3%以上.一定的程度上影响尺寸稳定性和电性能,特别是薄壁件增厚影响较大;吸水亦会大大降低塑料的机械强度。在选材时,应顾及使用环境及与别的元件的配合精度的影响。纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。尼龙与玻璃纤维亲合性十分良好。常用于制作梳子、牙刷、衣钩、扇骨、网袋绳、水果外包装袋等等。无毒性,但不可长期与酸碱接触。值得注意的是,加入玻纤后,尼龙的抗拉强度可提高2倍左右,耐温能力也相应得到提高.
2.耐光性较差。在长期偏高温环境下会与空气中的氧发生氧化作用,开始时颜色变褐,继面破碎开裂。
3.注塑技术要求较严:微量水分的存在都会对成型质量造成很大损害因热膨胀作用使制品尺寸稳定性较难控制;制品中尖角的存在会导致应力集中而降低机械强度;壁厚如果不均匀会导致制件的扭曲、变形;制件后加工时设备精度要求高。
4.会吸收水、醇而溶胀,不耐强酸及氧化剂,不能作耐酸材料使用。
尼龙的优点:1.机械强度高,韧性好,有较高的抗拉、抗压强度。比拉伸强度高于金属,比压缩强度与金属不相上下,但它的刚性不及金属。抗拉强度接近于屈服强度,比ABS高一倍多。对冲击、应力振动的吸收能力强,冲击强度比一般塑料高了许多,并优于缩醛树脂。
PA应用2.耐疲劳性能突出,制件经多次反复屈折仍能保持原有机械强度。常见的自动扶梯扶手、新型的自行车塑料轮圈周期性疲劳作用极明显的场合经常应用PA。
3.软化点高,耐热(如尼龙46等,高结晶性尼龙的热变形温度高,可在150度下长期使用.PA66经过玻璃纤维增强以后,其热变形温度达到250度以上)。
4.表面光滑,摩擦系数小,耐磨。作活动机械构件时有自润滑性,噪声低,在摩擦作用不太高时可不加润滑剂使用;如果确实需要用润滑剂以减轻摩擦或帮助散热,则水油、油脂等都可选择。从而,做为传动部件其使用寿命长.
5.耐腐蚀,十分耐碱和大多数盐液,还耐弱酸、机油、汽油,耐芳烃类化合物和一般溶剂,对芳香族化合物呈惰性,但不耐强酸和氧化剂。能抵御汽油、油、脂肪、酒精、弱堿等的侵蚀和有很好的抗老化能力。可作润滑油、燃料等的包装材料。
6.有自熄性,无毒,无臭,耐候性好,对生物侵蚀呈惰性,有良好的抗菌、抗霉能力。
7.有优良的电气性能。电绝缘性好,尼龙的体积电阻很高,耐击穿电压高,在干燥环境下,可作工频绝缘材料,即使在高湿环境下仍具有较好的电绝缘性。
8.制件重量轻、易染色、易成型。因有较低的熔融粘度,能快速流动。易于充模,充模后凝固点高,能快速定型,故成型周期短,生产效率高。
塑料增韧剂种根据不同塑料的化学成分特点,通过相应的化学物理作用来提高塑料冲击强度。主要用于各种改性塑料(包括玻纤增强,阻燃,无卤阻燃,矿物填充等)和普通(包括再生)塑料。不同型号的增韧剂,分别适用PP,,PE,ABS, HIPS,PBT,PA,PC/ABS等塑料品种,在少量使用的条件下,能够明显提高塑料的韧性并保持其他力学性能。适用塑料的各种成型方法和塑料制品。由马鞍山科立化工科技公司开发生产。
一、增强技术
纤维增强是塑料改性的重要方法这一,镁盐晶须和玻璃纤维均能有效地提高聚丙烯的综合性能。以玻璃纤维增强的聚丙烯具有较低的密度,低廉的价格以及可以循环使用等优点,正逐步取代工程塑料与金属在汽车仪表板,汽车车身和底盘零件中的应用:与玻璃纤维相比,镁盐晶须的模塑制品具有更高的精度,尺寸稳定性和表面光洁度,适用于制备各种形状复杂的部件,轻质高强度阻燃部件和电子电器部件。作为一种改性剂,镁盐晶须能大幅度提高聚丙烯的强度,刚度,抗冲击和阻燃性能。因此,镁盐晶须和玻璃纤维在聚丙烯改性中的应用越来越受到重视。
二、增韧技术
矿物质增强增韧是最为普遍的改性途径之一。向聚丙烯原料中添加的矿物质通常是碳酸钙,滑石粉,硅灰石,玻璃微珠,云母粉等。这些矿物质不仅可以在一定程度上改善聚丙烯材料的机械性能和冲击韧性,降低聚丙烯材料的成型收缩率以加强其尺寸稳定性,并且由于矿物质与聚丙烯基体在成本上的巨大差别,可以大幅度降低聚丙烯材料的成本。
矿物质增强增韧聚丙烯是所有改性聚丙烯材料在家用电器中应用最广泛的一种。波轮洗衣机和滚筒洗衣机的内筒一般使用的都是矿物质增强增韧聚丙烯材料,以代替早期的不锈钢内筒。聚丙烯材料经矿物质增强增韧后,可克服其原有的强度不足,光泽度不好,收缩太大等问题。这种改性聚丙烯除了用于制作洗衣机的内筒以外,还被用于制作波轮和取衣口等部件,仅海尔集团对其每年的用量就在1700吨左右(每个洗衣机内筒约重2kg)。这种材料的矿物质添加量高达40%,其拉伸强度达33Mpa,断裂伸长率可达90%以上,缺口冲击强度约为10KJ/m2。
微波炉的很多部件也采用矿物质增强增韧聚丙烯材料制造。由于矿物质的加入,可以在聚丙烯材料本身较高的耐热温度的基础上,使其耐热温度进一步得到提高,以适应微波炉对高温的要求。例如,微波炉门体的密封条,微波炉扬声器喇叭口,喇叭支架等都采用了这种改性的聚丙烯材料。冰箱上的搁物架也基本采用了矿物质增强增韧聚丙烯材料,由于与玻璃面板可进行整体注塑,从而很好地解决了原来ABS材料的面板沁水问题。
三、填充改性
新型高填充玻纤改性塑料,它可克服常规玻璃纤维增强热塑性塑料的缺陷。这种材料的基体是高温热塑性塑料如液晶聚合物,聚醚砜,聚醚酰亚胺和聚苯硫醚。在玻纤填充量在80%时,改性材料但仍能操持良好的可加工性。用新材料生产的部件具有耐磨损和耐温变的良好特性。这种新材料可与塑料和金属粘合,适用于表面摸塑设备加工,潜在的应用包括汽车和燃料系统部件,轴承,电子零部件,抗刮伤外壳等,这种玻璃增强物的辅加效益是阻燃性好,能回收利用,高度耐热和尺寸稳定等。
四、共混与塑料合金技术
塑料共混改性指在一种树脂中掺入一种或多种其他树脂(包括塑料和橡胶),从而达到改变原有树脂性能的一种改性方法。氟塑料合金是采用国内现有的超高分子量聚全氟乙丙烯(FER)为主要原料,与四氟乙烯加填料直接共混,用物理方法制造的,此材料性能超过了世界公认的“塑料王”聚四氟乙烯。
五、阻燃技术
高聚物的阻燃技术,当前主要以添加型溴系阻燃剂为主,常用的有十溴二苯醚、八溴醚、四溴双酚A、六溴环十二烷等,其中尤以十溴二苯使用量为最大,溴化环氧树脂由于具有优良的熔流速率,较高的阻燃效率,优异的热稳定性和光稳定性,又能使被阻燃材料具有良好的物理机械性能,不起霜,从而被广泛地应用于PBT、PET、ABS、尼龙66等工程塑料,热塑性塑料以PC/ABS塑料合金的阻燃处理中。
阻燃剂家族中的其他品种有磷系、三嗪系、硅系、膨胀型、无机型等,这些阻燃剂在各种不同使用领域发挥着各自独特的阻燃效果。在磷系阻燃剂中,有机磷系的品种大都是油液状,在高聚物加工过程中不易添加,一般在聚氨酯泡沫、变压器油、纤维素树脂、天然和合成橡胶中使用。而无机磷系中的红磷,是纯阻燃元素,阻燃效果好,但它色泽鲜艳,因而应用受部分限制。红磷的应用要注意微粒化和表面包覆,这样使它在高聚物中有较好的分散性,与高聚物的相容高性好,不易迁移,能长久保持高聚物难燃性能。
六、纳米复合技术
科研人员发现,当微粒达到纳米量级时会出现一种新奇现象,它的周期性边界被破坏,从而使其声、光、电、磁、热力学等性能呈现出与传统材料的极大差异。根据纳米材料的结构特点,把不同材料在纳米尺度下进行合成与组合,可以形成各种各样的纳米复合材料,例如纳米功能塑料。
一般塑料常用的种类有PP(聚丙烯)、PE(聚乙烯)、PVC(聚氯乙烯)、ABS(丙烯腈-丁二烯-苯乙烯)、PA(聚酰胺)、PC(聚碳酸酯)、PS(聚苯乙烯)等几十种,为满足一些行业的特殊需求,用纳米技术改变传统塑料的特性,呈现出优异的物理性能,强度高,耐热性强,重量更轻。随着汽车应用塑料数量越来越多,纳米塑料很可能会普遍应用在汽车上。这些纳米功能塑料最引起汽车业内人士注意的有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。
增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度,抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。增强增韧塑料可以代替金属材料,由于它们比重小,重量轻,因此广泛用于汽车上可以大幅度减轻汽车重量,达到节省燃料的目的。这些用纳米技术改性的增强增韧塑料,可以用于汽车上的保险杠、座椅、翼子板、顶蓬盖、车门、发动机盖、行李舱盖等,某至还可用于变速器箱体,齿轮传动装置等一些重要部件。
七、热塑性弹性体技术
热塑性弹性体简称TPE/TPR,以SEBS、SBS为基材,是一类具有通用塑料加工性能,但产品有着类似文联橡胶性能的高分子合金材料。在多材料模塑中,热塑性弹性体有4个基本的类型,即苯乙烯嵌段共聚物(SBC)、热塑性硫化胶(TPV)、热塑性聚氨酯(TPU)和共聚多酯(COPE)。
热塑性聚氨酯弹性体是第一个能够运用热塑性工艺加工的弹性体。有聚酯和聚醚两种类型,聚酯型具有较高的机械性能,聚醚型比聚酯型具有较好的水解稳定性和低温韧性。聚氨酯橡胶具有良好的耐磨性、添加剂可以提高耐候性,尺寸稳定性和耐热性,减少摩擦或增加阻燃性,它们在各硬度等级产品中具有很广泛的应用,涉及汽车密封件和垫圈,稳定杆套,医用导管、起博器和人造心脏装置、手机天线齿轮、滑轮、链轮、滑槽衬里、纺织机械部件、脚轮、垫圈、隔膜、联轴器和减振部件。
共聚多酯弹性体具有良好的动态性能、高模数、高伸长和撕裂强度,还有在高温和低温条件下具有良好的抗挠屈疲劳性。通过组合紫外线稳定剂或炭黑可以提高耐候性,耐无氧化酸性、一些脂族烃、芳烃燃料、碱性溶液、液压流体的性能表现为良好甚至优异;然而,无极性材料,如强无机酸和碱、氯化溶剂、苯酚类和甲酚会使聚酯降解,共聚多酯在一般情况下比热塑性弹性体昂贵,应用于弹性联轴器、隔、齿轮、波纹管垫环、保护套、密封件、运动鞋鞋底、电气接头、扣件、旋钮和衬套中。
2007年世界热塑性弹性体(TPE)消费超过230万吨,总产值超过110亿美元,2001-2007年间世界消费保持年均6.5%的增长率。其中,北美消费平均增幅为5.7%,欧洲为4.4%,拉丁美洲则以两位数速率快速增长,亚太地区年均增幅大于8%。高速的增长将带动各行各业对TP巨的使用,汽车和日用品消费是拉动热塑性弹性体消费增长的主要因素,不同品种的热塑性弹性体增长率不相同。热塑性聚氨酯应用以年均6.3%的速率增长,主要应用于汽车业预计未来热塑性聚氨酯在日用品和体育用品上应用会有所突破。
八、反应接枝改性
在由一种或几种单体组成的聚合物的主链上,通过一定的途径接上由另一种单体或几种单体组成的支链的共聚反应。是高聚物改性技术中最易实现的一种化学方法。
马来酸酐接枝改性聚合物一般采用双螺杆挤出机熔融接枝法制备,其系类品种包括聚乙烯(PE-g-MAH)、聚丙烯(PP-g-MAH)、ABS(ABS-g-MAH)、POE(POE-g-MAH)、EPDM(EPDM-g-MAH)等,其操作工艺简单、生产成本低、产品质量稳定等特点。其中产品MAH接枝率在0.5~2.5%范围内可调,其他力学性能指标优良。可广泛用作各类非极性聚合物(如PE、PP等)与极性聚合物(如PC、PET、PA等)其混改性时的相容剂等。
纳米碳酸钙是一种十分重要的无机增韧增强功能性填料,被广泛地应用在塑料、橡胶、涂料和造纸等工业领域,为降低纳米碳酸钙表面高势能、调节疏水性、提高与基料之间的润湿性和结合力、改善材料性能,须对纳米碳酸钙进行表面改性常用的碳酸钙表面改性方法主要以脂肪酸(盐),钛酸酯,铝酸酯等偶联剂在碳酸钙表面进行化学改性,从而使改性碳酸钙填充的聚合物冲击强度得到较大的提高,为了提高无机填料与有机基体之间的相容性,用高分子有机物对无机填料进行表面接枝改性是一种常用方法。Takao Nakatsuka 以磷酸盐改性超细CaC03表面,然后与聚异丁烯酸接枝,P.Godard采用羧酸吸附和聚丁基丙烯酸接枝对CaC03表面改性,与丙稀单体混合后通过聚合制备了性能较好的PP/CaC03复合材料。