苯酚能用紫外可见分光光度计在波长为300nm测吸光度吗
苯酚在紫外光区的最大吸收波长λmax为270nm,所以你要在300测吸光度也能测出来,但不是吸收的最大值。紫外光谱是一个吸收谱带,而不是谱线,所以在哪个波长(紫外区)都是能测出一个数值的。但如果要定量分析就得在270测定了,否则误差太大。
苯胺在中性溶液中最大吸收波长为280nm,在酸性溶液中为254nm。
苯酚在中性溶液中最大吸收波长为270nm,在碱性溶液中为287nm。
PH变化会使苯胺和苯酚中的氨基和羟基与苯环的共轭体系发生变化,共轭时发生红移,也就是吸收波长变大。
酸性中性条件,苯酚分子不电离,最大吸收波长210.5nm,270nm
碱性条件,苯酚电离成负离子,最大吸收波长红移,235nm、287nm
1.2掌握应用紫外分光光度计进行定量分析的方法和基本操作。
2、实验原理
苯酚是工业废水中的一种有害物质,如果流入江河,会使水质受到污染,因此在检测饮用水的卫生质量时,需对水中酚含量进行测定。
苯具有环状共轭体系,由 π→π*跃迁在紫外吸收光区产生三个特征吸收带:强度较高的E1带,出现在180nm左右;中等强度的E2带,出现在204nm左右;强度较弱的B带,出现在255nm。有机溶剂、苯环上的取代基及其取代位置都可能对最大吸收峰的波长、强度和形状产生影响。具有苯环结构的化合物在紫外光区均有较强的特征吸收峰,在苯环上的部分取代基(助色团)使吸收增强,而苯酚在270nm处有特征吸收峰,在一定范围内其吸收强度与苯酚的含量成正比,符合Lambert-Beer定律,因此,可用紫外分光光度法直接测定水中总酚的含量。
3、仪器与试剂
3.1 仪器与试剂
仪器: 752型紫外分光光度计 (上海光谱仪器有限公司制造),石英比色皿(25px)2 个,50mL容量瓶,移液管等。
试剂:苯酚标准溶液250 mg·L -1:准确称取0.0250g苯酚于250mL烧杯,加20mL去离子水溶解,移入100mL容量瓶,用去离子水定容至刻度,摇匀。
3.2 实验步骤
3.2.1标准系列溶液的配制
取5只50mL容量瓶,分别加入2.00,4.00,6.00,8.00,10.00mL浓度为250 mg·L -1的苯酚标准溶液,用去离子水稀释至刻度,摇匀。计算其浓度(mg·L -1)
3.2.2 吸收曲线的测定
取上述标准系列中的任一溶液,用25px石英比色皿,以溶剂空白(去离子水)作参比,在220~350nm波长范围内,扫描绘制吸收曲线。
3.2.3 标准曲线的测定
选择苯酚的最大吸收波长(λmax),用25px石英比色皿,以溶剂空白(去离子水)作参比,按浓度由低到高顺序依次测定苯酚标准溶液的吸光度。
3.2.4 水样的测定
在与上述测定标准曲线相同的条件下,测定水样的吸光度。
4、数据记录与处理
4.1以吸光度为纵坐标,相应六价铬含量为横坐标绘制标准曲线。然后,根据水样吸光度在标准曲线上查出相对应的浓度值,计算出水样中苯酚的含量(g·L-1 )
苯胺在酸性介质中会形成苯胺盐阳离子,苯胺形成盐后,氮原子的未成键电子消失,氨基的助色作用也随之消失,因此苯胺盐的吸收带也从230nm和280nm蓝移到203nm和254nm。
苯酚在碱性介质中能形成苯酚阴离子,其吸收带将从210nm和270nm红移到235nm和287nm,苯酚分子中OH基团含有两对孤对电子,与苯环上π电子形成n→π共轭,当形成酚盐阴离子时,氧原子上孤对电子增加到三对,使n→π共轭作用进一步加强,从而导致吸收带红移,同时吸收强度也有所加强。
在苯酚的差值光谱图上,选择 288nm 为测定波长,在该波长下,溶液的吸光度随苯酚浓度的变化有良好的线性关系,遵循比耳定律,即ΔA=Δε?C?L,可用于苯酚的定量分析。差值光谱法用于定量分析,可消除试样中某些杂质的干扰,简化分析过程,实现废水中的微量酚的直接测定。
方法提要
在酸性条件下,用GDX-502固相萃取柱吸附水中酚类化合物,乙腈解析柱中有机酚,高效液相色谱-紫外检测器检测。
方法适用于饮用水、地下水及湖库水中苯酚、对硝基酚、间甲酚、2,4-二氯酚、2,4,6-三氯酚、五氯酚6种酚类的测定。对水中6种酚通常可检测到10~50ng/L水平。
仪器
高效液相色谱仪带紫外检测器,恒流梯度泵系统。
色谱柱WatersSymmetryC8,4.6mm×250mm,粒径5μm或性质相似的色谱柱。
GDX-502固相萃取小柱将使用过的SPE小柱填充物去掉并清洗干净,湿法加入约为0.5g纯化溶胀后的GDX-502树脂,打开活塞放出甲醇,直到液面刚好达到树脂床顶部。用10mL乙腈淋洗树脂,再用10mL水淋洗树脂,每次淋洗保持液面不低于树脂床。
针头过滤器孔径0.45μm,直径13mm,有机系。
固相萃取装置12管固相萃取装置。
真空泵。
采样瓶1L具磨口玻璃塞的棕色玻璃细口瓶。
氮吹仪。
微量注射器10μL、50μL、100μL、1000μL等气密性微量注射器。
K.D浓缩瓶25mL,带1mL定量管,须标定容积后使用。
试剂
空白试剂水去离子水蒸馏再经Millipore处理。
高效液相色谱流动相为水(含1%乙酸)和乙腈的混合溶液。
碳酸氢钠溶液c(NaHCO3)=0.05mol/L。
硫代硫酸钠(Na2S2O3·5H2O)。
乙腈,甲醇HPLC级。
丙酮(C3H6O)农残级。
乙酸。
盐酸。
标准储备溶液苯酚、对硝基酚、间甲酚、2,4-二氯酚、2,4,6-三氯酚、五氯酚六种的混标,购自国家标准物质研究中心。保存在-18℃冰箱中。
GDX-502树脂使用前用丙酮浸泡数日,数次更换新溶剂到丙酮无色。再用乙腈回流提取6h以上。纯化后的树脂密封保存在甲醇中备用。
替代物标准2-氟苯酚和2,4,6-三溴苯酚混标。
样品的采集与保存
1)水样采集。必须采集在玻璃容器中,在采样点采样及盖好瓶塞时,样品瓶要完全注满,不留空气。若水中有残余氯存在,要在每升水中加入80mg硫代硫酸钠除氯。
2)水样保存。避光、4℃下中保存。采样后7d内完成提取。40d内完成分析。
分析步骤
1)水样预处理。用孔径0.45μm的玻璃纤维滤膜,去除水中机械杂质。根据水中酚类化合物含量,取水样50~1000mL,加入2-氟苯酚和2,4,6-三溴苯酚等替代物标准,用6mol/LHCl调至pH2。水样以10mL/min的流速流经已活化的GDX-502固相萃取柱。当水样完全流过柱子后,用0.05mol/L碳酸氢钠溶液10mL淋洗柱子。用N2或空气将柱中水分充分抽干。用4mL每次1mL乙腈淋洗小柱,前两次淋洗液需在柱中平衡10min,后两次平衡2min,合并淋洗液,最终用乙腈定容为1.00mL。0.45μm有机相滤膜过滤,HPLC分析。
2)校准曲线。
3)高效液相色谱分析条件。
紫外检测器:双波长检测,检测波长280nm和290nm。柱温35℃。
流动相组成:A泵,99%水+(1+99)乙酸B泵,100%乙腈。
流动相流量:1mL/min,恒流。梯度洗脱,洗脱程序,见表82.41。
表82.41 洗脱程序
4)色谱图的考察。见图82.13。
定性与定量分析
1)定性分析。以样品保留时间和标样保留时间相比较来定性。根据标准色谱图各组分的保留时间,确定出被测样品中目标物数目和名称。对有检出的样品需用其他方法确证,如GC-MS等技术。
图82.13 六种标准酚类样品在不同检测波长下的液相色谱图(2μg/mL)
2) 定量分析。每个工作日必须测定一种或几种浓度的标准溶液来检验校准曲线或响应因子。如若某一化合物的响应值与预期值间的偏差大于 10%,则必须用新的标准对该化合物绘制新的校准曲线或求出新的响应因子。使用紫外检测器时,6 种酚类的最大吸收波长不同,为提高分析灵敏度,苯酚、间甲酚采用 280nm 波长定量对硝基酚、2,4 -二氯酚、2,4,6-三氯酚、五氯酚采用 290nm 波长定量。计算公式参见式 (82.16) 。
方法性能指标
1) 精密度、检出限和线性范围。按实验方法,配制浓度为 0.5μg / mL 酚类混合标准样品,按选定的工作条件分析,重复检测 7 次,计算方法的精密度。检出限的测量是以相对于基线噪音 3 倍时组分峰高所对应的浓度。各组分的精密度、检测下限和线性范围见表82.42。
表82.42 方法精密度、检出限及线性范围
2) 准确度。分别将 50μL 浓度为 2μg / mL 的混合标准样品加入 0.25L 和 1.0L 试剂空白水中,用 502 树脂固相萃取柱吸附富集,洗脱后定容 1.0mL,HPLC 测定,计算加标回收率。结果见表82.43。
表82.43 方法的准确度
3) 基体加标回收率。从北京不同地区取护城河水过滤后,分别取 1L 水加入表82.44中不同量的标准样品,及未加入标准样品的 1L 水,经水样预处理,在 HPLC 上检测,得到加标回收率。
表82.44 地表污水加标回收率
注: 2-氟苯酚、2,4,6-三溴苯酚为替代物,回收率均符合控制限要求。
苯酚或苯胺的紫外光谱在酸性或碱性介质中有溶剂极性变化。
溶剂极性的变化会引起有机化合物紫外吸收谱带波长的变化。通常增加溶剂的极性会使π→π*跃迁吸收谱带波长红移;而使n→π*跃迁吸收谱带波长蓝移。
酸性条件下,酚羟基上的氢不易被电离。而碱性和中性条件下就容易被电离形成氧负离子。氧负离子与苯环的共轭程度比羟基高。故PH值变大红移,变小蓝移。
跃迁类型
有机化合物分子中主要有三种电子:形成单键的σ电子、形成双键的π电子、未成键的孤对电子,也称n电子。基态时σ电子和π电子分别处在σ成键轨道和π成键轨道上,n电子处于非键轨道上。仅从能量的角度看,处于低能态的电子吸收合适的能量后,都可以跃迁到任一个较高能级的反键轨道上。