乙酰丙酮如何蒸馏?
1,其制备方法是由乙酸裂解生成的乙酰酮用丙酮吸收,在硫酸或乙酰磺酰乙酸存在下,于67~71℃使之生成乙酸异丙烯酯,经分离提纯后,在500~600℃下经分子重排生成乙酰丙酮,最后分馏提纯得成品。
2,制备乙酰丙酮的较好方法是丙酮在金属钠作用下与乙酸乙酯缩合(见缩合反应),或在三氟化硼作用下与乙酸酐缩合。乙酰丙酮是有机合成的原料,其金属衍生物有些可作为汽油或润滑油的添加剂和农药等。
(1)乙酰丙酮可由三氟化硼存在下,丙酮被乙酸酐酰化制得。
(CH3CO)2O + CH3C(O)CH3 → CH3C(O)CH2C(O)CH3
(2)也可由丙酮和乙酸乙酯缩合制得。
NaOEt + EtO2CCH3 + CH3C(O)CH3 → NaCH3C(O)CHC(O)CH3 + 2 EtOH
NaCH3C(O)CHC(O)CH3 + HCl → CH3C(O)CH2C(O)CH3 + NaCl
3,乙酰丙酮的生产方法
乙酰丙酮可采用不同的工艺路线:丙酮与乙烯酮反应或乙酐与丙酮缩合或丙酮与乙酸乙酯缩合。丙酮与乙烯酮的反应的过程,实际上是以丙酮为原料,经乙烯酮、乙酸异丙烯酯,再经转化而得乙酰丙酮。
普通工艺
工艺过程如下:将含有1/1000二硫化碳的丙酮气化后引入780-800℃的裂化炉,使之生成乙烯酮(或冰醋酸经气化磷酸三乙酯催化剂存在下,以氨为稳定剂,经700℃裂化炉裂解为乙烯酮),乙烯酮用丙酮吸收,在硫酸或乙酰磺酰存在下,于61-71℃使之与乙酸反应生成乙酸异丙烯酯,经分馏提纯后,乙酸异丙稀酯纯度可达93-95%以上。再将乙酸异丙烯酯气化,引入预热至560-570℃转化炉,经分子重排生成乙酰丙酮,经冷凝,分馏提纯得成品。每吨产品消耗丙酮约2700kg。丙酮与乙酸乙酯缩合的过程是在金属钠存在下进行的。
精制方法
乙酰丙酮的精制方法:将约20ml乙酰丙酮粗品溶于80ml苯中,然后与等体积的蒸馏水振荡3h。易溶于水的乙酸分配到水相中,而乙酰丙酮则易溶于苯中。苯相中的乙酰丙酮可直接应用,也可将苯蒸馏除。原料消耗定额:丙酮(工业品,含水<0.5%)2553kg/t、发烟硫酸(以H2SO4计)12kg/t、乙酐(95%)19kg/t、二硫化碳(化学纯)6kg/t。
先分析一下,从目标产物三乙酸丙三酯来看,应该是1分子丙三醇和3分子丙酸酯化的结果,现在就是要考虑怎样把丙烯转化为合成产物所需要的原材料丙三醇和丙酸。
1、由丙烯制得丙三醇(合成路线很多,仅介绍一种)
先用丙烯与氯气发生取代反应生成氯乙烯(注意反应条件,不要写成加成),然后再与氯气发生加成反应生成1,2,3-三氯丙烷,然后再水解生成丙三醇。
2、由丙烯制得丙酸
丙烯与氯气发生取代反应生成氯乙烯,再与氢气加成生成1-氯丙烷,再水解得1-丙醇,丙醇氧化得丙醛,再氧化得丙酸。
3、由丙三醇与丙酸制得三乙酸丙三酯
丙三醇与丙酸直接在浓硫酸和加热的条件下发生酯化反应制得三乙酸丙三酯。
一、 无机材料--玻璃
玻璃是非常特殊的不定型材料,在常温下呈现固体,坚硬但易碎,在高温下具有粘性。
玻璃没有固定的化学结构,因而没有确切的熔点。随着温度的上升,玻璃材料会变软、粘性增加,并逐渐由固体变为液体,这种逐渐变化的特性我们称之为"玻璃状态"。这一特性意味着玻璃在高温时可以被加工和铸型。玻璃材料制成的镜片具有良好的透光性、表面抛光后更加透明的优点。
(1)普通玻璃材料(1。5和1。6):折射率为1.523的冕牌玻璃是传统光学镜片的制造材料,其中60%~70%为二氧化硅,其余则由氧化钙、钠和硼等多种物质混合。有时也将折射率为1.6的镜片划归普通镜片。
(2)高折射率玻璃材料:经过多年的研究,镜片制造商已经找到了在提高材料折射率的同时又保持低色散的方法,即在玻璃中加入新的化学元素。
早在1975年就生产出了含钛元素的镜片,折射率为1.7,阿贝数为41;15年之后又生产出了含镧元素的镜片,折射率为1.8,阿贝数为34;1995年出现折射率为1.9的材料,加入了元素铌,阿贝数为30,这是目前折射率最高的镜片材料。虽然采用这些材料所制造的镜片越来越薄,然而却没有减少镜片的另一重要参数:重量。实际上,随着折射率的增加,材料的比重也随之增加,这样就抵消了因为镜片变薄而带来的重量上的减轻。
(3)染色玻璃材料:在玻璃材料中混合入一些具有特殊吸收性质的金属盐后会表现出着色的效果,例如:加镍和钴(紫色),钴和铜(蓝色),铬(绿色),铁,镉(黄色),金,铜和硒(红色)等等。这些染色镜片材料主要应用于大规模地生产平光太阳镜片或防护镜片。一些具有特殊过滤性质的浅色材料(棕色、灰色、绿色或粉红色)也被用于生产屈光矫正镜片,但象这种镜片的材料现在的需求并不多,主要原因是由于近视或远视镜片的中心厚度与边缘厚度不同,从而使镜片的颜色深浅不一致,屈光度越高,颜色差异就越明显。
(4)光致变色玻璃材料:光致变色现象是通过改变材料的光线吸收属性,使材料对太阳光强度作出反应的一种性质。它的基本原则是使普通的玻璃(包括塑料光致变色材料)在紫外线辐射的影响下颜色变深,以及在周围高温的影响下颜色变淡,这
两个过程是可逆的,而且可能一直存在。这一现象是通过激活在材料中混合的光致变色物质的分子而完成的。1962年出现了第一代光致变色玻璃材料,此后性能不断得到改良。其主要是在玻璃材料中加入了卤化银晶体。这些晶体在紫外线击幅射下起化学反应,使镜片的颜色变深。第一代光致变色玻璃材料的变色原理是银原子和氯原子之间的一种电子交换,通过氯化银和周围的环境来表现。在没有光线的条件下,氯化银呈离子态,因银离子是透明的,所以镜片也是透明的;而在紫外线辐射下,不稳定电子离开了氯离子,与银离子结合为金属银并吸收光,镜片则变深。当紫外线辐射减弱,移动电子离开银原子返回氯原子,镜片逐渐恢复了原先的清澈状态。对一般的光致变色玻璃,变色同时也受到温度的控制,在光照度不变时,温度越低则颜色越深。 光致变色材料大多是灰色和棕色的,俗称灰变和茶变,其它的颜色也可以通过专门的工艺达到。所有的眼镜片,包括熔化双焦点镜片、渐进镜片都可以使用光致变色材料制造。近年来,光致变色树脂镜片的发展较快,材料在不断改良,其折射率已不再局限于1.50。
二、 有机材料
有机材料可以分为两大类:热固性材料,具有加热后硬化的性质,爱热不会变形,眼镜片大部分以这种材料为主,如CR-39。热塑性材料,具有加热后软化的性质,尤其是适合热塑和注塑,聚碳酸酯PC就是这种材料。
(1)热固性材料
1)普通树脂材料:(CR-39)
学名碳本酸丙烯乙酸,或称烯丙基二甘醇酸脂(Dially Glycol Carbonates),是应用最广泛的生产普通树脂镜片的材料。它于四十年代被美国哥伦比亚公司的化学家发现,是美国空军所研制的一系列聚合物中的第39号材料,因此,被称为CR-39(哥伦比亚树脂第39号)。CR-39被用于生产眼用矫正镜片是在1955~1960年,是第一代的超轻、抗冲击的树脂镜片。CR-39作为一种热固性材料,单体呈液态,在加热和加入催化剂的条件下聚合固化。聚合是一个化学反应,即由几个相同分子结构的单体组成的一个新的聚合体分子,具有不同的长度
和性质。作为光学镜片,CR-39材料性质的参数十分适宜:折射率为1.5(接近普通玻璃镜片)、密度1.32(几乎是玻璃的一半)、阿贝数为58~59(只有很少的色射)、抗冲击、高透光率,可以进行染色和镀膜处理。
它主要的缺点是耐磨性不及玻璃,需要镀抗磨损膜处理。树脂镜片可采用模式压法加工镜片表面的曲率,因此很适用于非球面镜片的生产。
2)中高折射率树脂材料:今天大部分的中折射率和高折射率材料都是热固性树脂,其发展非常迅速。它们的折射率可以使用以下任意一种技术来增加:改变原分子中电子的结构,例如:引入苯环结构;在原分子中加入重原子,诸如卤素(氯、溴等)或硫。与传统CR-39相比,用中高折射率树脂材料制造的镜片更轻、更薄。它们的比重与CR-39大体一致(在1.20到1.40之间),但色散较大(阿贝数45),抗热性能较差,然而抗紫外线较佳,同时也可以染色和进行各种系统的表面镀膜处理。使用这些材料的镜片制造工艺与CR-39的制造原理大体一致。现在1.67的树脂材料已广泛流行,而且象1.7的树脂材料也已在市场上有销售。视光业的专业人员正不断研制开发新材料,改良原有材料,以期树脂材料在将来获得更好的性能。
3)染色树脂材料:用于制造太阳眼镜镜片的基本上都是聚合前加入染料而制成的,特别适合大批量制造各色平光太阳镜片,同时在材料中加入可吸收紫外线的物质。
现在的一项技术即是使用浸泡在溶有有机色素的热水中,常用的染料有红色、绿色、黄色、蓝色、灰色、和棕色,根据需求可任意调染,颜色的深浅也可以控制,可以将整片镜片染色成一种颜色,也可以染成逐渐变化的颜色,例如镜片上部深色,往下逐渐减浅,即俗称的双色或渐进色。有机材料的出现,解决了屈光不正者配戴太阳眼镜的问题。
4)光致变色树脂材料:第一代光致变色树脂镜片大约出现在1986年,但是直到1990年第一代Transi-tion镜片面市后,它才真正开始普及。光致变色效果是在材料中加入了感光的混合物而获得的,在特殊波段的紫外线辐射作用下,这些感光物质的结构发生变化,改变了材料的吸收能力。这些混合物与的结合主要有两种方法:在聚合前与液态单体混合,或在聚合后渗入材料中(Transition镜片就采用后一种方法)。光致变色树脂镜片采用几种光致变色物质,在最后的制造中使这些不同的
变色效果结合起来,这使得镜片变色不但迅速,而且不完全受温度的控制。
一种新型的光致变色树脂镜片已于1993年投放市场,这种镜片采用树脂材料作片基,用渗透法在镜片的凸面渗透了一层光致变色材料,然后再镀上一层抗磨损膜,起保护和而磨作用。这项工艺技术可以使镜片的变色不会随屈光度数的加深而出现镜片中央与周围深浅不一的情况,弥补了玻璃变色的不足。再加上片基是树脂材料,轻且抗冲击,所以这种镜片特别适合用于各种屈光不正者使用。
(2)热塑性材料(聚碳酸酯,POLYCARBONATE,简称PC)
热塑性材料如PMMA早在五十年代就被首次用于制造镜片,但是由于受热易变形及耐磨性较差的缺点,很快就被CR-39所替代。然而今天,聚碳酸酯的发展将热塑性材料带回了镜片领域,并被视光业专业人士认可为21世纪的主导镜片材料。实际上,聚碳酸酯也不是一种新材料,它大约在1995年就被发现了,但真正在视光领域的使用仅仅是近几年,它在历经了数年的研制和多次的改进之后尤其是应用于CD产业,其光学质量已其它镜片材料相媲美。
聚碳酸酯是直线形无定型结构的热塑聚合体,具有许多光学方面的优点:出色的抗冲击性(是CR-39的10倍以上),高折射率(ne=1.591,nd=1.586),非常轻(比重=1.20g/立方厘米),100%抗紫外线(385nm),耐高温(软化点为140 °C/280 °F)。聚碳酸酯材料也可进行系统的镀膜处理。它的阿贝数较低(Ve=31,Vd=30),但在实际中对配戴者并没有显著的影响。在染色方面,由于聚碳酸酯材料本身不易着色,所以大多通过可染色的抗磨损膜吸收颜色。
2、聚丙烯以目前产量最大的四大聚合物之一,其聚合均采用泽格拉纳塔阴离子聚合,而不采用自由基组合。
3、主要是因为自由基聚合的聚丙烯是无规聚合,不具有结晶性,没有强度,机械性能也很差。
4、而阴离子聚合的聚丙烯为等规聚合,具有良好的结晶性,具有非常高的机械强度,软化点也很高,大量应用于日常用品,化工设备等的生产。
海绵是一种我们的生活中十分常见的物品,海绵以其特有的吸水性在我们的生活中所扮演的角色一般就是清洁物品,在很多潮湿的环境里面我们为了使这个环境能够干燥起来,往往使用海绵来达到我们想要的程度,我们虽然都知道海绵怎么使用,但是有用户知道海绵是怎么制造出来的吗,今天我们就会为大家介绍这个过程,接下就带领大家进入海绵制作工艺和流程这个话题中。
基本介绍:
聚氨酯软发泡橡胶,聚氨酯是生活中最常见的一种高分子材料,广泛应用于制作各种“海绵”制品。以及避震,抗摩擦用途的弹性材料,例如鞋底,拖拉机坦克履带衬底。
主要原料:
快速料:分子量、挥发份低,主要用于自动机,也可用于土机方面。它本身含发泡剂少,熟化时间短。操作时,加热时间短,冷却短,成型周期短,节省能耗,提高生产效率。
标准料:分子量、挥发份高,主要用于土机方面,从能耗控制方面考虑,较少用于自动机。普通料类型:巴斯夫CP203、龙王E-SB、兴达302、诚达PK302等。
具体流程:
我们一般讲工艺总是指成型工艺,其实艺就EPS成型来讲还要涉及原料、预发机理、管道工艺及系统匹配工艺,最终体现在成型工艺等方面内容。 EPS从进料口进入流化床,流化床吹入的热风是由鼓风机吸风,通过蒸汽加热器后通过底网吹入流化床,与物料接触,EPS粒料在热风及料流的推动下悬浮在气流中边干燥边推进,落入振动筛。合格的粒料过筛后输入熟化料仓。结块的粒料在筛上流入流化床的破碎装置,使结团粒的EPS破碎,合格的也流入熟化料仓。此处还有一压缩空气接口吹堵。真空阀打开,真空泵抽真空。使模具和制品内的余热与水分全部排空,抽掉部分发泡剂,避免产品发胀。使模内形成负压,有利于产品进行脱模。
生产工艺:
将发泡树脂,发泡助剂和粘合剂树脂(使成品具有粘合性)混合在一起B.进行发泡加工。将80份乙烯乙酸乙烯酯(EVA)、20份APAO PT 3385、20份偶氮二甲酰胺、l9份CaCO 和0.6份过氧化二异丙苯混合在一起,置于模具中发泡,并用机械力击破闭孔,即可制得发泡海绵。其密度(d)为0.028 g/cm ,25%的压缩硬度为1.9 KPa。
在上文中,我们为大家介绍了一些有关海绵的一些知识,我们的是日常生活中是经常使用到海绵这个东西的,我们在使用它的时候,往往只知道这个材料十分吸水,在潮湿的地方使用海绵准没有错,但是有谁知道海绵是怎样被制作出来的呢,可能大家都没有仔细地去思考过,所以今天我们提出这个话题,来为大家仔细介绍制造流程,希望大家能够仔细阅读和思考。
丙烯酸甲酯=丙烯酸+甲醇
补充:
这是基团的不同,
烯丙基:-CH2-CH=CH2,所以烯丙酸CH2=CH-CH2-COOH
丙烯基:-CH=CH-CH3,所以丙烯酸CH3-CH=CH-COOH
中文名称:乙酸烯丙酯
中文同义词:乙酸2-丙烯基酯乙酸烯丙酯醋酸烯丙酯乙酸烯丙酯 烯丙基乙酸酯醋酸丙烯酯乙酸烯丙酯,99%乙酸烯丙
英文名称:Allyl acetate
英文同义词:2-Propenyl acetate2-Propenyl ester of acetic acid2-propenylmethanoate3-acetoxy-1-propeneacetated’allyleAceticacid,2-propenylesteraceticacidprop-2-enylesterCH2=C(CH3)OC(=O)CH3
CAS号:591-87-7
EINECS号:209-734-8
Mol文件:591-87-7.mol
含有水介质和分散在其中的小粒度聚合物颗粒的含水乳液有各种用途,如用作水泥或砂浆混合物、粘合剂、涂料粘结剂等。但是,这样的含水乳液存在这样一些问题由于水作为分散介质,其量约50%(重),使运输费用增高,另外还存在容器用后的处理问题。
在这样的情况下,需要这样一种合成树脂粉末虽然它在运输过程中为粉末形式,但在使用时可通过在搅拌下将水加入其中它很容易分散在水中。
作为在水中有分散性的合成树脂粉末,已知有通过用聚乙烯醇(下文简称“PVA”)作为分散剂由乙烯基单体乳液聚合得到的含水乳液喷雾干燥制得的乙烯基酯聚合物粉末(在日本专利申请未决公开号185606/1992);以及(甲基)丙烯酸酯聚合物粉末和二烯烃聚合物粉末,后两者都是通过用低分子量表面活性剂作为分散剂由(甲基)丙烯酸酯单体或二烯烃单体乳液聚合得到的含水乳液喷雾干燥制得的。
但是,任何一种传统的合成树脂粉末都存在在水中分散性低的问题。此外,在乙烯基酯聚合物粉末的情况下,当用作砂浆混合物时,还存在耐碱性低的问题。
本发明的一个目的是提供这样一种合成树脂粉末,它在水中有极好的分散性,并非常适合用作砂浆等的混合物。
为了解决上述这些问题,本发明人进行了广泛的研究。结果找到了一种含有由乙烯属不饱和单体或二烯烃单体制得的聚合物,以及通过其末端(优选仅一个末端)的硫化物键化学键联到所述聚合物颗粒的表面的聚乙烯醇的合成树脂粉末;通过干燥由乙烯属不饱和单体或二烯烃单体在末端(优选在仅一个末端)有巯基的聚乙烯醇存在下乳液聚合得到的含水乳液制得的一种合成树脂粉末;以及含有所述合成树脂粉末的混合物。本发明在上述发现的基础上实现。
在本发明合成树脂粉末的情况下,当加到水中时变成分散胶体的聚合物颗粒是由乙烯属不饱和单体或二烯烃单体制得的聚合物的颗粒。
作为乙烯属不饱和单体的例子,可提到的是烯烃,如乙烯、丙烯和异丁烯;卤代烯烃,如氯乙烯、偏二氯乙烯、氟乙烯和偏二氟乙烯;乙烯基酯,如甲酸乙烯酯、乙酸乙烯酯、丙酸乙烯酯、戊酸乙烯酯和新戊酸乙烯酯;(甲基)丙烯酸酯,如(甲基)丙烯酸、(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸异丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸十二烷基酯和(甲基)丙烯酸十八烷基酯;丙烯酰胺系列单体,如丙烯酰胺、甲基丙烯酰胺、N-羟甲基丙烯酰胺、N,N-二甲基丙烯酰胺、丙烯酰胺-2-甲基丙磺酸及其钠盐;腈类,如丙烯腈和甲基丙烯腈;烯丙基化合物,如乙酸烯丙酯和烯丙基氯;苯乙烯属单体,如苯乙烯、Α-甲基苯乙烯、对甲基苯乙烯磺酸及其钠盐和钾盐;以及N-乙烯基吡咯烷酮。
作为二烯烃单体的例子,可提到的是丁二烯、异戊二烯和氯丁二烯。
这些单体中的一种可单独使用,或与至少另外一种组合使用。
另一方面,当加到水中时,通过末端硫化物键化学键联到(接枝键联)到上述聚合物颗粒上的PVA具有分散剂功能。
从合成树脂粉末在水中分散性及其膜强度的观点看,PVA的均粘聚合度(下文简称聚合度)优选为100或100以上,更优选200或200以上,特别优选500或500以上;同时PVA的聚合度优选5000或5000以下,更优选3000或3000以下,特别优选2000或2000以下。
在上述聚合物的颗粒为丙烯酸酯聚合物颗粒的情况下,PVA的聚合度优选大于500而不大于2500,更优选大于500而不大于1500。
另一方面,在上述聚合物的颗粒是二烯烃聚合物颗粒的情况下,PVA的聚合度优选为100~2000,更优选100~1500。
尽管可单独使用一种PVA,但也可组合使用彼此有不同聚合度的两种PVA,以致组合物的聚合度在上述范围内。
另一方面,从PVA的水溶解性等的观点看,PVA的水解度优选为40~99.99%(Mol),更优选50~99.9%(Mol),特别优选60~99.5%(Mol)。
作为通过其末端的硫化物键化学键联到上述聚合物颗粒表面上的PVA优选是由其末端有巯基的PVA得到的PVA。作为其末端有巯基的PVA,从防止PVA本身生成二硫化物键以及保持其水溶性的观点出发,优选仅在一个末端有巯基的PVA。
例如可通过水解由乙烯基酯单体在乙酸硫醇酯存在下聚合得到的聚乙烯基酯制得仅一端有巯基的PVA。
作为乙烯基酯单体的例子,可提到的是甲酸乙烯酯、乙酸乙烯酯、丙酸乙烯酯、戊酸乙烯酯、己酸乙烯酯、月桂酸乙烯酯、硬脂酸乙烯酯、苯甲酸乙烯酯和新戊酸乙烯酯。其中,从工业观点看,乙酸乙烯酯是优选的。
PVA可与一种其他共聚单体共聚。作为共聚单体的例子,可提到的是烯烃,如乙烯、丙烯、1-丁烯和异丁烯;(甲基)丙烯酸;(甲基)丙烯酸酯,如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸异丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸十二烷基酯和(甲基)丙烯酸十八烷基酯;乙烯基醚,如甲基乙烯基醚、正丙基乙烯基醚、异丙基乙烯基醚、正丁基乙烯基醚、异丁基乙烯基醚、叔丁基乙烯基醚、十二烷基乙烯基醚和硬脂基乙烯基醚;腈类,如丙烯腈和甲基丙烯腈;卤代乙烯基类,如氯乙烯、偏二烯乙烯、氟乙烯和偏二氟乙烯;烯丙基化合物,如乙酸烯丙酯和烯丙基氯;含羧基的化合物及其酯,如富马酸、马来酸、衣康酸、马来酸酐、苯酐、间苯三酸酐和衣康酸酐;含磺酸基的化合物,如乙烯磺酸、烯丙基磺酸、甲代烯丙基磺酸和2-丙烯酰胺-2-甲基丙磺酸;乙烯基硅烷化合物,如乙烯基三甲氧基硅烷;乙酸异丙烯基酯;以及3-(甲基)丙烯酰胺丙基三甲基氯化铵。这些单体单元的含量优选为5%(Mol)或更少。
本发明的合成树脂粉末(二次颗粒)的平均粒度优选为1~1000μm,更优选为2~500μm。通过在搅拌下加到水中,可将它分散成更小粒度的颗粒。
本发明的合成树脂粉末通过干燥由乙烯属不饱和单体或二烯烃单体在水介质中在其末端有巯基的PVA存在下乳液聚合制得的含水乳液来制得。
作为用于乳液聚合的引发剂的例子,可提到的是各种水溶性引发剂,如溴酸钾、过硫酸钾、过硫酸铵、过氧化氢和叔丁基过氧化物;以及各种油溶性引发剂,如偶氮二(异丁腈)和苯甲酰基过氧化物。其中优选的是仅通过与PVA末端的巯基进行氧化还原反应产生自由基的引发剂。这些引发剂中的一种可单独使用或在与各种还原剂组合的氧化还原体系中使用。作为将引发剂加到反应体系中的方法,可提到这样一种方法,在这一方法中,引发剂在乳液聚合的开始阶段集中加入;以及这样一种方法,在这一方法中,引发剂在聚合过程中不断加入。
按每100份重单体计,用于乳液聚合的PVA量优选为0.5~100份重,更优选为1~50份重,特别优选为2~30份重。在PVA的数量低于0.5份重的情况下,乳液聚合的稳定性变低,通过将合成树脂粉末加到水中得到的含水分散液的机械稳定性和/或化学稳定性变低以及膜强度也变低。另一方面,在PVA的数量大于100份重的情况下,在乳液聚合过程中粘度增加,难以除去反应热,以及膜的耐水性变差。
作为PVA加入反应体系的方法,可提到的是这样一种方法,在这一方法中,在乳液聚合的开始阶段将引发剂集中加入,以及这样一种方法,在这一方法中,一部分PVA在开始阶段加入,而其余部分在聚合过程中不断加入。
在乳液聚合中,其末端有巯基的PVA可与以前知道的非离子型、阴离子型、阳离子型或两性表面活性剂,或水溶性聚合物(如各种PVA或羟乙基纤维素)一起使用。
作为将单体加入反应体系的方法,有这样一种适用方法,在这一方法中,单体在乳液聚合的开始阶段集中加入;还有这样一种方法,在这一方法中,一部分单体在开始阶段加入,而其余的单体在聚合过程中不断加入;以及这样一种方法,在这一方法中,将事先用分散剂乳化在水中单体不断加入。
可在乳液聚合中,将链转移剂加入。从链转移效率看,有巯基的化合物优选作为链转移剂,其例子是烷基硫醇如正辛基硫醇、正十二烷基硫醇和叔十二烷基硫醇、2-巯基乙醇和3-巯基丙酸。
按每100份重单体计,加入的链转移剂的量优选为5份重或更少。在链转移剂的数量大于5份重的情况下,乳液聚合的稳定性变低,聚合物颗粒的分子量显著下降,以及膜的物理性能变差。
本发明的合成树脂粉末通过干燥上述乳液聚合制得的含水乳液来制得。作为干燥方法,可提到的是喷雾干燥、加热干燥、鼓风干燥、冷冻干燥等。其中,喷雾干燥是优选的。作为喷雾方法,可提到的是圆盘体系、喷嘴体系等。作为干燥用热源,可提到的是热空气、热蒸汽等。作为干燥条件,优选确定喷雾干燥器的尺寸和类型,以及含水乳液的浓度、粘度和流速,以便在40~150℃的干燥温度下得到足够干的粉末。
虽然在合成树脂粉末中挥发物的含量约为平衡湿含量,但它优选为3%(重)或更少,更优选2%(重)或更少。
本发明的合成树脂粉末可与水溶性添加剂一起加入,以便进一步增加其在水中的分散性。优选将水溶性添加剂加到含水乳液中,接着喷雾干燥。加入的水溶性添加剂量定到这样的程度,其加入量对合成树脂粉末的物理性能如耐水性没有坏的影响。
作为水溶性添加剂的例子,可提到的是水溶性聚合物如PVA、羟乙基纤维素、甲基纤维素、淀粉衍生物、聚乙烯基吡咯烷酮、聚环氧乙烷、水溶性醇酸树脂、水溶性酚醛树脂、水溶性脲树脂、水溶性密胺树脂、水溶性萘磺酸树脂、水溶性氨基树脂、水溶性聚酰胺树脂、水溶液丙烯酸树脂、水溶性聚羧酸树脂、水溶性聚酯树脂、水溶性聚氨酯树脂、水溶性多元醇树脂和水溶性环氧树脂。
此外,本发明的合成树脂粉末优选与防粘连剂一起使用,以便提高其贮存稳定性和在水中的分散性。可将防粘连剂加到喷雾干燥得到的合成树脂粉末中,随后再混合均匀,但优选加到含水乳液中,随后再喷雾干燥。
防粘连剂优选为平均粒度0.1~10μm的细颗粒形式的无机粉末。作为无机粉末,可提到的是碳酸钙、白土、无水硅酸、硅酸铝、白碳黑、滑石和矾土白。而且,有机填充剂是适用的。按合成树脂粉末计,使用的防粘连剂的数量优选为20%(重)或更少,更优选为0.2~10%(重)。
本发明的合成树脂粉末可根据用途与一种添加剂一起使用。当用作水泥或砂浆混合物时,合成树脂粉末与夹气剂、减水剂、流化剂、保水剂、稠化剂、防水剂等一起使用。当用作粘合剂时,合成树脂粉末与粘度改进剂、保水剂、粘结剂、稠化剂等一起使用。当用作油漆粘结剂时,合成树脂粉末与粘度改进剂、稠化剂、颜料分散剂、稳定剂等一起使用。
虽然本发明的合成树脂粉末可在运输过程中为粉末形式,但很容易通过在搅拌下将水加入其中使它分散在水中,因为它在水中有极好的分散性和防粘连性。该合成树脂粉末也有极好的成膜性能,因此可优选用作砂浆用混合物等。
当用作砂浆用混合物时,按砂浆中所含的每100份重水泥计,本发明的合成树脂粉末加入量优选为1~50份重,更优选为2~30份重。
作为合成树脂粉末加到砂浆或水泥中的方法,可提到的是这样一种方法,它包括预先制备合成树脂粉末水分散液的步骤和随后制备砂浆的含水浆液和如此制备的水分散液的组合物的步骤;还有这样一种方法,在这一方法中,将合成树脂粉末以粉末形式在砂浆制备时加到砂浆的水浆液中;还有这样一种方法,在这一方法中,将合成树脂粉末以粉末形式加到水泥和砂等的粉末组合物中,然后制备成砂浆和合成树脂粉末的含水浆液组合物等方法。其中,最后描述的方法是最优选的。
根据本发明通过加入合成树脂粉末得到的砂浆含水浆液的组合物(砂浆用混合物)通常用传统的方法固化,并制成模制品。
上述摸制品优选用于与传统的加有丙烯酸酯聚合物乳液或苯乙烯/丁二烯共聚物(SBR)乳液的砂浆模制品相同的用途。
下面将参考操作实施例对本发明作更详细的描述,但是这些实施例不是用来限制本发明。在操作实施例中,份数和百分数都以重量表示。
评价合成树脂粉末的方法以下方法用来评价通过将100份离子交换水加到100份合成树脂粉末中,并用搅拌器充分搅拌生成的混合物制得的含水分散液的物理性能。·在水中的分散性。○分散均匀(325目筛上物比为20%或更少)△基本上分散,但分散颗粒的粒度大(325目筛上物比为30~50%)×分散差(325目筛上物比为60%或更多)-未得到合成树脂粉末·成膜性能评价通过将分散液流延到玻璃板上并在50℃下干燥流延液体形成的膜的性能。○得到均匀且韧性的膜△得到膜但很脆×未得到均匀的膜-未得到合成树脂粉的水分散液·防粘结性能观察放置在容器中并在20℃和相对湿度65%以及25g/Cm2负荷下放置10d的合成树脂粉末。○几乎不出现粘连△部分粘连团聚×全部粘连团聚-未得到合成树脂粉末·平均粒度用显微镜观察合成树脂粉末,由100个颗粒(二次颗粒)测量平均粒度。
符号“-”表示未得到合成树脂粉末,因为通过乳液聚合不能得到稳定的含水乳液。
评价砂浆混合物的性能以下方法用来评价通过制备有以下组成的砂浆并将它模化制得的模制品的物理性能。
(砂浆的组成)水泥 1份合成树脂粉末 0.1份砂3.0份水0.6份·塌落值按JIS A-1173·挠曲强度、压缩强度、粘合强度和吸水性按JIS A-6203·抗冲击性抗冲击性用以下方法得到将砂浆模化成6cm×6cm×0.35cm的长方形板样品;将该板在20℃、65%相对湿度下固化25d;然后侧量下降的刚性球(67g)使样品破坏的最低下降高度。
实施例1将8份仅一端有巯基的PVA和90份离子交换水装入有回流冷凝器、滴液漏斗、温度计、吹氮气的喷嘴和搅拌器的玻璃容器中(PVA-1聚合度为1500,水解度为96.0%(Mol),巯基含量为1.5×10-5eq./G),在95℃下PVA完全溶于水中。用稀硫酸将生成的PVA水溶液的PH值调节到4,并在150r/Min搅拌下加入10份乙酸乙烯酯。然后,用氮气置换反应体系,并将反应体系的温度升到60℃。随后,通过将5份浓度5%的洒石酸水溶液加到体系中使乳液聚合开始,此后将浓度0.5%的过氧化氢不断加到水溶液中。在2h内将90份乙酸乙烯酯不断加入到体系中。从聚合开始3h后,当残留的乙酸乙烯酯的浓度达到1%那样低时聚合结束。结果得到固含量50.5%的稳定聚乙酸乙烯酯乳液。
将100份如此得到的乳液和100份水的混合物以及按固含量计在所述乳液中其量为3%的细粉末无水硅酸(平均粒度为2μm)分开喷雾,同时送入100℃热空气中,并干燥。其结果得到平均粒度为60μm的合成树脂粉末。该粉末的评价结果列入表1和2。
对比例1重复实施例1的步骤以制备乳液,不同的是用表1所列分散剂代替PVA-1。随后,重复实施例1的步骤以制备合成树脂粉末,不同的是使用如此制得的乳液。该粉末的评价结果列入表1和2。
表1分散胶体1)分散剂2)二次颗粒的 在水中的 成膜性能 防粘结平均粒度分散度 性能(Μm)实施例1 VAcPVA-1 60 0 0 0对比例1 VAcPVA-2 65 △△△符号1)VAc乙酸乙烯酯2)PVA-1其仅一个末端有巯基的改性PVA(聚合度为1500,水解度为96.0%(Mol),巯基含量为1.5×10-5eq./G)PVA-2未改性PVA(聚合度为1500,水解度为96.0%(Mol)表2水泥/砂浆的物理性能塌落值 挠曲强度 抗压强度 粘合强度 吸水性 抗冲击性Kg/Cm2kg/Cm2kg/Cm2% Cm实施例1 35 59230 19.5 3.5 195对比例1 34 50160 9.5 5.0 170实施例2
将5份其仅一端有巯基的PVA和90份离子交换水装入有回流冷凝器、滴液漏斗、温度计、吹氮气喷嘴和搅拌器的玻璃容器(PVA-3聚合度为550,水解度为88.3%(Mol),巯基含量为3.3×10-5eq./G),在95℃下PVA完全溶于水中。用稀硫酸将生成的PVA水溶液的PH值调节到4,在150r/Min搅拌下加入10份甲基丙烯酸甲酯、10份丙烯酸正丁酯和0.1份正十二烷基硫醇。然后用氮气置换反应体系,并将体系的温度升到70℃。然后,通过将5份浓度1%的过硫酸钾水溶液加到体系中来引发乳液聚合。在2h内将40份甲基丙烯酸甲酯,40份丙烯酸正丁酯和0.4份正十二烷基硫醇的混合物连续加入。从聚合开始3h后当转化率达到99.5%时结束聚合。结果得到固含量为52.0%的甲基丙烯酸甲酯/丙烯酸正丁酯共聚物的稳定乳液。此后,重复实施例1的步骤以生成合成树脂粉末,不同的是使用如此制得的乳液。粉末的评价结果列入表3和4。
实施例3~4和对比例2~3重复实施例2的步骤以生产乳液,不同的是用表3所列的分散剂代替PVA-3。随后,重复实施例2的步骤以生产合成树脂粉末,不同的是使用如此制得的乳液。粉末评价的结果列入表3和4。
表3分散胶体1)分散剂2)二次颗粒的 在水中的 成膜性能 防粘结(聚合物)平均粒度分散性 性能(Μm)实施例2 MMA, PVA-3 60 00 0n-BA实施例3 MMA, PVA-1/PVA-3 65 00 0n-BA (1/1)实施例4 MMA, PVA-5 60 00 0n-BA对比例2 MMA, PVA-4 --- -N-BA对比例3 MMA, 非离子型50 × - ×N-BA 表面活性剂符号1)MMA甲基丙烯酸甲酯N-BA丙烯酸正丁酯2)PVA-1仅一端有巯基的改性PVA(聚合度为1500,水解度为96.0%(Mol),巯基含量为1.5×10-5eq./G)PVA-3仅一端有巯基的改性PVA(聚合度为550,水解度为88.3%(Mol),巯基含量为3.3×10-5eq./G)PVA-4未改性PVA(聚合度为550,水解度为88.3%(Mol))PVA-5仅一端有巯基的改性PVA(聚合度为510,水解度为93.0%(Mol),巯基含量为4.0×10-5eq./G)非离子型表面活性剂Nonipol200(由Sanyo ChemicalIndustriesCo.Ltd.)表4水泥/砂浆的物理性能塌落值 挠曲强度 抗压强度 粘合强度 吸水性 抗冲击性Kg/Cm2kg/Cm2kg/Cm2% Cm实施例2 3663220 20.0 3.0 200实施例3 3668230 22.0 2.5 200实施例4 3560200 18.0 3.0 190对比例2 - - -- --对比例3 2342105 4.5 4.0 160实施例5将100份仅一端有巯基的4%PVA水溶液装入有吹氮气喷嘴和温度计的耐压高压釜中(PVA-6聚合度为350,水解度为88.5%(Mol),巯基含量为7.0×10-5eq./G)。用稀硫酸将生成的PVA水溶液的PH值调节到4,然后加入60份苯乙烯和1份叔十二烷基硫醇。然后,用氮气置换反应体系,通过在压力下从耐压测量仪送入40份丁二烯使体系的温度升到70℃。随后,通过在压力下将10份浓度为2%的过硫酸铵送入体系来引发乳液聚合。在聚合开始前,高压釜内的压力为4.5kg/Cm2,聚合开始2h后压力降到0.3kg/Cm2,生成聚合物的转化率为99.2%。
结果得到固含量为49.1%的苯乙烯/丁二烯共聚物稳定乳液。此后,重复实施例1的步骤以生产合成树脂粉末,不同的是使用如此制得的乳液。该粉末的评价结果列入表5和6。
实施例6和对比例4~5重复实施例5的步骤以生产乳液,不同的是用表5所列的分散剂代替PVA-6。随后,重复实施例5的步骤以生产合成树脂粉末,不同的是使用如此制得的乳液。该粉末的评价结果列入表5和6。
表5分散胶体1)分散剂2)二次颗粒的 在水中的 成膜性能 防粘结(聚合物) 平均粒度分散性 性能(Μm)实施例5 St,BDPVA-6 55 000实施例6 St,BDPVA-3 60 000对比例4 St,BDPVA-7 - ---对比例5 St,BD阴离子型 40 ×- ×表面活性剂符号1)St苯乙烯BD丁二烯2)PVA-3仅一端有巯基的改性PVA(聚合度为550,水解度为88.3%(Mol),巯基含量为3.3×10-5eq./G)PVA-6仅一端有巯基的改性PVA(聚合度为350,水解度为88.5%(Mol),巯基含量为7.0×10-5eq./G)PVA-7未改性的PVA(聚合度为350,水解度为88.5%(Mol))阴离子型表面活性剂Sundet BL(由Sanyo Chemical Iudus-Tries Co.,Ltd.)
表6水泥/砂浆的物理性能塌落值 挠曲强度 抗压强度 粘合强度 吸水性 抗冲击性Kg/Cm2kg/Cm2kg/Cm2% Cm实施例5 3457190 21.02.0 195实施例6 3561220 22.02.0 200对比例4 - - - - --对比例5 2540115 5.0 5 5 165实施例7将80份6.25%的仅一端有巯基的PVA的水溶液装入有吹氮气喷嘴和温度计的耐压高压釜中(PVA-8聚合度为800,水解度为88.0%(Mol),巯基含量为2.7×10-5eq./G)。用稀硫酸将生成的PVA水溶液的PH值调节到3.5,然后加入80份乙酸乙烯酯。然后,用氮气置换反应体系,将反应体系的温度升到60℃。随后,将乙烯送入高压釜使压力达到45kg/Cm2,将5份5%雕白粉水溶液加到体系中,并将0.4%过氧化氢水溶液连续加到反应体系中使聚合引发。从聚合开始3h后当乙酸乙烯酯的残留浓度低到1%时结束聚合。结果得到固含量为55.0%的乙烯/乙酸乙烯酯稳定乳液。此后,重复实施例1的步骤以生成合成树脂粉末,不同的是使用如此制得的乳液。
对比例6重复实施例7的步骤以生产乳液,不同的是用表7所列的分散剂代替PVA-8。随后,重复实施例7的步骤以生成合成树脂粉末,不同的是用如此制得的乳液。该粉末的评价结果列入表7和8。
表7分散胶体1)分散剂2)二次颗粒的 在水中的 成膜性能 防粘结(聚合物) 平均粒度 分散 性能(Μm)实施例7 Et,VAcPVA-860 0 0 0对比例6 Et,VAcPVA-965 △△△符号1)VAc乙酸乙烯酯Et乙烯2)PVA-8仅一端有巯基的改性PVA(聚合度为800,水解度为88.0%(Mol),巯基含量为2.7×10-5eq./G)PVA-9未改性的PVA(聚合度为800,水解度为88.0%(Mol))表8水泥/砂浆的物理性能塌落值 挠曲强度 抗压强度 粘合强度 吸水性 抗冲击性Kg/Cm2kg/Cm2kg/Cm2% Cm实施例7 36 57200 18.5 3.0 195对比例6 35 52175 12.5 3.5 180
权利要求
1.一种合成树脂粉末,它含有由乙烯属不饱和单体或二烯烃单体制得的聚合物和通过其末端的硫化物键化学键联到所述聚合物的颗粒表面上的聚乙烯醇。
2.根据权利要求1的合成树脂粉末,其中所述聚合物的颗粒为丙烯酸酯聚合物颗粒以及所述聚乙烯醇的平均聚合度为500或更高。
3.根据权利要求1的合成树脂粉末,其中所述聚合物的颗粒为二烯烃聚合物的颗粒以及所述的聚乙烯醇的平均聚合度为100或更高。
4.一种通过干燥在有巯基的聚乙烯醇存在下通过乙烯属不饱和单体或二烯烃单体乳液聚合得到的含水乳液制得的合成树脂粉末。
5.一种砂浆混合物,它含有权利要求1~4中任一项所示的所述合成树脂粉末。
为确保用于化妆品中之酒精无法转移为其他用途,因此经过特殊程序处理(加入不可食用成份)后之酒精,又称为 SD Alcohol (Specially Denatured alcohol),主要为宣告其不可用以饮用,而在欧洲地区为了适用于国际名称惯例将其命名为 Alcohol Denat.
SD Alcohol 仍然为酒精成份,只是据说因为经过处理,其蒸发速度较快,也因此能将化妆品的香味更快散逸而出,且停留于肌肤的时间也较短.
目前变性乙醇也被广泛用于化妆品中的香水和沐浴产品.由于一些变性乙醇是由5%的甲醇添加制得的,而甲醇本身有毒且用于制造甲醛和农药(杀虫剂、杀虫螨),甲醇可以穿过皮肤被人体吸收.它也是假酒中毒事件的元凶.用于化妆品的变性乙醇一般都含有水和苦味剂(多为苦精),还有其他一些化学品也常有,比如异丙醇、丁酮、甲基异丁基酮、吡啶、苯、邻苯二甲酸二乙酯和石脑油等等.而你根本就不会从化妆品成分表中得知变性乙醇中是否已经掺杂了甲醇.所以应尽量避免使用变性乙醇的化妆品.