建材秒知道
登录
建材号 > 乙醇 > 正文

必修二有机化学乙醇的各种性质和知识点反应方程式求详解

精明的外套
眼睛大的枫叶
2023-01-27 14:03:34

必修二有机化学乙醇的各种性质和知识点反应方程式求详解?大神留步!

最佳答案
默默的未来
无私的豌豆
2026-01-25 22:02:43

傻孩子,有机物基础是一个系统的学习,所有东西不要硬背,要理解去记忆。为什么叫醇,因为有羟基,羟基是什么呀,是官能团,官能团都有哪些,每个官能团都有什么性质,容易发生哪些反应,加成呀,加聚,脱掉氢呀还是其他的行为……

这样大系统骨架就搭建起来了。搭起来以后,每个官能团遇到卤族呀或者其他的物质会发生哪一类的反应,陌生有机物反应基本都靠猜~

必修二乙醇有关的化学式,乙烯水化制乙醇。乙醇,乙酸,乙醛,乙酸乙酯之间的转化,其他的基本没啥了,乙醇燃烧啥的。

系统的学习,有必要看一下教辅书,不要硬背

最新回答
自由的烤鸡
甜美的背包
2026-01-25 22:02:43

1 原子半径 (1)除第1周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小; (2)同一族的元素从上到下,随电子层数增多,原子半径增大。 2 元素化合价 (1)除第1周期外,同周期从左到右,元素最高正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外); (2)同一主族的元素的最高正价、负价均相同 (3) 所有单质都显零价 3元素的金属性与非金属性 (1)同一周期的元素电子层数相同。因此随着核电荷数的增加,原子越容易得电子,从左到右金属性递减,非金属性递增; (2)同一主族元素最外层电子数相同,因此随着电子层数的增加,原子越容易失电子,从上到下金属性递增,非金属性递减。4最高价氧化物和水化物的酸碱性 元素的金属性越强,其最高价氧化物的水化物的碱性越强;元素的非金属性越强,最高价氧化物的水化物的酸性越强。 这些有的是第一节有的是本章后面几节的不管怎么说记下来有好处,以后都用的上

有机化合物主要由氧元素、氢元素、碳元素组成。有机物是生命产生的物质基础。 其特点主要有:

多数有机化合物主要含有碳、氢两种元素,此外也常含有氧、氮、硫、卤素、磷等。部分有机物来自植物界,但绝大多数是以石油、天然气、煤等作为原料,通过人工合成的方法制得。 和无机物相比,有机物数目众多,可达几百万种。有机化合物的碳原子的结合能力非常强,互相可以结合成碳链或碳环。碳原子数量可以是1、2个,也可以是几千、几万个,许多有机高分子化合物甚至可以有几十万个碳原子。此外,有机化合物中同分异构现象非常普遍,这也是造成有机化合物众多的原因之一。 有机化合物除少数以外,一般都能燃烧。和无机物相比,它们的热稳定性比较差,电解质受热容易分解。有机物的熔点较低,一般不超过400℃。有机物的极性很弱,因此大多不溶于水。有机物之间的反应,大多是分子间反应,往往需要一定的活化能,因此反应缓慢,往往需要催化剂等手段。而且有机物的反应比较复杂,在同样条件下,一个化合物往往可以同时进行几个不同的反应,生成不同的产物。

食品中的有机化合物:

1.人体所需的营养物质:水、糖类(淀粉)、脂肪、蛋白质、维生素、矿物质

其中,淀粉、脂肪、蛋白质、维生素为有机物。

2.淀粉(糖类)主要存在于大米、面粉等面食中;

油脂主要存在于食用油、冰激凌、牛奶等;

维生素主要存在于蔬菜、水果等;

蛋白质主要存在于鱼、肉、牛奶、蛋等;

纤维素主要存在于青菜中,有利于胃的蠕动,防止便秘。

其中淀粉、脂肪、蛋白质、纤维素是有机高分子有机化合物。

分类:

一.根据碳原子结合而成的基本骨架不同,有机化合物被分为三大类:1.链状化合物 这类化合物分子中的碳原子相互连接成链状,因其最初是在脂肪中发现的,所以又叫脂肪族化合物。2.碳环化合物 这类化合物分子中含有由碳原子组成的环状结构[2],故称碳环化合物。它又可分为两类:脂环族化合物:是一类性质和脂肪族化合物相似的碳环化合物。芳香族化合物:是分子中含有苯环或稠苯体系的化合物。3.杂环化合物:组成这类化合物的环除碳原子以外,还含有其它元素的原子,叫做杂环化合物。

二、按官能团分类

决定某一类化合物一般性质的主要原子或原子团称为官能团或功能基。含有相同官能团的化合物,其化学性质基本上是相同的。

[编辑本段]命名:

1.俗名及缩写

有些化合物常根据它的来源而用俗名,要掌握一些常用俗名所代表的化合物的结构式,如:木醇是甲醇的俗称,酒精(乙醇)、甘醇(乙二醇)、甘油(丙三醇)、石炭酸(苯酚)、蚁酸(甲酸)、水杨醛(邻羟基苯甲醛)、肉桂醛(β-苯基丙烯醛)、巴豆醛(2-丁烯醛)、水杨酸(邻羟基苯甲酸)、氯仿(三氯甲烷)、草酸(乙二酸)、苦味酸(2,4,6-三硝基苯酚)、甘氨酸(α-氨基乙酸)、丙氨酸(α-氨基丙酸)、谷氨酸(α-氨基戊二酸)、D-葡萄糖、D-果糖(用费歇尔投影式表示糖的开链结构)等。还有一些化合物常用它的缩写及商品名称,如:RNA(核糖核酸)、DNA(脱氧核糖核酸)、阿司匹林(乙酰水杨酸)、煤酚皂或来苏儿(47%-53%的三种甲酚的肥皂水溶液)、福尔马林(40%的甲醛水溶液)、扑热息痛(对羟基乙酰苯胺)、尼古丁(烟碱)等。

2.普通命名(习惯命名)法

要求掌握“正、异、新”、“伯、仲、叔、季”等字头的含义及用法。

正:代表直链烷烃;

异:指碳链一端具有结构的烷烃;

新:一般指碳链一端具有结构的烷烃。

3.系统命名法

系统命名法是有机化合物命名的重点,必须熟练掌握各类化合物的命名原则。其中烃类的命名是基础,几何异构体、光学异构体和多官能团化合物的命名是难点,应引起重视。要牢记命名中所遵循的“次序规则”。

1.烷烃的命名:

烷烃的命名是所有开链烃及其衍生物命名的基础。

命名的步骤及原则:

(1)选主链 选择最长的碳链为主链,有几条相同的碳链时,应选择含取代基多的碳链为主链。

(2)编号 给主链编号时,从离取代基最近的一端开始。若有几种可能的情况,应使各取代基都有尽可能小的编号或取代基位次数之和最小。

(3)书写名称 用阿拉伯数字表示取代基的位次,先写出取代基的位次及名称,再写烷烃的名称;有多个取代基时,简单的在前,复杂的在后,相同的取代基合并写出,用汉字数字表示相同取代基的个数;阿拉伯数字与汉字之间用半字线隔开。

一.各类化合物的鉴别方法

1.烯烃、二烯、炔烃:

(1)溴的四氯化碳溶液,红色腿去

(2)高锰酸钾溶液,紫色腿去。

4.卤代烃:硝酸银的醇溶液,生成卤化银沉淀;不同结构的卤代烃生成沉淀的速度不同,叔卤代烃和烯丙式卤代烃最快,仲卤代烃次之,伯卤代烃需加热才出现沉淀。

5.醇:

(1)与金属钠反应放出氢气(鉴别6个碳原子以下的醇);

(2)用卢卡斯试剂鉴别伯、仲、叔醇,叔醇立刻变浑浊,仲醇放置后变浑浊,伯醇放置后也无变化。

6.酚或烯醇类化合物:

(1)用三氯化铁溶液产生颜色(苯酚产生兰紫色)。

(2)苯酚与溴水生成三溴苯酚白色沉淀。

10.糖:

(1)单糖都能与托伦试剂和斐林试剂作用,产生银镜或砖红色沉淀;

(2)葡萄糖与果糖:用溴水可区别葡萄糖与果糖,葡萄糖能使溴水褪色,而果糖不能。

(3)麦芽糖与蔗糖:用托伦试剂或斐林试剂,麦芽糖可生成银镜或砖红色沉淀,而蔗糖不能。

1、甲烷(天然气) 分子式为:CH4 特点:最简单的有机物

2、乙烯 分子式为:C2H4 特点:最简单的烯烃(有碳碳双键)

3、乙醇(酒精) 分子式为:CH3CH2OH 特点:最常见的有机物之一

4、乙酸(醋酸) 分子式为:CH3COOH 特点:同上

5、苯 分子式为:C6H6 特点:环状结构

2. 质上的特点

物理性质方面特点

1) 挥发性大,熔点、沸点低

2) 水溶性差 (大多不容或难溶于水,易溶于有机溶剂)

化学性质方面的特性

1) 可燃性

2) 熔点低(一般不超过400℃)

3) 溶解性(易溶于有机溶剂,如:酒精、汽油、四氯化碳、乙醚、苯)

4) 稳定性差(有机化合物常会因为温度、细菌、空气或光照的影响分解变质)

5)反应速率比较慢

6)反应产物复杂

【回归课本】

1.常见有机物之间的转化关系

2.与同分异构体有关的综合脉络

3.有机反应主要类型归纳

下属反应物 涉及官能团或有机物类型 其它注意问题

取代反应 酯水解、卤代、硝化、磺 化、醇成醚、氨基酸成肽、皂化、多糖水解、肽和蛋白质水解等等 烷、苯、醇、羧酸、酯和油脂、卤代烃、氨基酸、糖类、蛋白质等等 卤代反应中卤素单质的消耗量;酯皂化时消耗NaOH的量(酚跟酸形成的酯水解时要特别注意)。

加成反应 氢化、油脂硬化 C=C、C≡C、C=O、苯环 酸和酯中的碳氧双键一般不加成;C=C和C≡C能跟水、卤化氢、氢气、卤素单质等多种试剂反应,但C=O一般只跟氢气、氰化氢等反应。

消去反应 醇分子内脱水卤代烃脱卤化氢 醇、卤代烃等 、 等不能发生消去反应。

氧化反应 有机物燃烧、烯和炔催化氧化、醛的银镜反应、醛氧化成酸等 绝大多数有机物都可发生氧化反应 醇氧化规律;醇和烯都能被氧化成醛;银镜反应、新制氢氧化铜反应中消耗试剂的量;苯的同系物被KMnO4氧化规律。

还原反应 加氢反应、硝基化合物被还原成胺类 烯、炔、芳香烃、醛、酮、硝基化合物等 复杂有机物加氢反应中消耗H2的量。

加聚反应 乙烯型加聚、丁二烯型加聚、不同单烯烃间共聚、单烯烃跟二烯烃共聚 烯烃、二烯烃(有些试题中也会涉及到炔烃等) 由单体判断加聚反应产物;由加聚反应产物判断单体结构。

缩聚反应 酚醛缩合、二元酸跟二元醇的缩聚、氨基酸成肽等 酚、醛、多元酸和多元醇、氨基酸等 加聚反应跟缩聚反应的比较;化学方程式的书写。

4.醇、醛、酸、酯转化关系的延伸

一 有机化合物

(一)烃 碳氢化合物

烷烃:CnH(2n+2) 如甲烷 CH4

夹角:109°28′

是烷烃中含氢量最高的物质。

烷烃有对称结构,结构式参看书上。

甲烷为无色无味气体,密度小于空气

CH4+2O2→CO2+2H2O 注意条件

取代反应:CH4+Cl2→CH3Cl+HCl 条件:光照 注意四个取代反映

同系物:结构相似,相互之间相差一个或多个碳氢二基团

同分异构体:分子式相同,结构不同

甲烷不与强酸、强碱,强氧化剂反应(有机中,强氧化剂=酸性高锰酸钾溶液)

甲、乙、丙、丁、戊、己、庚、辛、壬、癸烷。

C-C:饱和烃 C=C:不饱和烃

与氧气反应,明亮火焰大量黑烟。

含C=C的烃叫做烯烃,不饱和,碳碳双键键能不一样,因此一个容易断裂,发生加成反应成为稳定的单键。

可以与强氧化剂和溴单质发生反应。CH2=CH2+Br2→CH2Br-CH2Br注意条件。具体结构见课本

夹角:120°

与溴单质、水、氢气、氯化氢气体发生加成反应,生成对应物质。注意条件。

(二)烃的衍生物

乙醇:CH3CH2OH

乙醇和二甲醚都是C2H6O,但是结构不同。所以2mol乙醇与钠反应生成1mol氢气,断的是O-H

-OH羟基,是乙醇的基团。基团决定了有机物的性质,且发生反应大多是在基团附近。

可以看做是羟基取代了乙烷中一个氢。

乙醇要求的反应:

1.氧化反应:CH3CH2OH+3O2→2CO2+3H2O条件点燃

2.催化氧化,生成甲醛。具体见笔记

3.使酸性重铬酸钾aq变绿,反应不作要求

无私的砖头
欣慰的信封
2026-01-25 22:02:43

必修二化学有机物知识

一、有机物的概念

1、定义:含有碳元素的化合物为有机物(碳的氧化物、碳酸、碳酸盐、碳的金属化合物等除外)

2、特性:

①种类多

②大多难溶于水,易溶于有机溶剂

③易分解,易燃烧

④熔点低,难导电、大多是非电解质

⑤反应慢,有副反应(故反应方程式中用“→”代替“=”)

二、甲烷CH4

烃—碳氢化合物:仅有碳和氢两种元素组成(甲烷是分子组成最简单的烃)

1、物理性质:无色、无味的气体,极难溶于水,密度小于空气,俗名:沼气、坑气

2、分子结构:CH4:以碳原子为中心, 四个氢原子为顶点的正四面体(键角:109度28分)

3、化学性质:

①氧化反应:(产物气体如何检验?)

甲烷与KMnO4不发生反应,所以不能使紫色KMnO4溶液褪色

②取代反应:(三氯甲烷又叫氯仿,四氯甲烷又叫四氯化碳,二氯甲烷只有一种结构,说明甲烷是正四面体结构)

4、同系物:结构相似,在分子组成上相差一个或若干个CH2原子团的物质(所有的烷烃都是同系物)

5、同分异构体:化合物具有相同的分子式,但具有不同结构式(结构不同导致性质不同)

烷烃的溶沸点比较:碳原子数不同时,碳原子数越多,溶沸点越高碳原子数相同时,支链数越多熔沸点越低同分异构体书写:会写丁烷和戊烷的同分异构体

三、乙烯C2H4

1、乙烯的制法:

工业制法:石油的裂解气(乙烯的产量是一个国家石油化工发展水平的标志之一)

2、物理性质:无色、稍有气味的气体,比空气略轻,难溶于水

3、结构:不饱和烃,分子中含碳碳双键,6个原子共平面,键角为120°

4、化学性质:

(1)氧化反应:C2H4+3O2 = 2CO2+2H2O(火焰明亮并伴有黑烟)可以使酸性KMnO4溶液褪色,说明乙烯能被KMnO4氧化,化学性质比烷烃活泼。

(2)加成反应:乙烯可以使溴水褪色,利用此反应除乙烯

乙烯还可以和氢气、氯化氢、水等发生加成反应。

CH2=CH2 + H2→CH3CH3

CH2=CH2+HCl→CH3CH2Cl(一氯乙烷)

CH2=CH2+H2O→CH3CH2OH(乙醇)

(3)聚合反应:

四、苯C6H6

1、物理性质:无色有特殊气味的液体,密度比水小,有毒,不溶于水,易溶于有机溶剂,本身也是良好的有机溶剂。

2、苯的结构:C6H6(正六边形平面结构)苯分子里6个C原子之间的键完全相同,碳碳键键能大于碳碳单键键能小于碳碳单键键能的2倍,键长介于碳碳单键键长和双键键长之间键角120°。

3、化学性质

(1)氧化反应 2 C6H6+15O2 = 12CO2+6H2O (火焰明亮,冒浓烟)不能使酸性高锰酸钾褪色。

(2)取代反应

① 铁粉的作用:与溴反应生成溴化铁做催化剂溴苯无色密度比水大

② 苯与硝酸(用HONO2表示)发生取代反应,生成无色、不溶于水、密度大于水、有毒的油状液体——硝基苯。+HONO2 +H2O反应用水浴加热,控制温度在50—60℃,浓硫酸做催化剂和脱水剂。

(3)加成反应

用镍做催化剂,苯与氢发生加成反应,生成环己烷+3H2

五、乙醇CH3CH2OH

1、物理性质:无色有特殊香味的液体,密度比水小,与水以任意比互溶如何检验乙醇中是否含有水:加无水硫酸铜如何得到无水乙醇:加生石灰,蒸馏

2、结构: CH3CH2OH(含有官能团:羟基)

3、化学性质

(1) 乙醇与金属钠的反应:2 CH3CH2OH +2Na= 2CH3CH2ONa+H2↑(取代反应)

(2) 乙醇的氧化反应

①乙醇的燃烧:CH3CH2OH +3O2= 2CO2+3H2O

②乙醇的催化氧化反应2 CH3CH2OH +O2= 2CH3CHO+2H2O

③乙醇被强氧化剂氧化反应

CH3CH2OH

必修二化学知识重点

1、化学反应的速率

(1)概念:化学反应速率通常用单位时间内反应物浓度的减少量或生成物浓度的增加量(均取正值)来表示。

计算公式:v(B)= =

①单位:mol/(Ls)或mol/(Lmin)

②B为溶液或气体,若B为固体或纯液体不计算速率。

③重要规律:速率比=方程式系数比

(2)影响化学反应速率的因素:

内因:由参加反应的物质的结构和性质决定的(主要因素)。

外因:①温度:升高温度,增大速率

②催化剂:一般加快反应速率(正催化剂)

③浓度:增加C反应物的浓度,增大速率(溶液或气体才有浓度可言)

④压强:增大压强,增大速率(适用于有气体参加的反应)

⑤其它因素:如光(射线)、固体的表面积(颗粒大小)、反应物的状态(溶剂)、原电池等也会改变化学反应速率。

2、化学反应的限度——化学平衡

(1)化学平衡状态的特征:逆、动、等、定、变。

①逆:化学平衡研究的对象是可逆反应。

②动:动态平衡,达到平衡状态时,正逆反应仍在不断进行。

③等:达到平衡状态时,正方应速率和逆反应速率相等,但不等于0。即v正=v逆≠0。

④定:达到平衡状态时,各组分的浓度保持不变,各组成成分的含量保持一定。

⑤变:当条件变化时,原平衡被破坏,在新的条件下会重新建立新的平衡。

(3)判断化学平衡状态的标志:

① VA(正方向)=VA(逆方向)或nA(消耗)=nA(生成)(不同方向同一物质比较)

②各组分浓度保持不变或百分含量不变

③借助颜色不变判断(有一种物质是有颜色的)

④总物质的量或总体积或总压强或平均相对分子质量不变(前提:反应前后气体的总物质的量不相等的反应适用,即如对于反应xA+yB zC,x+y≠z )

高一化学考点知识

1.需水浴加热的反应有:

(1)、银镜反应

(2)、乙酸乙酯的水解

(3)、苯的硝化

(4)、糖的水解

(5)、酚醛树脂的制取

(6)、固体溶解度的测定

凡是在不高于100℃的条件下反应,均可用水浴加热,其优点:温度变化平稳,不会大起大落,有利于反应的.进行。

2.需用温度计的实验有:

(1)、实验室制乙烯(170℃)

(2)、蒸馏

(3)、固体溶解度的测定

(4)、乙酸乙酯的水解(70-80℃)

(5)、中和热的测定

(6)制硝基苯(50-60℃)

〔说明〕:

(1)凡需要准确控制温度者均需用温度计。

(2)注意温度计水银球的位置。

3.能与Na反应的有机物有:

醇、酚、羧酸等--凡含羟基的化合物。

4.能发生银镜反应的物质有:

醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖--凡含醛基的物质。

5.能使高锰酸钾酸性溶液褪色的物质有:

(1)含有碳碳双键、碳碳叁键的烃和烃的衍生物、苯的同系物

(2)含有羟基的化合物如醇和酚类物质

(3)含有醛基的化合物

(4)具有还原性的无机物(如SO2、FeSO4、KI、HCl、H2O2等)

6.能使溴水褪色的物质有:

(1)含有碳碳双键和碳碳叁键的烃和烃的衍生物(加成)

(2)苯酚等酚类物质(取代)

(3)含醛基物质(氧化)

(4)碱性物质(如NaOH、Na2CO3)(氧化还原――歧化反应)

(5)较强的无机还原剂(如SO2、KI、FeSO4等)(氧化)

(6)有机溶剂(如苯和苯的同系物、四氯甲烷、汽油、已烷等,属于萃取,使水层褪色而有机层呈橙红色。)

7.密度比水大的液体有机物有:

溴乙烷、溴苯、硝基苯、四氯化碳等。

8、密度比水小的液体有机物有:

烃、大多数酯、一氯烷烃。

9.能发生水解反应的物质有

卤代烃、酯(油脂)、二糖、多糖、蛋白质(肽)、盐。

10.不溶于水的有机物有:

烃、卤代烃、酯、淀粉、纤维素

11.常温下为气体的有机物有:

分子中含有碳原子数小于或等于4的烃(新戊烷例外)、一氯甲烷、甲醛。

12.浓硫酸、加热条件下发生的反应有:

苯及苯的同系物的硝化、磺化、醇的脱水反应、酯化反应、纤维素的水解

13.能被氧化的物质有:

含有碳碳双键或碳碳叁键的不饱和化合物(KMnO4)、苯的同系物、醇、醛、酚。大多数有机物都可以燃烧,燃烧都是被氧气氧化。

开放的翅膀
呆萌的天空
2026-01-25 22:02:43
第一单元

1——原子半径

(1)除第1周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小;

(2)同一族的元素从上到下,随电子层数增多,原子半径增大。

2——元素化合价

(1)除第1周期外,同周期从左到右,元素最高正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外);

(2)同一主族的元素的最高正价、负价均相同

(3) 所有单质都显零价

3——单质的熔点

(1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减;

(2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增

4——元素的金属性与非金属性 (及其判断)

(1)同一周期的元素电子层数相同。因此随着核电荷数的增加,原子越容易得电子,从左到右金属性递减,非金属性递增;

(2)同一主族元素最外层电子数相同,因此随着电子层数的增加,原子越容易失电子,从上到下金属性递增,非金属性递减。

判断金属性强弱

金属性(还原性) 1,单质从水或酸中置换出氢气越容易越强

2,最高价氧化物的水化物的碱性越强(1—20号,K最强;总体Cs最强 最

非金属性(氧化性)1,单质越容易与氢气反应形成气态氢化物

2,氢化物越稳定

3,最高价氧化物的水化物的酸性越强(1—20号,F最强;最体一样)

5——单质的氧化性、还原性

一般元素的金属性越强,其单质的还原性越强,其氧化物的阳离子氧化性越弱;

元素的非金属性越强,其单质的氧化性越强,其简单阴离子的还原性越弱。

推断元素位置的规律

判断元素在周期表中位置应牢记的规律:

(1)元素周期数等于核外电子层数;

(2)主族元素的序数等于最外层电子数。

阴阳离子的半径大小辨别规律

由于阴离子是电子最外层得到了电子 而阳离子是失去了电子

6——周期与主族

周期:短周期(1—3);长周期(4—6,6周期中存在镧系);不完全周期(7)。

主族:ⅠA—ⅦA为主族元素;ⅠB—ⅦB为副族元素(中间包括Ⅷ);0族(即惰性气体)

所以, 总的说来

(1) 阳离子半径<原子半径

(2) 阴离子半径>原子半径

(3) 阴离子半径>阳离子半径

(4 对于具有相同核外电子排布的离子,原子序数越大,其离子半径越小。

以上不适合用于稀有气体!

专题一 :第二单元

一 、化学键:

1,含义:分子或晶体内相邻原子(或离子)间强烈的相互作用。

2,类型 ,即离子键、共价键和金属键。

离子键是由异性电荷产生的吸引作用,例如氯和钠以离子键结合成NaCl。

1,使阴、阳离子结合的静电作用

2,成键微粒:阴、阳离子

3,形成离子键:a活泼金属和活泼非金属

b部分盐(Nacl、NH4cl、BaCo3等)

c强碱(NaOH、KOH)

d活泼金属氧化物、过氧化物

4,证明离子化合物:熔融状态下能导电

共价键是两个或几个原子通过共用电子(1,共用电子对对数=元素化合价的绝对值

2,有共价键的化合物不一定是共价化合物)

对产生的吸引作用,典型的共价键是两个原子借吸引一对成键电子而形成的。例如,两个氢核同时吸引一对电子,形成稳定的氢分子。

1,共价分子电子式的表示,P13

2,共价分子结构式的表示

3,共价分子球棍模型(H2O—折现型、NH3—三角锥形、CH4—正四面体)

4,共价分子比例模型

补充:碳原子通常与其他原子以共价键结合

乙烷(C—C单键)

乙烯(C—C双键)

乙炔(C—C三键)

金属键则是使金属原子结合在一起的相互作用,可以看成是高度离域的共价键。

二、分子间作用力(即范德华力)

1,特点:a存在于共价化合物中

b化学键弱的多

c影响熔沸点和溶解性——对于组成和结构相似的分子,其范德华力一般随着相对分子质量的增大而增大。即熔沸点也增大(特例:HF、NH3、H2O)

三、氢键

1,存在元素:O(H2O)、N(NH3)、F(HF)

2,特点:比范德华力强,比化学键弱

补充:水无论什么状态氢键都存在

专题一 :第三单元

一,同素异形(一定为单质)

1,碳元素(金刚石、石墨)

氧元素(O2、O3)

磷元素(白磷、红磷)

2,同素异形体之间的转换——为化学变化

二,同分异构(一定为化合物或有机物)

分子式相同,分子结构不同,性质也不同

1,C4H10(正丁烷、异丁烷)

2,C2H6(乙醇、二甲醚)

三,晶体分类

离子晶体:阴、阳离子有规律排列

1,离子化合物(KNO3、NaOH)

2,NaCl分子

3,作用力为离子间作用力

分子晶体:由分子构成的物质所形成的晶体

1,共价化合物(CO2、H2O)

2,共价单质(H2、O2、S、I2、P4)

3,稀有气体(He、Ne)

原子晶体:不存在单个分子

1,石英(SiO2)、金刚石、晶体硅(Si)

金属晶体:一切金属

总结:熔点、硬度——原子晶体>离子晶体>分子晶体

专题二 :第一单元

一、反应速率

1,影响因素:反应物性质(内因)、浓度(正比)、温度(正比)、压强(正比)、反应面积、固体反应物颗粒大小

二、反应限度(可逆反应)

化学平衡:正反应速率和逆反应速率相等,反应物和生成物的浓度不再变化,到达平衡。

专题二 :第二单元

一、热量变化

常见放热反应:1,酸碱中和

2,所有燃烧反应

3,金属和酸反应

4,大多数的化合反应

5,浓硫酸等溶解

常见吸热反应:1,CO2+C====2CO

2,H2O+C====CO+H2(水煤气)

3,Ba(OH)2晶体与NH4Cl反应

4,大多数分解反应

5,硝酸铵的溶解

热化学方程式;注意事项5

二、燃料燃烧释放热量

专题二 :第三单元

一、化学能→电能(原电池、燃料电池)

1,判断正负极:较活泼的为负极,失去电子,化合价升高,为氧化反应,阴离子在负极

2,正极:电解质中的阳离子向正极移动,得到电子,生成新物质

3,正负极相加=总反应方程式

4,吸氧腐蚀

A中性溶液(水)

B有氧气

Fe和C→正极:2H2O+O2+4e—====4OH—

补充:形成原电池条件

1,有自发的 氧化反应

2,两个活泼性不同的电极

3,同时与电解质接触

4,形成闭合回路

二、化学电源

1,氢氧燃料电池

阴极:2H++2e—===H2

阳极:4OH——4e—===O2+2H2O

2,常见化学电源

银锌纽扣电池

负极:

正极:

铅蓄电池

负极:

正极:

三、电能→化学能

1,判断阴阳极:先判断正负极,正极对阳极(发生氧化反应),负极对阴极

2,阳离子向阴极,阴离子向阳极(异性相吸)

补充:电解池形成条件

1,两个电极

2,电解质溶液

3,直流电源

4,构成闭合电路

1

| 评论

2011-3-28 20:12 苏格拉2vae | 一级

第一章 物质结构 元素周期律

1. 原子结构:如: 的质子数与质量数,中子数,电子数之间的关系

2. 元素周期表和周期律

(1)元素周期表的结构

A. 周期序数=电子层数

B. 原子序数=质子数

C. 主族序数=最外层电子数=元素的最高正价数

D. 主族非金属元素的负化合价数=8-主族序数

E. 周期表结构

(2)元素周期律(重点)

A. 元素的金属性和非金属性强弱的比较(难点)

a. 单质与水或酸反应置换氢的难易或与氢化合的难易及气态氢化物的稳定性

b. 最高价氧化物的水化物的碱性或酸性强弱

c. 单质的还原性或氧化性的强弱

(注意:单质与相应离子的性质的变化规律相反)

B. 元素性质随周期和族的变化规律

a. 同一周期,从左到右,元素的金属性逐渐变弱

b. 同一周期,从左到右,元素的非金属性逐渐增强

c. 同一主族,从上到下,元素的金属性逐渐增强

d. 同一主族,从上到下,元素的非金属性逐渐减弱

C. 第三周期元素的变化规律和碱金属族和卤族元素的变化规律(包括物理、化学性质)

D. 微粒半径大小的比较规律:

a. 原子与原子 b. 原子与其离子 c. 电子层结构相同的离子

(3)元素周期律的应用(重难点)

A. “位,构,性”三者之间的关系

a. 原子结构决定元素在元素周期表中的位置

b. 原子结构决定元素的化学性质

c. 以位置推测原子结构和元素性质

B. 预测新元素及其性质

3. 化学键(重点)

(1)离子键:

A. 相关概念:

B. 离子化合物:大多数盐、强碱、典型金属氧化物

C. 离子化合物形成过程的电子式的表示(难点)

(AB, A2B,AB2, NaOH,Na2O2,NH4Cl,O22-,NH4+)

(2)共价键:

A. 相关概念:

B. 共价化合物:只有非金属的化合物(除了铵盐)

C. 共价化合物形成过程的电子式的表示(难点)

(NH3,CH4,CO2,HClO,H2O2)

D 极性键与非极性键

(3)化学键的概念和化学反应的本质:

第二章 化学反应与能量

1. 化学能与热能

(1)化学反应中能量变化的主要原因:化学键的断裂和形成

(2)化学反应吸收能量或放出能量的决定因素:反应物和生成物的总能量的相对大小

a. 吸热反应: 反应物的总能量小于生成物的总能量

b. 放热反应: 反应物的总能量大于生成物的总能量

(3)化学反应的一大特征:化学反应的过程中总是伴随着能量变化,通常表现为热量变化

练习:

氢气在氧气中燃烧产生蓝色火焰,在反应中,破坏1molH-H键消耗的能量为Q1kJ,破坏1molO = O键消耗的能量为Q2kJ,形成1molH-O键释放的能量为Q3kJ。下列关系式中正确的是( B )

A.2Q1+Q2>4Q3 B.2Q1+Q2<4Q3

C.Q1+Q2<Q3D.Q1+Q2=Q3

(4)常见的放热反应:

A. 所有燃烧反应; B. 中和反应; C. 大多数化合反应; D. 活泼金属跟水或酸反应;

E. 物质的缓慢氧化

(5)常见的吸热反应:

A. 大多数分解反应;

氯化铵与八水合氢氧化钡的反应。

(6)中和热:(重点)

A. 概念:稀的强酸与强碱发生中和反应生成1mol H2O(液态)时所释放的热量。

2. 化学能与电能

(1)原电池(重点)

A. 概念:

B. 工作原理:

a. 负极:失电子(化合价升高),发生氧化反应

b. 正极:得电子(化合价降低),发生还原反应

C. 原电池的构成条件 :

关键是能自发进行的氧化还原反应能形成原电池

a. 有两种活泼性不同的金属或金属与非金属导体作电极

b. 电极均插入同一电解质溶液

c. 两电极相连(直接或间接)形成闭合回路

D. 原电池正、负极的判断:

a. 负极:电子流出的电极(较活泼的金属),金属化合价升高

b. 正极:电子流入的电极(较不活泼的金属、石墨等):元素化合价降低

E. 金属活泼性的判断:

a. 金属活动性顺序表

b. 原电池的负极(电子流出的电极,质量减少的电极)的金属更活泼;

c. 原电池的正极(电子流入的电极,质量不变或增加的电极,冒气泡的电极)为较不活泼金属

F. 原电池的电极反应:(难点)

a. 负极反应:X-ne=Xn-

b. 正极反应:溶液中的阳离子得电子的还原反应

(2)原电池的设计:(难点)

根据电池反应设计原电池:(三部分+导线)

A. 负极为失电子的金属(即化合价升高的物质)

B. 正极为比负极不活泼的金属或石墨

C. 电解质溶液含有反应中得电子的阳离子(即化合价降低的物质)

(3)金属的电化学腐蚀

A. 不纯的金属(或合金)在电解质溶液中的腐蚀,关键形成了原电池,加速了金属腐蚀

B. 金属腐蚀的防护:

a. 改变金属内部组成结构,可以增强金属耐腐蚀的能力。如:不锈钢。

b. 在金属表面覆盖一层保护层,以断绝金属与外界物质接触,达到耐腐蚀的效果。(油脂、油漆、搪瓷、塑料、电镀金属、氧化成致密的氧化膜)

c. 电化学保护法:

牺牲活泼金属保护法,外加电流保护法

(4)发展中的化学电源

A. 干电池(锌锰电池)

a. 负极:Zn -2e - = Zn 2+

b. 参与正极反应的是MnO2和NH4+

B. 充电电池

a. 铅蓄电池:

铅蓄电池充电和放电的总化学方程式

放电时电极反应:

负极:Pb + SO42--2e-=PbSO4

正极:PbO2 + 4H+ + SO42- + 2e-= PbSO4 + 2H2O

b. 氢氧燃料电池:它是一种高效、不污染环境的发电装置。它的电极材料一般为活性电极,具有很强的催化活性,如铂电极,活性炭电极等。

总反应:2H2 + O2=2H2O

电极反应为(电解质溶液为KOH溶液)

负极:2H2 + 4OH- - 4e- → 4H2O

正极:O2 + 2H2O + 4e- → 4OH-

3. 化学反应速率与限度

(1)化学反应速率

A. 化学反应速率的概念:

B. 计算(重点)

a. 简单计算

b. 已知物质的量n的变化或者质量m的变化,转化成物质的量浓度c的变化后再求反应速率v

c. 化学反应速率之比 =化学计量数之比,据此计算:

已知反应方程和某物质表示的反应速率,求另一物质表示的反应速率;

已知反应中各物质表示的反应速率之比或△C之比,求反应方程。

d. 比较不同条件下同一反应的反应速率

关键:找同一参照物,比较同一物质表示的速率(即把其他的物质表示的反应速率转化成同一物质表示的反应速率)

(2)影响化学反应速率的因素(重点)

A. 决定化学反应速率的主要因素:反应物自身的性质(内因)

B. 外因:

a. 浓度越大,反应速率越快

b. 升高温度(任何反应,无论吸热还是放热),加快反应速率

c. 催化剂一般加快反应速率

d. 有气体参加的反应,增大压强,反应速率加快

e. 固体表面积越大,反应速率越快

f. 光、反应物的状态、溶剂等

(3)化学反应的限度

A. 可逆反应的概念和特点

B. 绝大多数化学反应都有可逆性,只是不同的化学反应的限度不同;相同的化学反应,不同的条件下其限度也可能不同

a. 化学反应限度的概念:

一定条件下, 当一个可逆反应进行到正反应和逆反应的速率相等,反应物和生成物的浓度不再改变,达到表面上静止的一种“平衡状态”,这种状态称为化学平衡状态,简称化学平衡,这就是可逆反应所能达到的限度。

b. 化学平衡的曲线:

c. 可逆反应达到平衡状态的标志:

反应混合物中各组分浓度保持不变

正反应速率=逆反应速率

消耗A的速率=生成A的速率

d. 怎样判断一个反应是否达到平衡:

(1)正反应速率与逆反应速率相等; (2)反应物与生成物浓度不再改变;

(3)混合体系中各组分的质量分数 不再发生变化;

(4)条件变,反应所能达到的限度发生变化。

化学平衡的特点:逆、等、动、定、变、同。

【典型例题】

例1. 在密闭容器中充入SO2和18O2,在一定条件下开始反应,在达到平衡时,18O存在于( D )

A. 只存在于氧气中

B. 只存在于O2和SO3中

C. 只存在于SO2和SO3中

D. SO2、SO3、O2中都有可能存在

例2. 下列各项中,可以说明2HI H2+I2(g)已经达到平衡状态的是( BDE )

A. 单位时间内,生成n mol H2的同时生成n mol HI

B. 一个H—H键断裂的同时,有2个H—I键断裂

C. 温度和体积一定时,容器内压强不再变化

D. 温度和体积一定时,某一生成物浓度不再变化

E. 温度和体积一定时,混合气体的颜色不再变化

F. 条件一定,混合气体的平均相对分子质量不再变化

化学平衡移动原因:v正≠ v逆

v正>v逆 正向 v正.<v逆 逆向

浓度: 其他条件不变, 增大反应物浓度或减小生成物浓度, 正向移动 反之

压强: 其他条件不变,对于反应前后气体,总体积发生变化的反应,增大压强,平衡向气体体积缩小的方向移动, 反之…

温度: 其他条件不变,温度升高,平衡向吸热方向移动 反之…

催化剂: 缩短到达平衡的时间,但平衡的移动无影响

勒沙特列原理:如果改变影响化学平衡的一个条件,平衡将向着减弱这种改变的方向发生移动。

第三章复习纲要(要求自己填写空白处)

(一)甲烷

一、甲烷的元素组成与分子结构

CH4 正四面体

二、甲烷的物理性质

三、甲烷的化学性质

1、甲烷的氧化反应

实验现象:

反应的化学方程式:

2、甲烷的取代反应

甲烷与氯气在光照下发生取代反应,甲烷分子里的四个氢原子逐步被氯原子取代反应能生成一系列甲烷的氯取代物和氯化氢。

有机化合物分子中的某些原子(或原子团)被另一种原子(或原子团)所替代的反应,叫做取代反应。

3、甲烷受热分解:

(二)烷烃

烷烃的概念: 叫做饱和链烃,或称烷烃。

1、 烷烃的通式:____________________

2、 烷烃物理性质:

(1)状态:一般情况下,1—4个碳原子烷烃为___________,

5—16个碳原子为__________,16个碳原子以上为_____________。

(2)溶解性:烷烃________溶于水,_________溶(填“易”、“难”)于有机溶剂。

(3)熔沸点:随着碳原子数的递增,熔沸点逐渐_____________。

(4)密度:随着碳原子数的递增,密度逐渐___________。

3、 烷烃的化学性质

(1)一般比较稳定,在通常情况下跟酸、碱和高锰酸钾等都______反应。

(2)取代反应:在光照条件下能跟卤素发生取代反应。__________________________

(3)氧化反应:在点燃条件下,烷烃能燃烧______________________________

(三)同系物

同系物的概念:_______________________________________________

掌握概念的三个关键:(1)通式相同;(2)结构相似;(3)组成上相差n个(n≥1)

CH2原子团。

例1、 下列化合物互为同系物的是:D

A 、和 B、C2H6和C4H10

H Br CH3

C、Br—C—Br和Br—C—H D、CH3CH2CH3和CH3—CH—CH3

H H

(四)同分异构现象和同分异构物体

1、 同分异构现象:化合物具有相同的________,但具有不同_________的现象。

2、 同分异构体:化合物具有相同的_________,不同________的物质互称为同分异构体。

3、 同分异构体的特点:________相同,________不同,性质也不相同。

〔知识拓展〕

烷烃的系统命名法:

选主链——碳原子最多的碳链为主链;

编号位——定支链,要求取代基所在的碳原子的编号代数和为最小;

写名称——支链名称在前,母体名称在后;先写简单取代基,后写复杂取代基;相

同的取代基合并起来,用二、三等数字表示。

(五)烯烃

一、乙烯的组成和分子结构

1、组成: 分子式: 含碳量比甲烷高。

2、分子结构:含有碳碳双键。双键的键长比单键的键长要短些。

二、乙烯的氧化反应

1、燃烧反应(请书写燃烧的化学方程式)

化学方程式

2、与酸性高锰酸钾溶液的作用——被氧化,高锰酸钾被还原而退色,这是由于乙烯分子中含有碳碳双键的缘故。(乙烯被氧化生成二氧化碳)

三、乙烯的加成反应

1、与溴的加成反应(乙烯气体可使溴的四氯化碳溶液退色)

CH2═CH2+Br-Br→CH2Br-CH2Br 1,2-二溴乙烷(无色)

2、与水的加成反应

CH2═CH2+H-OH→CH3—CH2OH乙醇(酒精)

书写乙烯与氢气、氯气、溴化氢的加成反应。

乙烯与氢气反应

乙烯与氯气反应

乙烯与溴化氢反应

[知识拓展]

四、乙烯的加聚反应:nCH2═CH2 → [CH2-CH2] n

(六)苯、芳香烃

一、苯的组成与结构

1、分子式 C6H6

2、结构特点

二、苯的物理性质:

三、苯的主要化学性质

1、苯的氧化反应

点燃

苯的可燃性,苯完全燃烧生成二氧化碳和水,在空气中燃烧冒浓烟。

2C6H6+15O2 12CO2+6H2O

[思考]你能解释苯在空气中燃烧冒黑烟的原因吗?

注意:苯不能被酸性高锰酸钾溶液氧化。

2、苯的取代反应

在一定条件下苯能够发生取代反应

书写苯与液溴、硝酸发生取代反应的化学方程式。

苯 与液溴反应 与硝酸反应

反应条件

化学反应方程式

注意事项

[知识拓展] 苯的磺化反应

化学方程式:

3、在特殊条件下,苯能与氢气、氯气发生加成反应

反应的化学方程式: 、

(七)烃的衍生物

一、乙醇的物理性质:

〔练习〕某有机物中只含C、H、O三种元素,其蒸气的是同温同压下氢气的23倍,2.3g该物质完全燃烧后生成0.1mol二氧化碳和27g水,求该化合物的分子式。

二、乙醇的分子结构

结构式:

结构简式:

三、乙醇的化学性质

1、乙醇能与金属钠(活泼的金属)反应:

2、乙醇的氧化反应

(1)乙醇燃烧

化学反应方程式:

(2)乙醇的催化氧化

化学反应方程式:

(3)乙醇还可以与酸性高锰酸钾溶液或酸性重铬酸钾溶液反应,被直接氧化成乙酸。

〔知识拓展〕

1、乙醇的脱水反应

(1)分子内脱水,生成乙烯

化学反应方程式:

(2)分子间脱水,生成乙醚

化学反应方程式:

四、乙酸

乙酸的物理性质:

写出乙酸的结构式、结构简式。

酯化反应:酸跟醇作用而生成酯和水的反应,叫做酯化反应。

反应现象:

反应化学方程式:

1、在酯化反应中,乙酸最终变成乙酸乙酯。这时乙酸的分子结构发生什么变化?

2、酯化反应在常温下反应极慢,一般15年才能达到平衡。怎样能使反应加快呢?

3、酯化反应的实验时加热、加入浓硫酸。浓硫酸在这里起什么作用?

4为什么用来吸收反应生成物的试管里要装饱和碳酸钠溶液?不用饱和碳酸钠溶液而改用水来吸收酯化反应的生成物,会有什么不同的结果?

5为什么出气导管口不能插入碳酸钠液面下?

五、基本营养物质

1、糖类、油脂、蛋白质主要含有 元素,分子的组成比较复杂。

2、葡萄糖和果糖,蔗糖和麦芽糖分别互称为,由于结构决定性质,因此它们具有 性质。

1、有一个糖尿病患者去医院检验病情,如果你是一名医生,你将用什么化学原理去确定其病情的轻重?

2、已知方志敏同志在监狱中写给鲁迅

的信是用米汤写的,鲁迅

的是如何看到信的内容的?

3、如是否有过这样的经历,在使用浓硝酸时不慎溅到皮肤上,皮肤会有什么变化?为什么?

第四章化学与可持续发展

化学研究和应用的目标:用已有的化学知识开发利用自然界的物质资源和能量资源,同时创造新物质(主要是高分子)使人类的生活更方便、舒适。在开发利用资源的同时要注意保护环境、维护生态平衡,走可持续发展的道路;建立“绿色化学”理念:创建源头治理环境污染的生产工艺。(又称“环境无害化学”)

目的:满足当代人的需要又不损害后代发展的需求!

一、金属矿物的开发利用

1、常见金属的冶炼:

①加热分解法:

②加热还原法:

③电解法:

2、金属活动顺序与金属冶炼的关系:

金属活动性序表中,位置越靠后,越容易被还原,用一般的还原方法就能使金属还原;金属的位置越靠前,越难被还原,最活泼金属只能用最强的还原手段来还原。(离子)

二、海水资源的开发利用

1、海水的组成:含八十多种元素。

其中,H、O、Cl、Na、K、Mg、Ca、S、C、F、B、Br、Sr等总量占99%以上,其余为微量元素;特点是总储量大而浓度小,以无机物或有机物的形式溶解或悬浮在海水中。

总矿物储量约5亿亿吨,有“液体矿山”之称。堆积在陆地上可使地面平均上升153米。

如:金元素的总储量约为5×107吨,而浓度仅为4×10-6g/吨。

另有金属结核约3万亿吨,海底石油1350亿吨,天然气140万亿米3。

2、海水资源的利用:

(1)海水淡化: ①蒸馏法;②电渗析法; ③离子交换法; ④反渗透法等。

(2)海水制盐:利用浓缩、沉淀、过滤、结晶、重结晶等分离方法制备得到各种盐。

内向的蜜蜂
温暖的柜子
2026-01-25 22:02:43

高中化学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中化学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

魁梧的悟空
顺利的电源
2026-01-25 22:02:43
11、金属的通性:导电、导热性,具有金属光泽,延展性,一般情况下除Hg外都是固态

12、金属冶炼的一般原理:

①热分解法:适用于不活泼金属,如Hg、Ag

②热还原法:适用于较活泼金属,如Fe、Sn、Pb等

③电解法:适用于活泼金属,如K、Na、Al等(K、Ca、Na、Mg都是电解氯化物,Al是电解Al2O3)

13、铝及其化合物

Ⅰ、铝

①物理性质:银白色,较软的固体,导电、导热,延展性

②化学性质:Al—3e-==Al3+

a、与非金属:4Al+3O2==2Al2O3,2Al+3S==Al2S3,2Al+3Cl2==2AlCl3

b、与酸:2Al+6HCl==2AlCl3+3H2↑,2Al+3H2SO4==Al2(SO4)3+3H2↑

常温常压下,铝遇浓硫酸或浓硝酸会发生钝化,所以可用铝制容器盛装浓硫酸或浓硝酸

c、与强碱:2Al+2NaOH+2H2O==2NaAlO2(偏铝酸钠)+3H2↑ (2Al+2OH-+2H2O==2AlO2-+3H2↑)

大多数金属不与碱反应,但铝却可以

d、铝热反应:2Al+Fe2O3===2Fe+Al2O3,铝具有较强的还原性,可以还原一些金属氧化物

Ⅱ、铝的化合物

①Al2O3(典型的两性氧化物)

a、与酸:Al2O3+6H+==2Al3++3H2O b、与碱:Al2O3+2OH-==2AlO2-+H2O

②Al(OH)3(典型的两性氢氧化物):白色不溶于水的胶状物质,具有吸附作用

a、实验室制备:AlCl3+3NH3•H2O==Al(OH)3↓+3NH4Cl,Al3++3NH3•H2O==Al(OH)3↓+3NH4+

b、与酸、碱反应:与酸 Al(OH)3+3H+==Al3++3H2O 与碱 Al(OH)3+OH-==AlO2-+2H2O

③KAl(SO4)2(硫酸铝钾)

KAl(SO4)2•12H2O,十二水和硫酸铝钾,俗名:明矾

KAl(SO4)2==K++Al3++2SO42-,Al3+会水解:Al3++3H2O Al(OH)3+3H+

因为Al(OH)3具有很强的吸附型,所以明矾可以做净水剂

14、铁

①物理性质:银白色光泽,密度大,熔沸点高,延展性,导电导热性较好,能被磁铁吸引。铁在地壳中的含量仅次于氧、硅、铝,排第四。

②化学性质:

a、与非金属:Fe+S==FeS,3Fe+2O2===Fe3O4,2Fe+3Cl2===2FeCl3

b、与水:3Fe+4H2O(g)===Fe3O4+4H2

c、与酸(非氧化性酸):Fe+2H+==Fe2++H2 与氧化性酸,如硝酸、浓硫酸,会被氧化成三价铁

d、与盐:如CuCl2、CuSO4等,Fe+Cu2+==Fe2++Cu

Fe2+和Fe3+离子的检验:

①溶液是浅绿色的

Fe2+②与KSCN溶液作用不显红色,再滴氯水则变红

③加NaOH溶液现象:白色 灰绿色 红褐色

①与无色KSCN溶液作用显红色

Fe3+②溶液显黄色或棕黄色

③加入NaOH溶液产生红褐色沉淀

15、硅及其化合物

Ⅰ、硅

硅是一种亲氧元素,自然界中总是与氧结合,以熔点很高的氧化物及硅酸盐的形式存在。硅有晶体和无定型两种。晶体硅是带有金属光泽的灰黑色固体,熔点高、硬度大、有脆性,常温下不活泼。晶体硅的导电性介于导体和绝缘体之间,是良好的半导体材料,可制成光电池等能源。

Ⅱ、硅的化合物

①二氧化硅

a、物理性质:二氧化硅具有晶体和无定形两种。熔点高,硬度大。

b、化学性质:酸性氧化物,是H2SiO3的酸酐,但不溶于水

SiO2+CaO===CaSiO3,SiO2+2NaOH==Na2SiO3+H2O,SiO2+4HF==SiF4↑+2H2O

c、用途:是制造光导纤维德主要原料;石英制作石英玻璃、石英电子表、石英钟等;水晶常用来制造电子工业的重要部件、光学仪器、工艺品等;石英砂常用作制玻璃和建筑材料。

②硅酸钠:硅酸钠固体俗称泡花碱,水溶液俗称水玻璃,是无色粘稠的液体,常作粘合剂、防腐剂、耐火材料。放置在空气中会变质:Na2SiO3+CO2+H2O==H2SiO3↓+Na2CO3。实验室可以用可溶性硅酸盐与盐酸反应制备硅酸:Na2SiO3+2HCl==2NaCl+H2SiO3↓

③硅酸盐:

a、是构成地壳岩石的主要成分,种类多,结构复杂,常用氧化物的形式来表示组成。其表示方式

活泼金属氧化物•较活泼金属氧化物•二氧化硅•水。如:滑石Mg3(Si4O10)(OH)2可表示为3MgO•4SiO2•H2O

b、硅酸盐工业简介:以含硅物质为原料,经加工制得硅酸盐产品的工业成硅酸盐工业,主要包括陶瓷工业、水泥工业和玻璃工业,其反应包含复杂的物理变化和化学变化。

水泥的原料是黏土和石灰石;玻璃的原料是纯碱、石灰石和石英,成份是Na2SiO3•CaSiO3•4SiO2;陶瓷的原料是黏土。注意:三大传统硅酸盐产品的制备原料中,只有陶瓷没有用到石灰石。

16、氯及其化合物

①物理性质:通常是黄绿色、密度比空气大、有刺激性气味气体,能溶于水,有毒。

②化学性质:氯原子易得电子,使活泼的非金属元素。氯气与金属、非金属等发生氧化还原反应,一般作氧化剂。与水、碱溶液则发生自身氧化还原反应,既作氧化剂又作还原剂。

拓展1、氯水:氯水为黄绿色,所含Cl2有少量与水反应(Cl2+H2O==HCl+HClO),大部分仍以分子形

式存在,其主要溶质是Cl2。新制氯水含Cl2、H2O、HClO、H+、Cl-、ClO-、OH-等微粒

拓展2、次氯酸:次氯酸(HClO)是比H2CO3还弱的酸,溶液中主要以HClO分子形式存在。是一种具有强氧化性(能杀菌、消毒、漂白)的易分解(分解变成HCl和O2)的弱酸。

拓展3、漂白粉:次氯酸盐比次氯酸稳定,容易保存,工业上以Cl2和石灰乳为原料制取漂白粉,其主要成分是CaCl2和Ca(ClO)2,有效成分是Ca(ClO)2,须和酸(或空气中CO2)作用产生次氯酸,才能发挥漂白作用。

17、溴、碘的性质和用途

溴 碘

物理

性质 深红棕色,密度比水大,液体,强烈刺激性气味,易挥发,强腐蚀性 紫黑色固体,易升华。气态碘在空气中显深紫红色,有刺激性气味

在水中溶解度很小,易溶于酒精、四氯化碳等有机溶剂

化学

性质 能与氯气反应的金属、非金属一般也能与溴、碘反应,只是反应活性不如

氯气。氯、溴、碘的氧化性强弱:Cl2>Br2>I2

18、二氧化硫

①物理性质:无色,刺激性气味,气体,有毒,易液化,易溶于水(1:40),密度比空气大

②化学性质:

a、酸性氧化物:可与水反应生成相应的酸——亚硫酸(中强酸):SO2+H2O H2SO3

可与碱反应生成盐和水:SO2+2NaOH==Na2SO3+H2O,SO2+Na2SO3+H2O==2NaHSO3

b、具有漂白性:可使品红溶液褪色,但是是一种暂时性的漂白

c、具有还原性:SO2+Cl2+2H2O==H2SO4+2HCl

18、硫酸

①物理性质:无色、油状液体,沸点高,密度大,能与水以任意比互溶,溶解时放出大量的热

②化学性质:酸酐是SO3,其在标准状况下是固态

物质

组成性质 浓硫酸 稀硫酸

电离情况

H2SO4==2H++SO42-

主要微粒 H2SO4 H+、SO42-、(H2O)

颜色、状态 无色粘稠油状液体 无色液体

性质 四大特性 酸的通性

浓硫酸的三大特性

a、吸水性:将物质中含有的水分子夺去(可用作气体的干燥剂)

b、脱水性:将别的物质中的H、O按原子个数比2:1脱出生成水

c、强氧化性:

ⅰ、冷的浓硫酸使Fe、Al等金属表面生成一层致密的氧化物薄膜而钝化

ⅱ、活泼性在H以后的金属也能与之反应(Pt、Au除外):Cu+2H2SO4(浓)===CuSO4+SO2↑+2H2O

ⅲ、与非金属反应:C+2H2SO4(浓硫酸)===CO2↑+2SO2↑+2H2O

ⅳ、与较活泼金属反应,但不产生H2

d、不挥发性:浓硫酸不挥发,可制备挥发性酸,如HCl:NaCl+H2SO4(浓)==NaHSO4+HCl

三大强酸中,盐酸和硝酸是挥发性酸,硫酸是不挥发性酸

③酸雨的形成与防治

pH小于5.6的雨水称为酸雨,包括雨、雪、雾等降水过程,是由大量硫和氮的氧化物被雨水吸收而

形成。硫酸型酸雨的形成原因是化石燃料及其产品的燃烧、含硫金属矿石的冶炼和硫酸的生产等产

生的废气中含有二氧化硫:SO2 H2SO3 H2SO4。在防治时可以开发新能源,对含硫燃料进行脱硫处理,提高环境保护意识。

19、氮及其化合物

Ⅰ、氮气(N2)

a、物理性质:无色、无味、难溶于水、密度略小于空气,在空气中体积分数约为78%

b、分子结构:分子式——N2,电子式—— ,结构式——N≡N

c、化学性质:结构决定性质,氮氮三键结合非常牢固,难以破坏,所以但其性质非常稳定。

①与H2反应:N2+3H2 2NH3

②与氧气反应:N2+O2========2NO(无色、不溶于水的气体,有毒)

2NO+O2===2NO2(红棕色、刺激性气味、溶于水气体,有毒)

3NO2+H2O===2HNO3+NO,所以可以用水除去NO中的NO2

两条关系式:4NO+3O2+2H2O==4HNO3,4NO2+O2+2H2O==4HNO3

Ⅱ、氨气(NH3)

a、物理性质:无色、刺激性气味,密度小于空气,极易溶于水(1∶700),易液化,汽化时吸收大量的热,所以常用作制冷剂

b、分子结构:分子式——NH3,电子式—— ,结构式——H—N—H

c、化学性质:

①与水反应:NH3+H2O NH3•H2O(一水合氨) NH4++OH-,所以氨水溶液显碱性

②与氯化氢反应:NH3+HCl==NH4Cl,现象:产生白烟

d、氨气制备:原理:铵盐和碱共热产生氨气

方程式:2NH4Cl+Ca(OH)2===2NH3↑+2H2O+CaCl2

装置:和氧气的制备装置一样

收集:向下排空气法(不能用排水法,因为氨气极易溶于水)

(注意:收集试管口有一团棉花,防止空气对流,减缓排气速度,收集较纯净氨气)

验证氨气是否收集满:用湿润的红色石蕊试纸靠近试管口,若试纸变蓝说明收集满

干燥:碱石灰(CaO和NaOH的混合物)

Ⅲ、铵盐

a、定义:铵根离子(NH4+)和酸根离子(如Cl-、SO42-、CO32-)形成的化合物,如NH4Cl,NH4HCO3等

b、物理性质:都是晶体,都易溶于水

c、化学性质:

①加热分解:NH4Cl===NH3↑+HCl↑,NH4HCO3===NH3↑+CO2↑+H2O

②与碱反应:铵盐与碱共热可产生刺激性气味并能使湿润红色石蕊试纸变蓝的气体即氨气,故可以用来检验铵根离子的存在,如:NH4NO3+NaOH===NH3↑+H2O+NaCl,,离子方程式为:NH4++OH-===NH3↑+H2O,是实验室检验铵根离子的原理。

d、NH4+的检验:NH4++OH-===NH3↑+H2O。操作方法是向溶液中加入氢氧化钠溶液并加热,用湿润的红色石蕊试纸靠近试管口,观察是否变蓝,如若变蓝则说明有铵根离子的存在。

20、硝酸

①物理性质:无色、易挥发、刺激性气味的液体。浓硝酸因为挥发HNO3产生“发烟”现象,故叫做发烟硝酸

②化学性质:a、酸的通性:和碱,和碱性氧化物反应生成盐和水

b、不稳定性:4HNO3=== 4NO2↑+2H2O+O2↑,由于HNO3分解产生的NO2溶于水,所以久置的硝酸会显黄色,只需向其中通入空气即可消除黄色

c、强氧化性:ⅰ、与金属反应:3Cu+8HNO3(稀)===3Cu(NO3)2+2NO↑+4H2O

Cu+4HNO3(浓)===Cu(NO3)2+2NO2↑+2H2O

常温下Al、Fe遇浓硝酸会发生钝化,所以可以用铝制或铁制的容器储存浓硝酸

ⅱ、与非金属反应:C+4HNO3(浓)===CO2↑+4NO2↑+2H2O

d、王水:浓盐酸和浓硝酸按照体积比3:1混合而成,可以溶解一些不能溶解在硝酸中的金属如Pt、Au等

21、元素周期表和元素周期律

①原子组成:

原子核 中子 原子不带电:中子不带电,质子带正电荷,电子带负电荷

原子组成 质子 质子数==原子序数==核电荷数==核外电子数

核外电子 相对原子质量==质量数

②原子表示方法:

A:质量数 Z:质子数 N:中子数 A=Z+N

决定元素种类的因素是质子数多少,确定了质子数就可以确定它是什么元素

③同位素:质子数相同而中子数不同的原子互称为同位素,如:16O和18O,12C和14C,35Cl和37Cl

④电子数和质子数关系:不带电微粒:电子数==质子数

带正电微粒:电子数==质子数—电荷数

带负电微粒:电子数==质子数+电荷数

⑤1—18号元素(请按下图表示记忆)

H He

Li Be B C N O F Ne

Na Mg Al Si P S Cl Ar

⑥元素周期表结构

短周期(第1、2、3周期,元素种类分别为2、8、8)

元 周期(7个横行) 长周期(第4、5、6周期,元素种类分别为18、18、32)

素 不完全周期(第7周期,元素种类为26,若排满为32)

周 主族(7个)(ⅠA—ⅦA)

期 族(18个纵行,16个族) 副族(7个)(ⅠB—ⅦB)

表 0族(稀有气体族:He、Ne、Ar、Kr、Xe、Rn)

Ⅷ族(3列)

⑦元素在周期表中的位置:周期数==电子层数,主族族序数==最外层电子数==最高正化合价

⑧元素周期律:

从左到右:原子序数逐渐增加,原子半径逐渐减小,得电子能力逐渐增强(失电子能力逐渐减弱),非金属性逐渐增强(金属性逐渐减弱)

从上到下:原子序数逐渐增加,原子半径逐渐增大,失电子能力逐渐增强(得电子能力逐渐减弱),金属性逐渐增强(非金属性逐渐减弱)

所以在周期表中,非金属性最强的是F,金属性最强的是Fr (自然界中是Cs,因为Fr是放射性元素)

判断金属性强弱的四条依据:

a、与酸或水反应的剧烈程度以及释放出氢气的难易程度,越剧烈则越容易释放出H2,金属性越强

b、最高价氧化物对应水化物的碱性强弱,碱性越强,金属性越强

c、金属单质间的相互置换(如:Fe+CuSO4==FeSO4+Cu)

d、原电池的正负极(负极活泼性>正极)

判断非金属性强弱的三条依据:

a、与H2结合的难易程度以及生成气态氢化物的稳定性,越易结合则越稳定,非金属性越强

b、最高价氧化物对应水化物的酸性强弱,酸性越强,非金属性越强

c、非金属单质间的相互置换(如:Cl2+H2S==2HCl+S↓)

注意:“相互证明”——由依据可以证明强弱,由强弱可以推出依据

⑨化学键:原子之间强烈的相互作用

共价键 极性键

化学键 非极性键

离子键

共价键:原子之间通过共用电子对的形式形成的化学键,一般由非金属元素与非金属元素间形成。

非极性键:相同的非金属原子之间,A—A型,如:H2,Cl2,O2,N2中存在非极性键

极性键:不同的非金属原子之间,A—B型,如:NH3,HCl,H2O,CO2中存在极性键

离子键:原子之间通过得失电子形成的化学键,一般由活泼的金属(ⅠA、ⅡA)与活泼的非金属元素(ⅥA、ⅦA)间形成,如:NaCl,MgO,KOH,Na2O2,NaNO3中存在离子键

注:有NH4+离子的一定是形成了离子键;AlCl3中没有离子键,是典型的共价键

共价化合物:仅仅由共价键形成的化合物,如:HCl,H2SO4,CO2,H2O等

离子化合物:存在离子键的化合物,如:NaCl,Mg(NO3)2,KBr,NaOH,NH4Cl

22、化学反应速率

①定义:单位时间内反应物浓度的减少量或生成物浓度的增加量,v==△C/△t

②影响化学反应速率的因素:

浓度:浓度增大,速率增大温度:温度升高,速率增大

压强:压强增大,速率增大(仅对气体参加的反应有影响)

催化剂:改变化学反应速率其他:反应物颗粒大小,溶剂的性质

23、原电池

负极(Zn):Zn—2e-==Zn2+

正极(Cu):2H++2e-==H2↑

①定义:将化学能转化为电能的装置

②构成原电池的条件:

a、有活泼性不同的金属(或者其中一个为碳棒)做电极,其中较活泼金属

做负极,较不活泼金属做正极

b、有电解质溶液

c、形成闭合回路

24、烃

①有机物

a、概念:含碳的化合物,除CO、CO2、碳酸盐等无机物外

b、结构特点:ⅰ、碳原子最外层有4个电子,一定形成四根共价键

ⅱ、碳原子可以和碳原子结合形成碳链,还可以和其他原子结合

ⅲ、碳碳之间可以形成单键,还可以形成双键、三键

ⅳ、碳碳可以形成链状,也可以形成环状

c、一般性质:ⅰ、绝大部分有机物都可以燃烧(除了CCl4不仅布燃烧,还可以用来灭火)

ⅱ、绝大部分有机物都不溶于水(乙醇、乙酸、葡萄糖等可以)

②烃:仅含碳、氢两种元素的化合物(甲烷、乙烯、苯的性质见表)

③烷烃:

a、定义:碳碳之间以单键结合,其余的价键全部与氢结合所形成的链状烃称之为烷烃。因为碳的所有价键都已经充分利用,所以又称之为饱和烃

b、通式:CnH2n+2,如甲烷(CH4),乙烷(C2H6),丁烷(C4H10)

c、物理性质:随着碳原子数目增加,状态由气态(1—4)变为液态(5—16)再变为固态(17及以上)

d、化学性质(氧化反应):能够燃烧,但不能使酸性高锰酸钾溶液褪色,同甲烷

CnH2n+2+(3n+1)/2O2nCO2+(n+1)H2O

e、命名(习惯命名法):碳原子在10个以内的,用甲、乙、丙、丁、戊、己、庚、辛、壬、癸命名

④同分异构现象:分子式相同,但结构不同的现象,称之为同分异构现象

同分异构体:具有同分异构现象的物质之间称为同分异构体

如C4H10有两种同分异构体:CH3CH2CH2CH3(正丁烷),CH3CHCH3(异丁烷)

甲烷 乙烯 苯

分子式 CH4 C2H4 C6H6

结构式

不作要求

结构

简式 CH4

CH2=CH2 或

电子式

不作要求

空间

结构 正四面体结构 平面型 平面型(无单键,无双键,介于单、双键间特殊的键,大∏键)

物理

性质 无色、无味、难溶于水、密度比空气小的气体,是天然气、沼气、油田气、煤道坑气的主要成分 无色、稍有气味的气体,难溶于水,密度略小于空气 无色、有特殊香味的液体,不溶于水,密度比水小,有毒

化学

性质 ①氧化反应:

CH4+2O2 CO2+2H2O

②取代反应:

CH4+Cl2 CH3Cl+HCl

①氧化反应:

a.能使酸性高锰酸钾褪色

b.C2H4+3O2 2CO2+2H2O

②加成反应:

CH2=CH2+Br2

③加聚反应:

nCH2=CH2—CH2—CH2—

产物为聚乙烯,塑料的主要成份,是高分子化合物 ①氧化反应:

a.不能使酸性高锰酸钾褪色

b.2C6H6+15O2 12CO2+6H2O

②取代反应:

a.与液溴反应:

+Br2 +HBr

b.与硝酸反应:

+HO-NO2 +H2O

③加成反应:

+3H2 (环己烷)

用途 可以作燃料,也可以作为原料制备氯仿(CH3Cl,麻醉剂)、四氯化碳、炭黑等 石化工业的重要原料和标志,水果催熟剂,植物生长调节剂,制造塑料,合成纤维等 有机溶剂,化工原料

注:取代反应——有机物分子中一个原子或原子团被其他原子或原子团代替的反应:有上有下 加成反应——有机物分子中不饱和键(双键或三键)两端的原子与其他原子直接相连的反应:只上不下

芳香烃——含有一个或多个苯环的烃称为芳香烃。苯是最简单的芳香烃(易取代,难加成)。

25、烃的衍生物

①乙醇:

a、物理性质:无色,有特殊气味,易挥发的液体,可和水以任意比互溶,良好的溶剂

b、分子结构:分子式——C2H6O,结构简式——CH3CH2OH或C2H5OH,官能团——羟基,—OH

c、化学性质:ⅰ、与活泼金属(Na)反应:

2CH3CH2OH+2Na 2CH3CH2ONa+H2↑

ⅱ、氧化反应:燃烧:C2H5OH+3O2 2CO2+3H2O

催化氧化:2CH3CH2OH+O2 2CH3CHO+2H2O

ⅲ、酯化反应:CH3COOH+CH3CH2OH CH3COOCH2CH3+H2O

d、乙醇的用途:燃料,医用消毒(体积分数75%),有机溶剂,造酒

②乙酸:

a、物理性质:无色,,有强烈刺激性气味,液体,易溶于水和乙醇。纯净的乙酸称为冰醋酸。

b、分子结构:分子式——C2H4O2,结构简式——CH3COOH,官能团——羧基,—COOH

c、化学性质:ⅰ、酸性(具备酸的通性):比碳酸酸性强

2CH3COOH+Na2CO3=2CH3COONa+H2O+CO2, CH3COOH+NaOH=CH3COONa+H2O

ⅱ、酯化反应(用饱和Na2CO3溶液来吸收,3个作用)

d、乙酸的用途:食醋的成分(3%—5%)

③酯:

a、物理性质:密度小于水,难溶于水。低级酯具有特殊的香味。

b、化学性质:水解反应

ⅰ、酸性条件下水解:CH3COOCH2CH3+H2O CH3COOH+CH3CH2OH

ⅱ、碱性条件下水解:CH3COOCH2CH3+NaOH CH3COONa+CH3CH2OH

26、煤、石油、天然气

①煤:由有机物和少量无机物组成的复杂混合物,可通过干馏、气化和液化进行综合利用

蒸馏:利用物质沸点(相差在20℃以上)的差异将物质进行分离,物理变化,产物为纯净物

分馏:利用物质沸点(相差在5℃以内)的差异将物质分离,物理变化,产物为混合物

干馏:隔绝空气条件下对物质进行强热使其发生分解,化学变化

②天然气:主要成份是CH4,重要的化石燃料,也是重要的化工原料(可加热分解制炭黑和H2)

③石油:多种碳氢化合物(烷烃、环烷烃、芳香烃)的混合物,可通过分馏、裂化、裂解、催化重整进行综合利用

分馏的目的:得到碳原子数目不同的各种油,如液化石油气、汽油、煤油、柴油、重油等

裂化的目的:对重油进行裂化得到轻质油(汽油、煤油、柴油等),产物一定是一个烷烃分子加一个烯烃分子

裂解的目的:得到重要的化工原料“三烯”(乙烯、丙烯、1,3—丁二烯)

催化重整的目的:得到芳香烃(苯及其同系物)

27、常见物质或离子的检验方法

物质(离子) 方法及现象

Cl- 先用硝酸酸化,然后加入硝酸银溶液,生成不溶于硝酸的白色沉淀

SO42- 先加盐酸酸化,然后加入氯化钡溶液,生成不溶于硝酸的白色沉淀

CO32- 加入硝酸钡溶液,生成白色沉淀,该沉淀可溶于硝酸(或盐酸),并生成无色无味、能使澄清石灰水变浑浊的气体(CO2)

Al3+ 加入NaOH溶液产生白色沉淀,继续加入NaOH溶液,沉淀消失

Fe3+(★) 加入KSCN溶液,溶液立即变为血红色

NH4+(★) 与NaOH溶液共热,放出使湿润的红色石蕊试纸变蓝的刺激性气味的气体(NH3)

Na+ 焰色反应呈黄色

K+ 焰色反应呈浅紫色(透过蓝色钴玻璃)

I2 遇淀粉溶液可使淀粉溶液变蓝

蛋白质 灼烧,有烧焦的羽毛气味

包容的石头
辛勤的月光
2026-01-25 22:02:43

思维导图如下:

必修模块的有机化学内容是以典型有机物的学习为切入点,让学生在初中有机物常识的基础上,能进一步从结构的角度,加深对有机物和有机化学的整体认识。

扩展资料:

1、选取的代表物有甲烷、乙烯、苯、乙醇(酒)、乙酸(醋)、糖、油脂、蛋白质等,这些物质都与生活联系密切,是学生每天都能看到、听到的、用到的,使学生感到熟悉、亲切,可以增加学生的兴趣和热情。 

2、内容结构 本章的内容结构可以看成是基础有机化学的缩影或概貌,可表示如下蛋白质油脂糖类、乙酸乙醇、烃的衍物物、苯乙烯、甲烷烃、有机化合物,为了帮助学生认识典型物质的有关反应、结构、性质与用途等知识。

3、教材采用了从科学探究或生活实际经验入手,充分利用实验研究物质的性质与反应,再从结构角度深化认识。如甲烷、乙烯的研究,乙醇结构的研究,糖和蛋白质的鉴定等,都采用了较为灵活的引入方式。

同时注意动手做模型,指导学生根据分子结构模型中原子间的连接顺序及方式,正确书写烷烃的同系列及同分异构体的结构式、结构简式 ;