建材秒知道
登录
建材号 > 乙二醇 > 正文

高锰酸钾、聚乙二醇

无限的黑猫
外向的服饰
2023-01-27 13:38:05

高锰酸钾、聚乙二醇

最佳答案
柔弱的毛豆
文艺的小蘑菇
2026-01-26 03:48:30

是安全的,不会有什么问题,国外在上世纪70年代就有用PEG作相转移催化的报道,而且做的就是高锰酸钾氧化烯烃。

关于PEG400,我觉得你可能需要注意以下问题:

(1)不要让它沾到手上,不是因为黏性,而是它有强烈的夺取阳离子的倾向,会对皮肤有一定伤害;

(2)用滴管来确定用量;

(3)PEG400吸水性很强。

文献可参考:

Lee D G,Chang D S,J.Org.Chem,1978,43:1532

最新回答
坦率的香菇
追寻的网络
2026-01-26 03:48:30

美国化学文摘(CA)常用缩写

A A ampere安(培)

Angstrom unit(s)埃(长度单位,10-10米)

abs.absolute绝对的

abs.EtOH absolute alcohol无水乙醇

abstr.abstract文摘

Ac acetyl(CH3CO,not CH3COO)乙酰基

a c alternating current交流电(流)

Ac.H.acetaldehyde 乙醛

AcOH acetic acid乙酸

Ac2O acetic anhydride乙酸酐

AcOEt ethyl acetate乙酸乙酯

AcONa乙酸钠

add additive 附加物

addn addition加成,添加

addnl additional添加的

alc.alcohol,alcoholic醇

aliph.aliphatic 脂族的

Al.Hg.Aluminum amalgam铝汞齐

alk.alkaline(not alkali)碱性的

alky alkalinity(alhys.for alkalinities is not approved)碱度,碱性

am amyl(not ammonium)戊基

amorph amorphous无定形的

amp ampere(s)安(培)

amt.amount(as a noun)数量

anal.analysis分析

anhyd.anhydrous无水的

AO atomic orbital原子轨(道)函数

app.apparatus仪器,装置

approx approximate(as an adjective),approximately近似的,大概的

approxn approximation近似法,概算

aq.aqueous水的,含水的

arom.aromatic芳族的

as.asymmetric不对称的

assoc.associate(s)缔合

assocd associated缔合的

assocn association缔合

at.atomic(not atom)原子的

atm atmosphere(s),atmospheric  大气压=1.01325×105帕

ATP adenosine triphosphatae三磷酸腺苷酶

at.wt.atomic weight原子量

av.average(except as a verb)平均

B b.(followed by a figure denoting temperature)boils at,boiling at(similarlyb13,at1.3mm,pressure)沸腾(后面的数字表示温度,同样b13表示在13毫米压力下沸腾)

bbl barrel桶[液体量度单位=163.5升(英国),=119升(美国)]

BCC.body-centred cubic立方体心

BeV or GeV billion electronvolts10亿电子伏,吉电子伏,109电子伏

BOD biochemical oxygen demand生化需氧量

μB Bohr magneton玻尔磁子[物]

b.p.boiling point沸点

Btu British thermal unit(s)英热单位=1055.06焦

Bu butyl(normal)丁基

bu.bushel蒲式耳=36.368升(英)=35.238升(美)

Bz benzoyl(not benzyl)苯甲酰

BzH benzaldehyde苯(甲)醛

BzOH benzoic acid苯甲酸

C C concentration浓度

Cal.calorie(s)千卡,大卡=4186.8焦

cal.卡=4.1868焦

calc.calculate计算

calcd calculated计算的

calcg calculating计算

calcn calculation计算

CC cubic centimeter(s)立方厘米

CD circurlar dichroism圆二色性(物)

c.d.current density电流密度

cf.参见

compare比较

cubic feet per minute立方英尺/分钟(1立方英尺=2.831685×10-2米3)

chem.chemical(as an adjective)(not chemistry nor chemically)化学的

Ci curie居里(放射单位)=3.7×1010贝可

clin.clinical(ly)临床的

cm centimeter(s)厘米

CoA coenzyme A辅酶A

C.O.D.chemical oxygen demand化学需氧量

coeff.coefficient系数

col.colour,coloration颜色

com.commercial工业的,商业的,商品的

comb.combustion燃烧

compb.compound化合物,复合物

compn.composition组成,成分

conc.concentrate(as a verb)提浓,浓缩

concd.concentrated浓的

concg.concentrating浓缩(的)

concn.concentration浓度

cond conductivity导电率,传导性

const.constant常数,常量

contg containing包含,含有

cor corrected校正的,改正的,正确的

cp.constant pressure恒压

C.P.Chemically pure化学纯的

crit.critical临界的

cryst.crystalline(not crystallize)结晶

crystd crystallized使结晶

crystg crystallizing结晶

crystn crystallization结晶,结晶化

cu.m.cubic meter(s)立方米

Cv constant volume恒容

D d density密度(d13 相对于水在4℃时的比重;d2020相对于水在20℃时的比重)

D Debye unit德拜单位,电偶极矩单位

d.dextrorotatory右旋(不译)

dl-外消旋(不译)

d.c.direct current直流电

decomp.decompose(s)分解

decompd decomposed分解的

decompg decomposing分解

decompn decomposition分解

degrdn degradation降解

deriv.derivative衍生物,导数(数)

det.determine 测定

detd determined 测定的

detg determining测定

detn determination 测定

diam.diameter直径

dil.dilute稀释,冲淡

dild diluted稀释的

diltg diluting稀释

diln dilution稀释

diss.dissolves,dissolved溶解

dissoc dissociate(s)离解

dissocd.dissociated 离解的

dissocn dissociation 离解

dist.distil.distillation 蒸馏

distd distilled蒸馏的

distg distilling 蒸馏

distn distillation蒸馏

dl分升

dm.decimeter(s)分米

DMF dimetbylformamide二甲基甲酰胺

DNase deoxyribonuclease脱氧核糖核酸酶

d.p.degree of polymerization聚合度

dpm disintegrations per minute分解量/分钟

DTA differential thermal analysis 差热分析

E E.D.effective dose有效剂量

EEG electroencephalogram脑电流描记术

e.g.for example例如

elec electric,electrical(not electrically)电的

e.m.f.electromoctive force电动势

e.m.u.electromagnetic unit电磁单位

en.ethylenediamine(used in formulas only)乙二胺

equil equilibrium(s)平衡

equiv.equivalent当量,克当量

esp.especially 特别,格外

est.estimate(as a verb)估计

estd estimated估计的

estg estimating估计

estn estimation估计

Et ethyl乙基

Et2O ethyl ether乙醚

η viscosity粘度

eV electron volt(s)电子伏[特]

evac.evacuated抽空的

evap.evaporate蒸发

evapd evaporated 蒸发的

evapg evaporating蒸发

evapn evaporation蒸发

examd examined检验过的,试验过的

examg examining检验,试验

examn examination检验,试验

expt.experiment(as a noun)实验

exptl experimental实验的

ext.extract提取物,萃,提取

extd extracted提取的

extg extracting提取

extn extraction 提取

F F farad法[拉](电容)

fcc face centered cubic面心立方体

fermn fermentation发酵

f.p.freezing point冰点,凝固点

FSH follicle-stimulating hormone促卵泡激素

ft.foot,feet 英尺=0.3048米

ft-lb foot-pound 英尺磅=0.3048米×0.453592千克

G g.gram(s)克

gal gallon加仑=4.546092升(英)=3.78543升(美)

geol.geological地质的

gr.grain(weight unit)谷(1谷=1/7000磅=0.64799克)

H h hour小时

H henry亨[利]

ha.hectare(s)公顷=6.451600×10-4米2

homo-均匀-,单相

h hour小时

hyd.hydrolysis,hydrolysed水解

Hz hertz(cycles/sec)赫[兹],周/秒

I ID infective dose无效剂量

in.inch(es)英寸=0.0254米

inorg.incrganic无机的

insol.insoluble不溶的

IR infrared红外线

irradn irradiation照射

iso-Bu,isobutyl异丁基

iso-Pr,isopropyl异丙基

IU国际单位

J J joule焦[耳](能量单位)

K K kelvin开[尔文],绝对温度

Kcal.kilocalorie(s)千卡=418.6焦

kg kilogram(s)千克

kV kilovolt(s)千伏

kV-amp.kilovolt-ampere(s)千伏安

kW.kilowatt(s)千瓦

kWh kilowatthour 千瓦小时=3.6×106焦

L l.liter(s)升

lab.laboratory实验室

lb pound(s)磅=0.453592千克

LCAO linear combination of atomic orbitals原子轨道的线性组合

LD Lethal dose致死剂量

LH Luteinizing hormone促黄体发生激素

liq.liquid液体,液态

Lm lumen流明(光通量单位)

LX lux勒[克斯](照度单位)

M m.meter(s);also(followed by a figure denoting temperature)米,熔融(注明温度时)

M.mega-(106)兆

M molar(as applied to concn.)摩尔

m.melts at,melting at熔融

m molal摩尔的

ma milliampere(s)毫安

manuf.manufacture制造

manufd manufactured制造的

manufg.manufacturing制造

math.mathematical数学的

max maximum(s)最大值,最大的

Me methyl(MeOH,methanol)甲基

mech.mechanical机械的

metab.metabolism新陈代谢

m.e.v million electron volts兆电子伏

mg milligram(s)毫克

mi mile英里=1609.344米

min minimun[also minute(s)]最小值,最小的

min minute分钟

misc miscellaneous其它

mixt.mixture混合物

ml milliliter(s)毫升

mm millimeter(s)毫米

nm millimicron(s)纳米

MO molecular orbital分子轨道函数

mol molecule,molecular分子,分子的

mol.wt.molecular weight分子量

m.p.melting point熔点

mph miles per hour英里(=1609.344米)/小时

μ micron(s)微米

mV millivolt(s)毫伏

N N newton牛[顿](力的单位)

N normal(as applied to concn.)当量(浓度)

neg.negative(as an adjective)阴性的,负的

no number号,数

O obsd observed观察,观测

org.organic有机的

oxidn oxidation氧化

oz.ounce盎司(常衡=28.349523克)

P  P.d.potential difference势差,电位差

Pet.Et.petroleum ether石油醚

Ph.phenyl苯基

phys.physical物理的

physiol.physiological生理学的

p.m.post meridiem午后

polymd polymerized聚合

polymg polymerizing聚合

ploymn polymerization聚合

pos.positive(as an adjective)阳性的,正的

powd.powdered粉末的,粉状的

p.p.b.(ppb)parts per billion亿万分之(几)

p.p.m.(ppm)parts per million百万分之(几)

ppt.precipitate沉淀,沉淀物

pptd.precipitated沉淀出的

pptg.precipitating沉淀

pptn precipitation沉淀

Pr propyl (normal)丙基

prac.practically实际上

prep.prepare制备

press.pressure压力

prepd prepared制备的

prepg preparing制备

prepn preparation制备

psi pounds per square inch磅/英寸2[=0.453592千克/(6.45100×10-4米2)]

psia pounds per square inch alsolute磅/英寸2(绝对压力)

pt pint品脱(=0.5682615升)

purifn purification精制

py pyridine(used only in formulas)吡啶

Q qt.quality质量

qual.qualitative(not qualitatively)定性的

quant.quantitative(not quantitatively)定量的

γ希文,消旋(不译)

R red.reduce,还原

red reduction还原,减小

ref.reference 参考文献

rem roentgen equivalent man人体伦琴当量,雷姆

rep roentgen equivalent physical物理伦琴当量

repr.reproduction再生产,再生

res.resolution分辨,分解,离析

resp.respectively分别地

rpm revolution per minute每分钟转数

RNase ribonuclease核糖核酸酶

S sapon.saponification皂化

sapond saponified皂化过的

sapong saponifying皂化

sat.saturate使饱和

satd.saturated饱和的

satg saturating饱和的

satn.saturation饱和,饱和度

sec second(s)秒,仲,第二的

sep.separate分离

sepd separated分离出的

sepg separating分离的

sepn separation分离

sol.soluble可溶的

soln solution溶液

soly solubility(solys.for solubilities is not approved)可溶性,溶解度

sp.gr.specific gravity比重

sp.ht.specific heat比热

sp.vol.specific volume比容

std. standard  标准

suppl. supplement  补篇

sym. symmetrical  对称的

T tech. technical  技术的

temp. temperature  温度

tert. Tertiary  叔(指CH3…C(CH3)2—型烃基)

thermodyn. Thermodynamics  热力学

titrn titration  滴定

U unsym. unsymmetrical  偏,不对称

U. V. ultraviolet  紫外线

V V volt(s)  伏[特]

vac.vacuun  真空

vapor vaporization  汽化

vol.volume (not volatile)  体积

vs versus  对

W W.watt(s)  瓦[特]

wt.weight  重量

wk week  星期

contg. containing包含,容纳

compn. composition

concn.concentration 浓缩,浓度,浓缩物

evapn.evaporation 蒸发,发散,脱水

exts. extraction 摘出术,拔出,取出

pharmacol. pharmacological药理学的

recrystn.recrystallization 重结晶,再结晶

soly solubility 可溶性,溶解度,溶解性

温婉的飞机
美丽的哈密瓜,数据线
2026-01-26 03:48:30
PP是聚丙烯.

ABS、PE、PP、PVC塑料材料的区别

PET 聚对苯二甲酸乙二酯.

PE是聚乙烯.

PVC是聚氯乙烯.

PP是聚丙烯.

ABS是丙烯腈,丁二烯,苯乙烯三者的共聚物。

PEP是聚乙二醇 PEG 和环氧丙烷 PO)两者的共聚物。

①聚氯乙烯(PVC) 它是建筑中用量最大的一种塑料。硬质聚氯乙烯的密度为1.38~1.43g/cm3,机械强度高,化学稳定性好 ②聚乙烯(PE) ③聚丙烯(PP) 聚丙烯的密度在所有塑料中是最小的,约为0.90左右。 聚丙烯常用来生产管材、卫生洁具等建筑制品。 ④聚苯乙烯(PS) 聚苯乙烯为无色透明类似玻璃的塑料。 ⑤ABS塑料 ABS塑料是改性聚苯乙烯塑料,以丙烯睛(A)、丁二烯(B)及苯乙烯(S) 为基础的三组分所组成。

PS:聚苯乙稀

是一种无色透明的塑料材料。具有高于100摄氏度的玻璃转化温度,因此经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等。

http://zh.wikipedia.org/wiki/Image:Polystyrene.png

PP:聚丙烯

是一种半结晶的热塑性塑料。具有较高的耐冲击性,机械性质强韧,抗多种有机溶剂和酸碱腐蚀。在工业界有广泛的应用,是平常常见的高分子材料之一。澳大利亚的钱币也使用聚丙烯制作。

结构式:http://zh.wikipedia.org/wiki/Image:Polypropylene_structure.png

PE:聚乙烯

是日常生活中最常用的高分子材料之一,大量用于制造塑料袋,塑料薄膜,牛奶桶的产品。

聚乙烯抗多种有机溶剂,抗多种酸碱腐蚀,但是不抗氧化性酸,例如硝酸。在氧化性环境中聚乙烯会被氧化。

聚乙烯在薄膜状态下可以被认为是透明的,但是在块状存在的时候由于其内部存在大量的晶体,会发生强烈的光散射而不透明。聚乙烯结晶的程度受到其枝链的个数的影响,枝链越多,越难以结晶。聚乙烯的晶体融化温度也受到枝链个数的影响,分布于从90摄氏度到130摄氏度的范围,枝链越多融化温度越低。聚乙烯单晶通常可以通过把高密度聚乙烯在130摄氏度以上的环境中溶于二甲苯中制备。

结构式:- CH2 - CH2 - CH2 - CH2 - CH2 - CH2 - CH2 - CH2

ABS:是丙烯腈、丁二烯、苯乙烯的合成塑料

丙烯腈、丁二烯、苯乙烯三种单体的接枝共聚合产物,取它们英文名的第一个字母命名。它是一种强度高、韧性好、综合性能优良的树脂,用途广泛,常用作工程塑料。工业上多以聚丁二烯胶乳或苯乙烯含量低的丁苯橡胶为主链,与丙烯腈、苯乙烯两种单体的混合物接枝共聚合制得。实际上它往往是含丁二烯的接枝聚合物与丙烯腈-苯乙烯共聚物SAN或称 AS的混合物。近年来也有先用苯乙烯、丙烯腈两种单体共聚,然后再与接枝共聚的ABS树脂以不同比例混合,以制得适应不同用途的各种 ABS树脂。20世纪50年代中期已开始在美国工业化生产。

工业生产方法 可分两大类:一类是将聚丁二烯或丁苯橡胶与SAN树脂在辊筒上进行机械共混,或将两种胶乳共混,再共聚;另一类是在聚丁二烯或苯乙烯含量低的丁苯胶乳中加入苯乙烯和丙烯腈单体进行乳液接枝共聚,或再与SAN树脂以不同比例混合使用。

结构、性质和应用 在ABS树脂中,橡胶颗粒呈分散相,分散于SAN树脂连续相中。当受冲击时,交联的橡胶颗粒承受并吸收这种能量,使应力分散,从而阻止裂口发展,以此提高抗撕性能。

接枝共聚合的目的在于改进橡胶粒表面与树脂相的兼容性和粘合力。这与游离 SAN树脂的多少和接枝在橡胶主链上的 SAN树脂组成有关。这两种树脂中丙烯腈含量之差不宜太大,否则兼容性不好,会导致橡胶与树脂界面的龟裂。

ABS树脂可用注塑、挤出、真空、吹塑及辊压等成型法加工为塑料,还可用机械、粘合、涂层、真空蒸着等法进行二次加工。由于其综合性能优良,用途比较广泛,主要用作工程材料,也可用于家庭生活用具。由于其耐油和耐酸、碱、盐及化学试剂等性能良好,并具有可电镀性,镀上金属层后有光泽好、比重轻、价格低等优点,可用来代替某些金属。还可合成自熄型和耐热型等许多品种,以适应各种用途。

PET:聚对苯二甲酸乙二醇酯

对苯二甲酸与乙二醇的聚合物。英文缩写为PET,主要用于制造聚对苯二甲酸乙二酯纤维中国商品名为涤纶。这种纤维强度高,其织物穿著性能良好,目前是合成纤维中产量最高的一个品种,1980年世界产量约510万吨,占世界合成纤维总产量的49%

性质 分子结构的高度对称性和对亚苯基链的刚性,使此聚合物具有高结晶度、高熔融温度和不溶于一般有机溶剂的特点,熔融温度为257~265℃;它的密度随着结晶度的增加而增加,非晶态的密度为1.33克/厘米^3,拉伸后由于提高了结晶度,纤维的密度为1.38~1.41克/厘米^3,从X射线研究,计算出完整结晶体的密度为1.463克/厘米^3。非晶态聚合物的玻璃化温度为67℃;结晶聚合物为81℃。聚合物的熔化热为 113~122焦/克,比热容为1.1~1.4焦/克.开,介电常数为 3.0~3.8,比电阻为10^11 10^14欧.厘米。PET不溶于普通溶剂,只溶于某些腐蚀性较强的有机溶剂如苯酚、邻氯苯酚、间甲酚、三氟乙酸的混合溶剂,PET纤维对弱酸、弱碱稳定。

应用 主要做合成纤维的原料。短纤维可与棉花、羊毛、麻混纺,制成服装用纺织品或室内装饰用布;长丝可做服装用丝或工业用丝,如用于滤布、轮胎帘子线、降落伞、输送带、安全带等。薄膜可作片基,用于感光胶片、录音磁带。注射模塑件可做包装容器。

PVC:聚氯乙烯

是一种使用一个氯原子取代聚乙烯中的一个氢原子的高分子材料。

聚氯乙烯的最大特点是阻燃,因此被广泛用于防火应用。但是聚氯乙烯在燃烧过程中会释放出盐酸和其他有毒气体。

结构式:- CH2 - CHCl - CH2 - CHCl - CH2 - CHCl -

POM:聚甲醛

学名为聚氧亚甲基,是一种热塑性结晶聚合物。英文缩写为POM。结构式为 CH —O ,1942年以前,甲醛聚合得到的多半是聚合度不高、容易受热解聚的聚氧亚甲基二醇HO CH O H,其中 =8~100 的为多聚甲醛; 超过100的为 -聚甲醛,1955年前后,美国杜邦公司由甲醛聚合得到甲醛均聚物,即均聚甲醛,商品名为Delrin。美国塞拉尼斯公司由三聚甲醛出发,制得与少量二氧五环或环氧乙烷的共聚物,即共聚甲醛,商品名为Celcon。

性质 聚甲醛很容易结晶,结晶度达70%;通过高温退火,可增加结晶度。均聚甲醛的熔融温度为 181℃,密度为1.425克/厘米 。共聚甲醛的熔点为 170℃左右。均聚甲醛的玻璃化温度为-60℃。酚类化合物是聚甲醛的最佳溶剂。从熔融指数的研究得知,均聚甲醛的分子量分布较窄。除强酸、氧化剂和苯酚外,共聚甲醛对其他化学试剂很稳定,而均聚甲醛还对浓氨水不稳定。经稳定处理的聚甲醛可加热到 230℃仍无显著分解。聚甲醛可用压缩、注射、挤出、吹塑等方法成型,加工温度为170~200℃;也可用机床加工,还可焊接。制品质轻,坚硬,有刚性和弹性,尺寸稳定,摩擦系数小,吸水率低,绝缘性能良好,又耐有机溶剂;可在广泛的温度范围-50~105℃和湿度范围内使用;在各种溶剂和化学试剂作用下,以及大负荷和长时间循环应力下保持性能不变。

ABS、PE、PP、PVC塑料材料的区别,塑料基础知识介绍

儒雅的自行车
忧伤的百褶裙
2026-01-26 03:48:30
在天气较冷的潮湿条件下,戴眼镜的同学在用热水洗脸或从室外进入室内时,眼镜上总是会蒙上一层厚厚的雾气;洗澡后,浴室的镜子上也会出现雾气。这些都是水蒸气在较冷的玻璃上凝结而成的,给人们的生活带来诸多不便。

解决办法常见的有两种:一是在玻璃镜背后镀上电热膜,通电加热以赶走雾气;二是在玻璃表面镀上化学物质,防止雾气在其表面凝结。这两种方法处理玻璃均需在专门工厂进行,因此产品价格昂贵,目前还不能普及到普通家庭,而且前者使用时耗电量大,这与当今倡导节约能源的精神背道而驰。

于是,我们设想通过在玻璃上喷涂溶剂的方法使其变得具有亲水性,使水珠在玻璃表面上形成一层水膜,使平行光折射后仍平行,从而达到防雾的效果。

本课题通过测量水雾在玻璃表面所成接触角的方法,探究并制作一种简便、经济和节能的不结雾玻璃涂层。通过对眼镜和浴室镜子在潮湿条件下的结雾过程的仔细观察,分析玻璃结雾的原因。

我们研究了表面活性剂的物理性质和化学性质,并利用接触角测仪测定了几种溶液涂层的接触角和结雾的效果;同时,研究了涂层种类、镀层方法、提拉速度、镀膜溶液浓度、镀膜溶液厚度等对玻璃防结雾性能的影响。研究结果表明:聚乙二醇6000是一种价格低廉而且能够达到理想防雾效果的镀膜材料,此材料涂层可使玻璃在20天左右的时间内保持透明状态;最佳的镀膜方法是提拉镀膜法,并且在120毫米/小时时,涂层效果最好。从试验获得的数据表明,16%的聚乙二醇溶液能使实验中的接触角最小,配合两层镀膜能使镀膜效果最佳。防雾效果如图所示。

此研究成果可广泛用于眼镜、窗户、汽车挡风玻璃等防雾处理,价格便宜,效果好

危机的电脑
斯文的水蜜桃
2026-01-26 03:48:30
PP是聚丙烯.

ABS、PE、PP、PVC塑料材料的区别

PET 聚对苯二甲酸乙二酯.

PE是聚乙烯.

PVC是聚氯乙烯.

PP是聚丙烯.

ABS是丙烯腈,丁二烯,苯乙烯三者的共聚物。

PEP是聚乙二醇 PEG 和环氧丙烷 PO)两者的共聚物。

①聚氯乙烯(PVC) 它是建筑中用量最大的一种塑料。硬质聚氯乙烯的密度为1.38~1.43g/cm3,机械强度高,化学稳定性好 ②聚乙烯(PE) ③聚丙烯(PP) 聚丙烯的密度在所有塑料中是最小的,约为0.90左右。 聚丙烯常用来生产管材、卫生洁具等建筑制品。 ④聚苯乙烯(PS) 聚苯乙烯为无色透明类似玻璃的塑料。 ⑤ABS塑料 ABS塑料是改性聚苯乙烯塑料,以丙烯睛(A)、丁二烯(B)及苯乙烯(S) 为基础的三组分所组成。

PS:聚苯乙稀

是一种无色透明的塑料材料。具有高于100摄氏度的玻璃转化温度,因此经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等。

http://zh.wikipedia.org/wiki/Image:Polystyrene.png

PP:聚丙烯

是一种半结晶的热塑性塑料。具有较高的耐冲击性,机械性质强韧,抗多种有机溶剂和酸碱腐蚀。在工业界有广泛的应用,是平常常见的高分子材料之一。澳大利亚的钱币也使用聚丙烯制作。

结构式: http://zh.wikipedia.org/wiki/Image:Polypropylene_structure.png

PE:聚乙烯

是日常生活中最常用的高分子材料之一,大量用于制造塑料袋,塑料薄膜,牛奶桶的产品。

聚乙烯抗多种有机溶剂,抗多种酸碱腐蚀,但是不抗氧化性酸,例如硝酸。在氧化性环境中聚乙烯会被氧化。

聚乙烯在薄膜状态下可以被认为是透明的,但是在块状存在的时候由于其内部存在大量的晶体,会发生强烈的光散射而不透明。聚乙烯结晶的程度受到其枝链的个数的影响,枝链越多,越难以结晶。聚乙烯的晶体融化温度也受到枝链个数的影响,分布于从90摄氏度到130摄氏度的范围,枝链越多融化温度越低。聚乙烯单晶通常可以通过把高密度聚乙烯在130摄氏度以上的环境中溶于二甲苯中制备。

结构式:- CH2 - CH2 - CH2 - CH2 - CH2 - CH2 - CH2 - CH2

ABS:是丙烯腈、丁二烯、苯乙烯的合成塑料

丙烯腈、丁二烯、苯乙烯三种单体的接枝共聚合产物,取它们英文名的第一个字母命名。它是一种强度高、韧性好、综合性能优良的树脂,用途广泛,常用作工程塑料。工业上多以聚丁二烯胶乳或苯乙烯含量低的丁苯橡胶为主链,与丙烯腈、苯乙烯两种单体的混合物接枝共聚合制得。实际上它往往是含丁二烯的接枝聚合物与丙烯腈-苯乙烯共聚物SAN或称 AS的混合物。近年来也有先用苯乙烯、丙烯腈两种单体共聚,然后再与接枝共聚的ABS树脂以不同比例混合,以制得适应不同用途的各种 ABS树脂。20世纪50年代中期已开始在美国工业化生产。

工业生产方法 可分两大类:一类是将聚丁二烯或丁苯橡胶与SAN树脂在辊筒上进行机械共混,或将两种胶乳共混,再共聚;另一类是在聚丁二烯或苯乙烯含量低的丁苯胶乳中加入苯乙烯和丙烯腈单体进行乳液接枝共聚,或再与SAN树脂以不同比例混合使用。

结构、性质和应用 在ABS树脂中,橡胶颗粒呈分散相,分散于SAN树脂连续相中。当受冲击时,交联的橡胶颗粒承受并吸收这种能量,使应力分散,从而阻止裂口发展,以此提高抗撕性能。

接枝共聚合的目的在于改进橡胶粒表面与树脂相的兼容性和粘合力。这与游离 SAN树脂的多少和接枝在橡胶主链上的 SAN树脂组成有关。这两种树脂中丙烯腈含量之差不宜太大,否则兼容性不好,会导致橡胶与树脂界面的龟裂。

ABS树脂可用注塑、挤出、真空、吹塑及辊压等成型法加工为塑料,还可用机械、粘合、涂层、真空蒸着等法进行二次加工。由于其综合性能优良,用途比较广泛,主要用作工程材料,也可用于家庭生活用具。由于其耐油和耐酸、碱、盐及化学试剂等性能良好,并具有可电镀性,镀上金属层后有光泽好、比重轻、价格低等优点,可用来代替某些金属。还可合成自熄型和耐热型等许多品种,以适应各种用途。

PET:聚对苯二甲酸乙二醇酯

对苯二甲酸与乙二醇的聚合物。英文缩写为PET,主要用于制造聚对苯二甲酸乙二酯纤维中国商品名为涤纶。这种纤维强度高,其织物穿著性能良好,目前是合成纤维中产量最高的一个品种,1980年世界产量约510万吨,占世界合成纤维总产量的49%

性质 分子结构的高度对称性和对亚苯基链的刚性,使此聚合物具有高结晶度、高熔融温度和不溶于一般有机溶剂的特点,熔融温度为257~265℃;它的密度随着结晶度的增加而增加,非晶态的密度为1.33克/厘米^3,拉伸后由于提高了结晶度,纤维的密度为1.38~1.41克/厘米^3,从X射线研究,计算出完整结晶体的密度为1.463克/厘米^3。非晶态聚合物的玻璃化温度为67℃;结晶聚合物为81℃。聚合物的熔化热为 113~122焦/克,比热容为1.1~1.4焦/克.开,介电常数为 3.0~3.8,比电阻为10^11 10^14欧.厘米。PET不溶于普通溶剂,只溶于某些腐蚀性较强的有机溶剂如苯酚、邻氯苯酚、间甲酚、三氟乙酸的混合溶剂,PET纤维对弱酸、弱碱稳定。

应用 主要做合成纤维的原料。短纤维可与棉花、羊毛、麻混纺,制成服装用纺织品或室内装饰用布;长丝可做服装用丝或工业用丝,如用于滤布、轮胎帘子线、降落伞、输送带、安全带等。薄膜可作片基,用于感光胶片、录音磁带。注射模塑件可做包装容器。

PVC:聚氯乙烯

是一种使用一个氯原子取代聚乙烯中的一个氢原子的高分子材料。

聚氯乙烯的最大特点是阻燃,因此被广泛用于防火应用。但是聚氯乙烯在燃烧过程中会释放出盐酸和其他有毒气体。

结构式:- CH2 - CHCl - CH2 - CHCl - CH2 - CHCl -

POM:聚甲醛

学名为聚氧亚甲基,是一种热塑性结晶聚合物。英文缩写为POM。结构式为 CH —O ,1942年以前,甲醛聚合得到的多半是聚合度不高、容易受热解聚的聚氧亚甲基二醇HO CH O H,其中 =8~100 的为多聚甲醛; 超过100的为 -聚甲醛,1955年前后,美国杜邦公司由甲醛聚合得到甲醛均聚物,即均聚甲醛,商品名为Delrin。美国塞拉尼斯公司由三聚甲醛出发,制得与少量二氧五环或环氧乙烷的共聚物,即共聚甲醛,商品名为Celcon。

性质 聚甲醛很容易结晶,结晶度达70%;通过高温退火,可增加结晶度。均聚甲醛的熔融温度为 181℃,密度为1.425克/厘米 。共聚甲醛的熔点为 170℃左右。均聚甲醛的玻璃化温度为-60℃。酚类化合物是聚甲醛的最佳溶剂。从熔融指数的研究得知,均聚甲醛的分子量分布较窄。除强酸、氧化剂和苯酚外,共聚甲醛对其他化学试剂很稳定,而均聚甲醛还对浓氨水不稳定。经稳定处理的聚甲醛可加热到 230℃仍无显著分解。聚甲醛可用压缩、注射、挤出、吹塑等方法成型,加工温度为170~200℃;也可用机床加工,还可焊接。制品质轻,坚硬,有刚性和弹性,尺寸稳定,摩擦系数小,吸水率低,绝缘性能良好,又耐有机溶剂;可在广泛的温度范围-50~105℃和湿度范围内使用;在各种溶剂和化学试剂作用下,以及大负荷和长时间循环应力下保持性能不变。

ABS、PE、PP、PVC塑料材料的区别,塑料基础知识介绍

留胡子的云朵
阳光的月光
2026-01-26 03:48:30

编译 | 未玖

Science , 04 JUNE 2021, VOL 372, ISSUE 6546

《科学》 2021年6月4日,第372卷,6546期

天文学 Astronomy

The first 5 years of gravitational-wave astrophysics

引力波天体物理学的最初5年

作者:Salvatore Vitale

链接:

https://science.sciencemag.org/content/372/6546/eabc7397

摘要

引力波是由天体加速产生的时空涟漪;是广义相对论的直接推论,于2015年首次被直接观察到。

研究者回顾了引力波探测的前5年。目前已发现了50多个引力波事件,这些事件是由中子星和黑洞等致密物体的合并产生的。

这些信号使人们对致密物体及其前身星的形成有了深刻见解,使广义相对论的严格检验成为可能,并将物质的行为限制在比原子核更高的密度范围内。

发射引力波和电磁波的耦合波可用于探测短伽马射线爆的形成和重元素的核合成,并测量宇宙的局部膨胀率。

Abstract

Gravitational waves are ripples in spacetime generated by the acceleration of astrophysical objectsa direct consequence of general relativity, they were first directly observed in 2015. Here, I review the first 5 years of gravitational-wave detections. More than 50 gravitational-wave events have been found, emitted by pairs of merging compact objects such as neutron stars and black holes. These signals yield insights into the formation of compact objects and their progenitor stars, enable stringent tests of general relativity, and constrain the behavior of matter at densities higher than that of an atomic nucleus. Mergers that emit both gravitational and electromagnetic waves probe the formation of short gamma-ray bursts and the nucleosynthesis of heavy elements, and they measure the local expansion rate of the Universe.

Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow

GRB 190829A余辉中X射线和γ射线的时间和光谱相似性

作者:H.E.S.S. Collaboration, H. Abdalla, F. Aharonian, F. Ait Benkhali, E. O. Angüner, C. Arcaro, et al.

链接:

https://science.sciencemag.org/content/372/6546/1081

摘要

伽马射线爆(GRBs)是银河系外源的γ射线明亮闪烁,之后余辉发射衰减,与恒星核坍塌事件有关。

研究组使用高能立体视野系统(H.E.S.S.),在爆发后4至56小时内观测到GRB 190829A余辉中的超高能(VHE)γ射线。GRB 190829A的低亮度和红移降低了内部和外部吸收,使其本征能谱可测。

在0.18-3.3 TeV的能量之间,该光谱由幂律描述,光子指数为2.07 0.09,类似于X射线光谱。X射线和VHEγ射线光曲线也显示出类似的衰减曲线。

X射线和γ射线波段的这些相似特征挑战了GRB余辉发射场景。

Abstract

Gamma-ray bursts (GRBs), which are bright flashes of gamma rays from extragalactic sources followed by fading afterglow emission, are associated with stellar core collapse events. We report the detection of very-high-energy (VHE) gamma rays from the afterglow of GRB 190829A, between 4 and 56 hours after the trigger, using the High Energy Stereoscopic System (H.E.S.S.). The low luminosity and redshift of GRB 190829A reduce both internal and external absorption, allowing determination of its intrinsic energy spectrum. Between energies of 0.18 and 3.3 tera–electron volts, this spectrum is described by a power law with photon index of 2.07 0.09, similar to the x-ray spectrum. The x-ray and VHE gamma-ray light curves also show similar decay profiles. These similar characteristics in the x-ray and gamma-ray bands challenge GRB afterglow emission scenarios.

材料科学 Materials Science

Tough hydrogels with rapid self-reinforcement

可快速自我强化的坚韧水凝胶

作者:Chang Liu, Naoya Morimoto, Lan Jiang, Sohei Kawahara, Takako Noritomi, Hideaki Yokoyama, et al.

链接:

https://science.sciencemag.org/content/372/6546/1078

摘要

大多数坚韧的水凝胶通过引入能够耗散输入能量的牺牲结构来增强。然而,由于牺牲损伤不能迅速恢复,这些凝胶的韧性在连续循环加载过程中大幅下降。

研究组提出了一种基于应变诱导结晶的水凝胶无损伤增强策略。对于聚乙二醇链高度取向并在大变形下相互暴露的滑动交联凝胶,结晶度形成并随着拉伸和收缩而软化,导致拉伸能几乎100%地快速恢复,以及6.6-22 MJ/m2的优良韧性,这比聚乙二醇共价交联均质凝胶的韧性大一个数量级。

Abstract

Most tough hydrogels are reinforced by introducing sacrificial structures that can dissipate input energy. However, because the sacrificial damage cannot rapidly recover, the toughness of these gels drops substantially during consecutive cyclic loadings. We propose a damageless reinforcement strategy for hydrogels using strain-induced crystallization. For slide-ring gels in which polyethylene glycol chains are highly oriented and mutually exposed under large deformation, crystallinity forms and melts with elongation and retraction, resulting both in almost 100% rapid recovery of extension energy and excellent toughness of 6.6 to 22 megajoules per square meter, which is one order of magnitude larger than the toughness of covalently cross-linked homogeneous gels of polyethylene glycol.

物理学 Physics

Establishing gold and platinum standards to 1 terapascal using shockless compression

用无冲击压缩法建立1太帕金和铂标准

作者:D. E. Fratanduono, M. Millot, D. G. Braun, S. J. Ali, A. Fernandez-Pañella, C. T. Seagle, et al.

链接:

https://science.sciencemag.org/content/372/6546/1063

摘要

新技术突破了1太帕以上高压物理学的前沿,导致了新发现,为凝聚态物质理论和先进数值方法提供了严格测试。然而,绝对确定压力状态的能力仍是一个挑战,需要良好校准的压密基准材料。

为了得到了金和铂的准绝对、高精度、压密状态方程,研究组在国家点火装置和Z机器上进行了无冲击动态压缩实验,并推导出两个实验约束的太帕条件下的压力标准。

建立极端压力的精确实验测定将有助于更好地将实验与理论联系起来,为提高人们理解这些极端条件下的物质反应而铺路。

Abstract

New techniques are advancing the frontier of high-pressure physics beyond 1 terapascal, leading to new discoveries and offering stringent tests for condensed-matter theory and advanced numerical methods. However, the ability to absolutely determine the pressure state remains challenging, and well-calibrated pressure-density reference materials are required. We conducted shockless dynamic compression experiments at the National Ignition Facility and the Z machine to obtain quasi-absolute, high-precision, pressure-density equation-of-state data for gold and platinum. We derived two experimentally constrained pressure standards to terapascal conditions. Establishing accurate experimental determinations of extreme pressure will facilitate better connections between experiments and theory, paving the way toward improving our understanding of material response to these extreme conditions.

化学 Chemistry

CO2 electrolysis to multicarbon products in strong acid

强酸中电解CO 2 生成多碳产物

作者:Jianan Erick Huang, Fengwang Li, Adnan Ozden, Armin Sedighian Rasouli, F. Pelayo García de Arquer, Shijie Liu, et al.

链接:

https://science.sciencemag.org/content/372/6546/1074

摘要

二氧化碳电还原(CO2R)作为一条将碳排放转化为有价值的化学品和燃料的颇有前景的途径,正被积极研究中。

然而,投入二氧化碳中有效还原的比例通常很低,对于多碳产品来说小于2%;在碱性和中性反应器中,其余部分与氢氧化物反应生成碳酸盐。

酸性电解质可以克服这一限制,但在这些条件下,析氢占主导地位。研究组报道称,在电化学活性位点附近浓缩钾离子会加速CO2活化,使酸中的CO2有效。

研究组在pH<1的铜上实现了CO2R,单次CO2利用率为77%,在电流密度为1.2 A/cm2、全电池电压为4.2 V时,对多碳产品(乙烯、乙醇和1-丙醇)的转化效率为50%。

Abstract

Carbon dioxide electroreduction (CO2R) is being actively studied as a promising route to convert carbon emissions to valuable chemicals and fuels. However, the fraction of input CO2 that is productively reduced has typically been very low, <2% for multicarbon productsthe balance reacts with hydroxide to form carbonate in both alkaline and neutral reactors. Acidic electrolytes would overcome this limitation, but hydrogen evolution has hitherto dominated under those conditions. We report that concentrating potassium cations in the vicinity of electrochemically active sites accelerates CO2 activation to enable efficient CO2R in acid. We achieve CO2R on copper at pH <1 with a single-pass CO2 utilization of 77%, including a conversion efficiency of 50% toward multicarbon products (ethylene, ethanol, and 1-propanol) at a current density of 1.2 amperes per square centimeter and a full-cell voltage of 4.2 volts.

地球科学 Earth Science

Antarctic surface temperature and elevation during the Last Glacial Maximum

末次冰盛期南极地表温度和海拔

作者:Christo Buizert, T. J. Fudge, William H. G. Roberts, Eric J. Steig, Sam Sherriff-Tadano, Catherine Ritz, et al.

链接:

https://science.sciencemag.org/content/372/6546/1097

摘要

极地冰芯中的水稳定同位素是古气候重建中广泛使用的温度指标,但在东南极洲的校准仍具有挑战性。

研究组利用钻孔测温和七个冰芯的积雪特性,重建了南极末次冰盛期最大地表冷却的幅度和空间格局。

南极西部地区相对于前工业化时期降温约10 。南极东部地区降温4-7 ,这与包括冰芯空气含量数据所显示的地形变化影响在内的全球气候模型结果一致,但比用水稳定同位素校准的现代空间梯度所显示的要小。

冰川期南极逆温改变使该预测与水同位素观测相一致。

Abstract

Water-stable isotopes in polar ice cores are a widely used temperature proxy in paleoclimate reconstruction, yet calibration remains challenging in East Antarctica. Here, we reconstruct the magnitude and spatial pattern of Last Glacial Maximum surface cooling in Antarctica using borehole thermometry and firn properties in seven ice cores. West Antarctic sites cooled ~10 C relative to the preindustrial period. East Antarctic sites show a range from ~4 to ~7 C cooling, which is consistent with the results of global climate models when the effects of topographic changes indicated with ice core air-content data are included, but less than those indicated with the use of water-stable isotopes calibrated against modern spatial gradients. An altered Antarctic temperature inversion during the glacial reconciles our estimates with water-isotope observations.

时尚的滑板
沉静的酒窝
2026-01-26 03:48:30
★植物组织培养(PlantTissueCulture):是指通过无菌操作分离植物体的一部分(外植体explant),接种到培养基上,在人工控制的条件下(包括营养、激素、温度、光照、湿度)进行培养,使其产生完整植株的过程。(主要有原生质体(Protoplast),悬浮细胞,组织(愈伤组织Callus、茎尖分生组织),器官(胚,花药,子房,根和茎)的培养。其中最常见的是愈伤组织培养。)

★愈伤组织(Callus):原指植物在受伤之后于伤口表面形成的一团薄壁细胞,在组培中则指人工培养基上由外植体长出来的一团无序生长的薄壁细胞。

★植物细胞全能性(Cellulartotipotency):任何具有完整细胞核的植物细胞,都拥有形成一个完整植珠所必须的全部遗传信息和发育成完整植株的能力。(Haberlandt,1902)

★微(快)繁步骤(micropropagation):

母株(完整)→外植体(母株的一小部分,种子亦可)→接种到培养基上→长芽(继代增殖)→长根(试管外生根亦可)→练苗,驯化→完整植株

★组培发展简史:细胞学说:Schleiden和Schwann。1.探索:20世纪初,Haberlandt提出“细胞全能性”(1902);1904年,Hanning培养萝卜和辣根菜的胚成功;Laibach(1925,1929)亚麻种间杂种胚培养成功,证明胚培养在植物远缘杂交上可利用;1922年,Robiins(美)和Kotte(德)离体根尖培养成功。2.奠基:Gautheret,White和Nobecourt,组培奠基人。White和Gautheret发现了B族维生素和生长素;Skoog(1944)和Skoog和崔(1951)等发现腺嘌呤和生长素的比例控制芽和根的形成,Overbeek等(1941)首次将椰子汁(CM)作为添加剂,Steward等在胡萝卜组培也使用CM;1952年,Morel和Martin首次证实通过茎尖离体培养可获无病毒植株;1953-1954年,Muir单倍体培养获得成功;1955年,Miller分离出激动素(KT);1957年,Skoog和Miller提出植物激素控制器官形成的概念;1958年,Steward首次证实Haberlandt的细胞全能性设想;Wickson和Thimann指出CTK打破腋芽休眠;Murashige发展快繁技术;1958-1959年,Reinert和Steward胡萝卜愈伤组培中形成体细胞胚。3.迅速发展:1971年,Takebe首次由烟草原生质体获得再生植株;1972年,Carlson获得烟草的第一个体细胞杂种;1964年,Guha和Maheshwari由毛曼佗罗离体花药培养胚;1960年,Morel提出离体无性繁殖兰花。……(具体seesee书本或课件)

★组培意义:1、基础理论研究(试验体系的准确性和可重复性,广泛用于细胞、组织的代谢生理及其它生化等方面的研究(如分化问题))。2、应用研究(无性繁殖系快速繁殖的生产、试管苗的商品化,遗传育种,种质保存,克服远缘杂交,种质资源创新,获得转基因植株)。

★组培应用前景:1、作物育种上的应用(1、花药和花粉培养2、胚胎培养3、细胞融合4、基因工程5、培养细胞突变体6、种质保存)2、作物脱毒和快繁上的应用(马铃薯,兰花)3、在植物有用产物生产上的应用4、在遗传、生理、生化和病理研究上的应用。

★植物激素调控:auxin/CTK>1(促进生根);=1(愈伤组织);<1(促进发芽)

★脱分化(dedifferentiation):在组织培养中,不分裂的静止细胞,放在一定的培养基上后,细胞重新进入分裂状态。一个成熟的细胞转变为分生状态的过程叫脱分化。

★再分化(redifferentiation):一个成熟的植物细胞经历了脱分化后,能再分化而形成完整植株的过程。

★再分化途径:1、器官发生方式(是指在外植体或愈伤组织的不同部位分别独立形成茎、芽和根,它们为单极性结构,各有维管束与外植体或愈伤组织相连,但在不定芽和不定根之间没有共同的维管束将两者连在一起。)2、胚胎发生方式(外植体直接或通过愈伤组织或悬浮培养产生胚状体。)

★胚状体(embryoid):是指在组织培养中起源于一个非合子细胞,经过胚胎发生和胚胎发育过程形成的具有双极性的胚状结构。其特点有:1、不同于合子胚,因为它不是两性细胞融合产生。2、不同于孤雌/雄胚,因为它不是无融合生殖的产物。3、不同于器官发生方式形成的茎芽和根,因为它经历了与合子胚相似的发育过程且成熟的胚状体是双极性结构。

★器官发生途径:1、茎尖或茎段培养产生腋芽。2、直接不定芽发生:器官的小块组织在培养基上培养直接诱导产生不定芽。3、间接不定芽发生:器官的小块组织在培养基上培养后先去分化形成愈伤组织,再经分化诱导产生不定芽或不定根。

★胚胎发生方式:1、直接胚胎发生(从培养物中的器官组织,细胞或原生质体直接分化成胚,中间不经过愈伤组织)2、间接胚胎发生(外植体先愈伤化,然后由愈伤组织细胞分化成熟)

球型胚(globalembryo)→心型胚(heart-stageembryo)→鱼雷型胚(torpedo-stageembryo)→子叶型胚(cytoledon-stageembryo)

★人工种子:是指利用细胞的全能性将离体培养所产生的体细胞或具有发育成完整植株能力的分生组织(胚状体,茎和茎段)包裹在一层含有营养物质并具有保护功能的外膜内形成在适宜条件下能够发育成完整植株的小颗粒。

结构包括人工种皮,胚状体(分生组织),人工胚乳。

★植物组织培养应用步骤:1、获得无菌外植体,建立起无菌培养体系。2、进行增殖,不断产生不定芽或胚状体。3、生根培养。4、试管苗移栽。

★外植体选择的原则:1、必须含有活细胞。2、幼嫩组织所含活跃分裂的细胞比例高。3、母珠必须健康并且无任何腐烂或生病的迹象。4、母珠必须活跃生长并且不会立即进入休眠。

★外植体的确定选择:1、茎尖(园艺植物组织培养中应用最多,繁殖率高,不易发生遗传变异,但取材有限);2、茎段(采用嫩茎的切段促进腋芽萌发,取材容易);3、叶(幼嫩叶片组织通过愈伤组织或不定芽分化产生植株,取材容易,操作方便,但易发生变异);4、花球和花蕾;5、种子、根、块根、块茎、花瓣等。

★消毒的原则:消毒剂与外植体应接触足够长的时间以除去外植体表面的微生物,但应尽量减少对外植体细胞的破坏。

★消毒方法:冲洗植物材料除去泥土等大的颗粒→浸入70-75%乙醇,有利于植物表面的浸湿→用5-20%NaClO溶液(加1滴表面活性剂)表面消毒5-10min→用无菌水冲洗至少3遍→与消毒剂接触过的切面在转移到无菌培养基前应切去,因为消毒剂会杀死外露的细胞从而影响营养吸收→切取外植体,通常为10mm的茎段和直径10mm的叶片部分(太大激素作用减弱,太小则不易成活)。

★消毒注意事项:1、表面消毒剂对植物组织是有害的,应正确选择消毒剂的浓度和处理时间,以减少组织的死亡。2、在表面消毒后,必须用无菌水漂洗材料3次以上以除去残留杀菌剂,但若用酒精消毒,则不必漂洗。3、与消毒剂接触过的切面在转移到无菌基质前需将其切除,因为消毒剂会阻碍植物细胞对基质中营养物质的吸收。4、若外植体污染严重则应先用流水漂洗1小时以上或先种子培养得到无菌种苗,然后用其各个部分建立组织培养。5、HgCl2效果最好,但对人的危害最大,用后要用水冲洗至少5次。

★茎尖培养:切取茎的先端部分或茎的分生组织部分进行无菌培养。

步骤:无菌培养的建立→芽的诱导→生根培养→试管苗的移栽(遗传变异)

注意点:试管苗移栽过程中,由异养→自养,恒温→温差,无菌→有菌,光弱→光强,湿度高→湿度低,应该保持苗的水分平衡(加塑料薄膜和使用喷雾机),选择适当的基质,注意光、温的条件。

★安祖花:叶片→诱导愈伤组织→诱导芽→诱导根生根

↓↑

增殖→切根→芽的增殖→再培养→壮苗→生根之前

不定胚的诱导:组织片→含有2,4-D的培养基上→产生不定胚→去除2,4-D的培养基上→球型胚→心型胚→鱼雷型胚→植物体。

不定芽的诱导:用BA诱导,在球、心、鱼雷时要去除BA。

★胚胎培养的意义:1、对于胚乳发育不良或胚与胚乳间不亲和的材料进行离体胚培养,有助于远缘杂交获得成功。2、为研究胚在各个发育时期的营养需要提供了一个很好的机会。3、能对整个胚及其各部分的再生潜力进行研究。

★胚培养中的两个重要问题:1、胚剥离的方法:剥离的最佳时间是授粉后13-15天。2、培养基的成分:找到合适的培养基,在胚培养中加入蔗糖(能源、保持适当渗透压)。

★花药培养方法:

取材地点:大田和温室

取材:大多采用单核期的花粉培养,因诱导产生愈伤组织或胚状体的频率较高。

花粉时期的确定:常采用醋酸洋红-碘化钾染色,再压片镜检。实际操作中常根据花蕾长度、大小与花粉年龄的相关性确定。

预处理:低温、高温或交叉处理

培养基:有MS,Nitsch,Miller,B5和N6。低浓度的生长素和细胞分裂素相结合,高浓度的蔗糖对花粉的诱导生长有一定作用。培养基中加入活性炭对提高诱导频率也有一定效果。

消毒、接种和培养:花药→在烧杯中研碎(有溶剂)→过滤→浓度梯度离心→收集中间层→离心

单倍体的鉴定和加倍处理:单倍体用2%秋水仙素处理24小时,愈伤组织细胞自然加倍。

★花粉花药培养的意义:1、在单倍体细胞中只有一个染色体组,表现型和基因型一致,一旦发生突变,无论是显性还是隐性,在当代就可表现出来,因此单倍体是体细胞遗传研究和突变育种的理想材料。2、在品种间杂交育种过程中,通过F1代花药培养得到单倍体后,经染色体加倍立即成为纯合二倍体,从杂交到获得不分离的杂种后代单株只需要2个世代和常规育种相比,显著缩短了育种年限。

★花药培养步骤(用改良的NLN培养基):

F1代花药→形成小孢子→分离小孢子→形成愈伤组织→形成胚→单倍体植株→纯合二倍体

形成胚→单倍体植株→染色体加倍形成纯合二倍体

★原生质分离:酶(纤维素酶,离析酶)

步骤:叶片表面消毒→去除表皮→叶碎片漂浮在含有酶和渗透压稳定剂的溶液中→培育→原生质体沉到培养皿底部→除去酶溶液→将原生质体移入CPW清洗→离心→清洗基质两次→重悬浮于培养基→除去小的个体,用血球计计数→调整到合适的密度重悬浮于培养基。

★原生质体的培养:

培养基:MS+NAA2.0ppm+BA0.5ppm+3%蔗糖+9%甘露醇

注意:1、原生质体分离后,非常脆弱,需要渗透压保护剂的保护直到细胞壁形成。

2、针对不同的研究对象,培养基中生长素和细胞分裂素的水平要做适当调整。

影响原生质体培养的因素:营养需求(NH4+不能过多),渗压剂,培养密度(105/mL),

贮藏条件(通常在黑暗处)。

培养方法:液体基质培养法,半液体基质培养法,固体基质培养法,看护培养。

固体培养的步骤:原生质体移入培养基→1体积含原生质体的培养基与1体积含琼脂糖(40℃)的培养基混和→倒转培养皿在25℃下培养→原生质体重新产生细胞壁并分裂成细

胞团→细胞团于琼脂糖基质中传代培养,培养基中应减少渗压剂以利于愈伤组织的形成→诱导分化成植物的根,茎。

★原生质体分离培养的意义:1、除去了细胞壁为植物细胞之间的融合扫平了障碍,同时叶为制造新杂种开辟了道路。2、原生质体可摄入外源DNA,细胞器、细菌或病毒颗粒,这些特性与植物全能性相结合为高等植物的遗传饰变打下基础。3、获得细胞无性系和选育突变体的优良起始材料。

★原生质的融合概念:从同一个种或不同种分离得到的原生质体在适当的条件下融合得到细胞核物质和细胞质物质的混和。

★体细胞杂交:完全不经过有性过程,只通过体细胞融合制造杂种的方法称为体细胞杂交。

★原生质体融合方法:自发融合,诱发融合(NaNO3处理,高PH-高浓度钙离子处理,PEG处理,电融合)

PEG法:

取材(1、从绿色叶片上分离得到的原生质体。2、来源于同种或不同种的细胞悬浮培养物上分离出的无色原生质体)-这样异核体和母体就可分辨开。

→分别取在含有13%甘露醇的CPW上悬浮培养的原生质体(密度2×105)4mL,混和在100g的转速下离心10min,将原生质体放入0.5%基质→加入30%(w/v)PEG2mL,使原生质体的外膜不稳定,放置10min→每隔5min加入原生质体培养基稀释PEG以促进原生质体融合。每次稀释后轻微摇动原生质体就会重悬浮→混和物在100g下离心10min,离心后在不含PEG的培养基中清洗→离心,在相同的培养基上重悬浮。

PEG法的缺点:有毒,融合率低:不超过1%

对称融合:父母均未处理,对后代贡献一样。

不对称融合:父母本在后代中贡献不同,射线处理,化学处理

IOA(不影响核的分裂而影响细胞质分裂)

★胞质杂种:利用原生质体融合技术,使两种不同来源的核外遗传成分(细胞器)与一个特定的核基因组结合在一起,就形成胞质杂种。

体细胞杂种和胞质杂种的鉴定方法:形态学,细胞学,分子遗传学。

★园艺植物脱毒:

热处理脱毒:

原理:在高于正常温度下,植物组织中的很多病毒可被部分或完全钝化,而很

少伤害甚至不伤害寄主组织。

方法:热水处理(对休眠芽效果好),热空气处理(对活跃生长的茎尖效果好)

热空气处理方法:空气温度35-40℃,持续时间:随处理对象不同而变化,几分钟-几星期。

注意点:不能一下子放入高温中,要逐步加温使之适应。并保持湿度和光照。

局限性:1、并不是所有的病毒都对热处理敏感

2、对等径和线状的病毒及类菌质体引起的病害是有效的。

3、热处理后只有一小部分植株能够存活

★茎尖分生组织:指茎的最幼龄叶原基上方的一部分,最大直径约100μm,最大长度为

250μm。

★茎尖:由顶端分生组织及其下方的1-3个叶原基一起构成的。

★茎尖培养脱毒:

原理:病毒在植物体内的分布是不均匀的,在受感染的植物中顶端分生组织通常不含或仅含低浓度的病毒,其它的植物组织离茎尖的距离越远则病毒含量越高。

影响茎尖培养脱毒效果的因素:培养基,外植体大小(脱毒效果跟外植体大小呈负相关,茎尖的成活率与茎尖大小呈正相关),贮存条件(光照培养优于暗培养),外植体的生理状态(活跃生长的芽,顶芽的效果比腋芽好,切割芽的时间)

★通过愈伤组织培养脱毒:

原理:在由受感染的组织形成的愈伤组织中,并非所有的细胞都均匀一致地带有该种病原体。

产生原因:1、病毒的复制速度跟不上细胞的增殖速度

2、有些细胞通过突变获得了抗病毒的特征。

★脱毒植物的鉴定:外观判断法,指示植物法(接种鉴定法),抗血清鉴定法,电镜检查法,

分光光度法,酶联血清免疫吸附反应鉴定法。

指示植物法:利用病毒在其它植物上产生的枯斑作为鉴别病毒的标准。

指示植物:专门选用以产生局部病斑的寄主称为指示植物。

★无毒原种的保存:种在温室或防虫罩内灭过菌的土壤中,隔离区内,通过组织培养繁殖。

组培常见英汉对照

abortion(败育)adenine(腺嘌呤)agar(琼脂)anther(花粉)apical(顶端的)aseptic(无菌的)auxin(生长素)axillarybud(腋芽)callus,calli(愈伤组织)cellulartotipotency(细胞全能性)cellulase(纤维素酶)cellulose(纤维素)centrifuge(离心)chloroplast(叶绿体)chromosomedoubling(染色体加倍)colony(细胞团,菌落)cybrid(cytoplasmichybrid,胞质杂种)cytokinin(细胞分裂素)cytoplasm(细胞质)degeneration(败育)dedifferentiation(脱分化)redifferentiation(再分化)dicotyledonous(双子叶的)dihaploid(二单倍体)diploid(二倍体)dissect(剥离)dormancy(休眠)eliminate(除去)embryo(胚胎)embryoid(胚状体)embryogenesis(胚胎发生方式)epidermis(表皮,上表皮)excise(切除)explant(外植体)filterpaper(滤纸)gelose(琼脂糖)genetype(基因型)germplasm(种质)globalembryo(球型胚)haploid(单倍体)heterokaryon(异核体)homozygous(纯合的)hormone(激素)interspecific(种间的)intraspecific(种内的)invitro(体外)invivo(活体)kinetin(激动素)macerozyme(离析酶)malesterile(雄性不育)medium(培养基)membrane(膜)meristem(分生组织)meristemculture(茎尖培养)micropropagation(微繁)microspore(小孢子)monocotyledon/moncots(单子叶植物)nodculture(茎段培养)organelle(细胞器)organgenesis(器官发生方式)osmotic(渗透的)pith(髓)plantlet(小植株,苗)pollenculture(花粉培养)pollinate(授粉)protocorm(PLB)原球茎protoplastfusion(原生质体融合)rapidpropagation(快繁)regeneration(再生)self-incompatibility(自交不亲和)shoottip(茎尖)sodiumhypochlorite(NaClO)somaticembryo(体细胞胚)somatichybridization(体细胞杂交)somatichybrid(体细胞杂种)stem(茎)stemtipculture(茎尖培养)sterilant(消毒剂)steriledistilledwater(蒸馏水)sterilization(消毒)stockplant(母株)subculture(继代)sucrose(蔗糖)terminalbud(顶芽)transfer(转移)viruseradication(脱毒)

常用缩略语

ABA(脱落酸)CM(椰子汁)CPW(细胞-原生质体清洗液)

DMSO(二甲基亚砜)IAA(吲哚乙酸)IBA(吲哚丁酸)

KT(激动素)NAA(萘乙酸)PEG(聚乙二醇)

LH(液氮)CH(水解酪蛋白)GA3(赤霉素)

魔幻的大侠
活力的飞鸟
2026-01-26 03:48:30
制动液的要求:

(1)应有较高的沸点。现代汽车在行驶中的制动比较频繁,制动鼓(盘)的温度不断升高,如使用沸点较低的制动液,常会在管路中产生气阻而导致制动失灵,因此制动液的蒸发性要低,不易在高温下汽化。

(2)适宜的高温粘度和良好的低温流动性。制动液在各种条件下都能及时传递压力,并同时使传动机构中的运动件得到一定的润滑。

(3)具有抗氧化、抗腐蚀和防锈的性能。制动液长期与金属相接触应不会因氧化而产生胶状物和腐蚀性物质,或因锈蚀而变色,甚至形成坑点。

(4)吸湿性低、溶水性好、沸点下降少。即使有水分进入制动液,要求能形成微粒而和制动液均匀混合,不产生分离和沉淀现象。

(5)对橡胶的适应性好。制动液对橡胶件不应有溶胀作用,否则会使其失去应有的密封作用,因此制动液对橡胶件要有良好的适应性。

制动液的主要性能

1)良好的粘温性能和低温性能 制动过程中,由于摩擦发热可使蹄片温度高达250°C。其热量有一部分传给制动液,使其工作温度达70~90°C,在下长坡等路况行驶需频繁制动时,其工作温度可达成110°C,大型载货汽车的制动液,有时可高达成150°C,而在冬季某些地区的制动液温度又可低至-40°C以下,因此要求制动液有良好的粘温性能和低温流动性能。适宜的高温粘度、较低的凝点和低温粘度。

2)适当的润滑性 为了保持制动缸和橡皮碗能很好地滑动,要求制动液有适当的润滑性,这可通过台架试验根据活塞和缸的摩擦状态最后判断。

3)保证制动安全可靠不产生气阻 在现代高速汽车中,行驶时经常制动而产生大量的摩擦热,使制动系统温度升高,如使用沸点低、易于蒸发的制动液,则在高温时会由于制动液的蒸发,使局部制动系统的管道内充满蒸气,产生气阻,引起制动失灵。因此新型汽车多要求制动液应具有较高的沸点,较低的蒸发性,以避免减少气阻的产生。

4)较好的防腐蚀性 制动液应对制动器各种金属零部件有较好的防腐蚀性。

5)良好的化学安定性 制动液长期在高湿作用下使用,因此要求制动液不产生热分解和重合,而使油品增粘,也不允许生成油泥沉积物。同时要求互溶性好,当与另一种制动液混合时,不能产生分层或沉淀,影响使用。

6)良好的与橡胶的适应性 在制动系统中有许多橡胶密封件与皮碗等,用以保持制动系统完全密闭,因此制动液应具有良好的与橡胶密封的适应性,防止橡胶密封件与皮碗因液油而膨胀、机械强度降低。

2.制动液的分类

汽车制动液一般分为如下3类:醇型、矿油型、合成型。

1)醇型制动液

醇型制动液的基本组成是蓖麻油45%~55%和醇55%~45(百分数指质量分数)进行调配,产品润滑性好,原料易得,低温粘度大,工艺简单,但低温性能差,平衡回流沸点低,易产生气阻,与水互溶性差,使用过程中易氧化变质,不能保证安全行车。

2)矿油型制动液

矿油制动液是以精制的柴油馏分经深度脱腊后的组分做为基础油,加入增粘剂、抗氧化剂、防锈剂、染色剂等调合而成。这类制动液的温度适应范围宽、低温性能好,对金属无腐蚀作用。但不能与水及合成制动液混溶,进入少量水后在高温下水气化而产生气阻,影响制动效果,对天然橡胶有溶胀作用,必须使用耐油橡胶密封件。

3)合成型制动液

合成型制动液是目前使用最多的制动液,可分为3类:醇醚型、酯型和硅型。

(1)醇醚型制动液 由润滑剂、稀释剂和添加剂组成,常用的润滑剂有乙二醇、聚丙二醇、环氧乙烷加成物、环氧丙烷的聚合物等,常用的衡释剂有二甘醇醚、三甘醇醚,四甘醇醚等。常用的添加剂有抗氧剂、抗腐蚀剂、防锈剂、抗磨剂、PH值调整剂等。产品性能较为稳定,成本较低,用量最大。其缺点是平衡回流沸点不大高,及湿性强,低温性能差,而且在湿热气候条件下使用时,制动器部件易锈蚀。

(2)酯型制动液 其基础液为羧酸酯与硼酸酯,加入量(质量分数)大约为总量的20%~50%,常用的衡释剂为聚乙二醇的单烷基醚等,常用的添加剂有抗氧化剂、抗腐蚀剂、PH值调整剂等。性能比前者有很大改善。

(3)硅型制动液 一般为烷撑聚醚硅酸酯如聚烷撑乙二醇硅酸酯等,并加有橡胶抗溶胀剂和其他添加剂。这类制动液性能较好,但价格昂贵。

现在我们用的一般都是合成型的制动液,具体型号在车辆的使用手册上面,在车的制动液加注口上面或傍边也会有明显的标注。一定要按标注的型号购买和使用,不得随意提高或降低标准,因为涉及到和活塞皮碗的性能匹配问题。刹车油的型号就是以DOT3、DOT4、DOT5、DOT6等等分类的。

汽车制动液是液压制动系统和液压式离合器操纵机构传递能量的工作介质,必须具有多种适应现代汽车的性能要求,以保证行驶安全。

(1)应有较高的沸点。现代汽车在行驶中的制动比较频繁,制动鼓(盘)的温度不断升高,如使用沸点较低的制动液,常会在管路中产生气阻而导致制动失灵,因此制动液的蒸发性要低,不易在高温下汽化。

(2)适宜的高温粘度和良好的低温流动性。制动液在各种条件下都能及时传递压力,并同时使传动机构中的运动件得到一定的润滑。

(3)具有抗氧化、抗腐蚀和防锈的性能。制动液长期与金属相接触应不会因氧化而产生胶状物和腐蚀性物质,或因锈蚀而变色,甚至形成坑点。

(4)吸湿性低、溶水性好、沸点下降少。即使有水分进入制动液,要求能形成微粒而和制动液均匀混合,不产生分离和沉淀现象。

(5)对橡胶的适应性好。制动液对橡胶件不应有溶胀作用,否则会使其失去应有的密封作用,因此制动液对橡胶件要有良好的适应性。

当制动防抱死系统(ABS)出现故障时,维修人员往往只注重系统中电控系统、执行元件及有关部件的检修,往往忽略了对系统中制动液的检查和更换。由于ABS的工作速度较快,系统增压、减压、保压工作过程速度很高,使车轮产生10~40次/秒的抱死和滚动转换过程。与普通油压制动过程相比,它制动压力高,制动液温度高,因此对制动液的性能要求更加严格。

1.制动液应具备的性能指标

1.1 沸点要高

ABS使用的制动液,首先应保证在炎热夏季和制动频繁的情况下不降低使用性能和不产生气阻。美国各汽车公司使用的制动液DOT3,最低沸点在205℃以上,而现在使用的DOT4沸点则在260℃以上;日本各汽车公司使用的制动液要求最低也在252℃以上。欧洲的波许公司现在也推荐使用DOT4,要求也在260℃以上。因此ABS使用和更换制动液,应保持其沸点在260℃以上为佳。

1.2腐蚀性要低

因为制动液对橡胶件和金属制品件的腐蚀较大,为保证制动系统制动主缸(总泵)、轮缸(分泵)中的皮碗、油封或垫圈、活塞、制动管路不被腐蚀损坏,应采用腐蚀性较低的制动液。

1.3低温流动性要好

ABS制动性能好坏,制动器反应是否良好是关键。因此,ABS使用的制动液的黏度应该低些,即低温流动性要好,以防止冬季使用被冻结而影响制动器的工作。

1.4 理化稳定性要好

制动液在使用过程中,受到加热、冷却和吸湿性后,应保持其化学性能的稳定,以防变质而影响制动系统的制动效能,所以要求定期更换制动液。

1.5吸湿沸点要高

ABS 工作时,制动液温度易升高,因此应选用吸湿沸点较高的制动液。若选用吸湿沸点低的制动液,制动管路容易发生气阻,造成制动效能不良。

常见ABS所用制动液的规格如表1所列。

2.制动液的选用

因为ABS结构复杂,管路较长,所以应选用DOT3或DOT4的醇基型制动液,注意不要使用DOT5硅酮型制动液。

3.ABS制动液的更换周期

因为制动液具有较强的吸湿性。实验证明,当制动液的吸湿率达到3%时,制动液的理化性能降低,即会恶化和变质(见图1),将使制动总泵、分泵、压力调节器、密封件等受到不同程度损伤,也易产生气阻。所以当制动液吸湿率达到3%时,必须更换制动液,一般换油周期规定如表2所列。

4.ABS中空气的排放

ABS更换油液后,必须进行空气的排放,如果ABS中有空气,会严重干扰制动压力的调节,而使ABS功能丧失。对液压调节器中的空气一般要用专用仪器按照特殊的规程将空气排出,有的需要扫描仪顺序使液压调节器中的电磁阀通电工作以排出空气。

以达科(VI)ABS放气为例:达科(VI)ABS的放气需用ETCH-1或T-100专用设备将液压调节器的电动机定位,以使单项阀顶在开通位置,让空气完全释放,具体步骤如下

a.找到液压调节器上前轮放气螺钉;

b.在前轮放气螺丝上安一泄油管;

c.慢慢地拧松放气螺钉1/2~3/4圈(图2);

d.制动液流出,没有气泡时就可关闭;

e.按a~d的步骤再进行后轮放气螺钉上的排气操作;

f.最后按普通制动系统四轮放气的程序放气,放气顺序是右后轮(RR)→左后轮(LR)→右前轮(RF)→左前轮(LF)。

陶醉的硬币
彩色的蜡烛
2026-01-26 03:48:30
目前有种被称谓:FFO的工艺可以借鉴,即可从工艺设计考虑

FFO操作技术是养分与贫缺技术的英文的缩写,是根据丝状菌和普通菌的生长动力学的区别为原理而设计的二段活污方法(大家应知怎样做了吧)

初级为高F/M,0.8左右,低回流比0.06左右,二级为低F/M0.2左右,高回流比0.21左右

哈,只要控制住老丝的生长,问题就好解决了

泡沫主要分化学泡沫和生物泡沫两种。

过时的翅膀
疯狂的朋友
2026-01-26 03:48:30

pp是聚丙烯。

拓展资料:

1、聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90--"0.91g/cm3,是目前所有塑料中最轻的品种之一。

2、聚丙烯也包括丙烯与少量乙烯的共聚物在内。通常为半透明无色固体,无臭无毒。

3、由于结构规整而高度结晶化,故熔点可高达167℃。耐热、耐腐蚀,制品可用蒸汽消毒是其突出优点。密度小,是最轻的通用塑料。缺点是耐低温冲击性差,较易老化,但可分别通过改性予以克服。

4、聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使聚丙烯软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。