光伏接地电阻测量需要第三方检测吗
光伏接地需要第三方检测,光伏发电因其清洁无污染等优点在电力领域得到了广泛应用。光伏系统由于老化、热应力等原因,会导致光伏组件、接线盒、电缆、设备互联线等绝缘损坏,致使载流体对地形成一个可供电流通过的路径,发生接地故障。接地故障可能会产生电弧,存在极大的安全隐患。
对于多路光伏组件,通常针对每一路光伏组件分别设置独立的接地故障检测电路,并分别由独立的控制模块进行控制。
由于各个控制模块之间没有通讯,各路故障检测电路可能同时工作,互相之间会引起接地电阻的变化,相互影响,导致测试结果不准确。
光伏电站使用寿命长达25年以上,前提是设备质量及安装工艺规范,其中,接地是十分重要的一个步骤,接地不当会因设备对地绝缘阻抗过低或漏电流过大而报错,影响发电量,甚至还可能会危害人身安全。那么,光伏电站应该如何正确接地呢?
一、组件侧接地
1、组件边框接地
很多人认为组件与支架均为金属体,直接接触导通,只要做了支架的接地处理就不用再做组件的了。实际上组件铝边框与镀锌支架或铝合金支架都做了镀层处理,满足不了接地要求。而且组件存在着老化问题,可能产生漏电流过大或者对地绝缘阻抗过低问题,如果边框不接地,几年之后,逆变器很可能报相应的故障导致系统不能正常发电。
组件与组件之间的连接
组件与支架之间的连接
2、组件支架接地
光伏组件的防雷接地电阻要求应小于10Ω,逆变器和配电箱接地电阻应小于4Ω。对于达不到接地电阻要求的,通常采用添加降阻剂或选择土壤率较低的地方埋入。
组件及支架防雷接地圆钢
二、逆变器侧接地
1.工作接地
一般工作接地(PE端)接到配电箱里的PE排上,再通过配电箱做接地。
逆变器PE端
2.保护接地
逆变器机身的右侧有一个接地孔是做重复接地,保护逆变器和操作人员的安全。
逆变器接地展示图
三、配电箱侧接地
1、防雷接地
交流侧防雷保护一般由熔断器或断路器和防雷浪涌保护器构成,主要对感应雷电或直接雷或其他瞬时过压的电涌进行保护,SPD的下端接到配电箱的接地排上
2、箱体接地
根据《建筑电气工程施工质量验收规范》6.1.1柜、屏、台、箱、盘的金属框架及基础型钢必须接地(PE)或接零(PEN)可靠装有电器的可开启门,门和框架的接地端子间应用黄绿色铜线连接。
配电箱的柜门与柜体要做跨接线,保证可靠接地,如下图所示:
配电箱的柜门与柜体的连接
光伏电站需从组件侧、逆变器侧、配电箱侧三个方面做好系统的接地,减少后期不必要的运维,以保障系统稳定安全高效的运行。
1
应优先选用自冷式、低损耗电力变压器。
2
当无励磁调压电力变压器不能满足电力系统调压要求时,应采用有载调压电力变压器。
3
主变压器容量可按光伏发电站的最大连续输出容量进行选取,且宜选用标准容量。
光伏方阵内就地升压变压器应按下列原则选择:
1
应优先选用自冷式、低损耗电力变压器。
2
升压变压器容量可按光伏方阵单元模块最大输出功率选取。
3
可选用高压/低压预装式箱式变电站或由变压器与高低压电气元件等组成的敞开式设备。对于在沿海或风沙大的光伏发电站,当采用户外布置时,沿海防护等级应达到ip65,风沙大的光伏发电站防护等级应达到ip54。
4
就地升压变压器可采用双绕组变压器或分裂变压器。
5
就地升压变压器宜选用无励磁调压变压器
光伏发电站及其升压站的过电压保护和接地应符合《交流电气装置的过电压保护和绝缘配合》dl/620和《交流电气装置的接地》dl/t621的规定。光伏方阵场地内应设置接地网,接地网除采用人工接地极外,还应充分利用光伏组件的支架和基础。
光伏方阵接地应连续、可靠,接地电阻应小于4ω。
升压变压器是指将电压瞬间启动,目前国内能有效做到瞬间升压的变压器生产商比较稀少这也是比较遗憾的一点,升压变压器瞬间启动升压能力比较强、升压效果较好。它区别在于无励磁调压开关不具备带负载转换档位的能力,因为这种分接开关在转换档位过程中,有短时断开过程,断开负荷电流会造成触头间拉弧烧坏分接开关或短路,故调档时必须使变压器停电。因此一般用于对电压要求不是很严格而不需要经常调档的变压器。
一、电压法
电压法包括:两线法、三线法、四线法都是电压法。电压法工作原理是:给地电极C和电极E施加一个交流电流I,再测量E点和P点的电势差V,地电阻R等于V/I。
二、电流法
电流法包括:单钳法与双钳法都是电流法电流法能够在不断开地面系统的情况下测量电阻。不需要断开引下线,不需要辅助电极,快速、简便、可靠,并且还包括测量中的接地和整体接地连接电阻
自然界中的一切物质都是由分子组成的,分子又是由原子组成的,而原子是由带正电荷的原子核和一定数量带负电荷的电子组成的。在通常情况下,原子核所带的正电荷数等于核外电子所带的负电荷数,原子对外不显电性。但是,用一些办法,可使某种物体上的电子转移到另外一种物体上。失去电子的物体带正电荷,得到电子的物体带负电荷。物体失去或得到的电子数量越多,则物体所带的正、负电荷的数量也越多。
物体所带电荷数量的多少用电量来表示。电量是一个物理量,它的单位是库仑,用字母C表示。1C的电量相当于物体失去或得到6.25×1018个电子所带的电量。
光伏效应:太阳能电池的工作原理,太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。
2、电流
电荷的定向移动形成电流。电流有大小,有方向。
1)电流的方向:人们规定正电荷定向移动的方向为电流的方向。金属导体中,电流是电子在导体内电场的作用下定向移动的结果,电子流的方向是负电荷的移动方向,与正电荷的移动方向相反,所以金属导体中电流的方向与电子流的方向相反。
2)电流的大小:电学中用电流强度来衡量电流的大小。电流强度就是l秒钟通过导体截面的电量。电流强度用字母I表示,计算公式如下:
式中 I——电流强度,单位安培(A);
Q——在t秒时间内,通过导体截面的电量数,单位库仑(C);
t ——时间,单位秒(s)。
实际使用时,人们把电流强度简称为电流。电流的单位是安培,简称安,用字母A表示。如果1秒内通过导体截面的电量为1库仑,则该电流的电流强度为1安培,习惯简称电流为1安。实际应用中,除单位安培外,还有千安(kA)、毫安(mA)和微安( μA)。
它们之间的关系为:1kA=103A ,1A=10m3A ,1mA=103µA。
电流又分正流电和交流电,太阳能组件,蓄电池等发出来的电是直流电,电流方向不变,但这种电大部分家用电器都用不了,大小和方向都随时间做周期性变化的电流叫交流电,这是我们日常用的电,电流方向变化的快慢叫频率,我国为50Hz,即每秒种变化50次,称之为工频,有一些国家为60Hz。再往上还有中频和高频。
由交流电变成直流电叫整流,这样的设备叫整流器,反过来,由直流电变成变流电叫逆变,这样的设备叫逆变器。
光伏逆变器就是把光伏组件发出来的直流电变成变流电,光伏组件如果没有接入逆变器或者控制器,就形成不了一个回路,这时候没有电流,只有电压。
3、电压
电压用字母V表示,单位为伏特,电场力将1库仑电荷从a点移到b点所做的功为1焦耳,则ab间的电压值就是1伏特,简称伏,用字母V表示。常用的电压单位还有千伏(kV),毫伏(mV)等。
它们之间的关系为:1 kV=103V,l V=103mV。
电压与电流相似,不但有大小,而且有方向。对于负载来说,电流流人端为正端,电流流出端为负端。电压的方向是由正端指向负端,也就是说负载中电压实际方向与电流方向一致。对于直流电而言,有正极和负极,电压就是正极和负极之间的电压差,对于三相交流电而言,有相线和零线,相线和相线之间的电压叫线电压,我国为380Vac,相线和零线之间的电压叫相电压,我国为220Vac。
光伏组件有两种电压,开路电压和工作电压,如265W的组件,工作电压一般为30.7V,开路电压一般为38.2V。不同的组件电压也不一样,一般60片电池的组件,工作电压一般为30V到31V之间,72片电池的组件,工作电压一般为35V到36V之间。
常用电压:一般手机充电器和USB电源是5Vdc,铅酸蓄电池有2V、6V和12V等三种规格,36Vdc以下称为安全电压,这个电压范围内对人体没有危害。
我国的交流电压分为三种,单相220V,三相380V称为低压,一般是家用和工商业用。三相10kV,15kV,35kV称为中压,110kV、220kV、330kV、500kV,1000KV称为高压。
不同的国家电压等级不一样,如美国有110V,208V,480V等电压等级,具体可以参考《世界各国电网结构与逆变器的选型》这篇文章。
光伏组件和逆变器配在一起,如果有阳光,并网逆变器接入电网,离网逆变器接入负载,就会有电压和电流,形成一个回路,这时光伏组件和逆变器就形成一个电源。
4、电源
电源是利用非电力把正电荷由负极移到正极的,它在电路中将其他形式能转换成电能。电动势就是衡量电源能量转换本领的物理量,用字母E表示,它的单位也是伏特,简称伏,用字母V表示。
电源的电动势只存在于电源内部。人们规定电动势的方向在电源内部由负极指向正极。在电路中也用带箭头的细实线表示电动势的方向,当电源两端不接负载时,电源的开路电压等于电源的电动势,但二者方向相反。
可以用测量组件电压的办法,来判断组件的好坏,比如在有阳光的情况下测得组件正负极之间的电压是35Vdc,证明组件是正常工作,如果测出来是0Vdc,则证明组件是坏的。
电源又分为电压源和电流源,离网逆变器是电压源,其特点是输出电压保持恒定,输出电流随负载而变化,离网逆变器要配蓄电池才给正常工作,因为光伏输入不稳定,负载也不稳定,需要用蓄电池稳定电压,当光伏输入功率大于负载的功率时,多余的电能进入蓄电池储存起来,防止系统电压升高,当光伏输入功率小于负载的功率时,不足的电能由蓄电池来补充,防止系统电压降低。并网逆变器是电流源,电压跟随电网电压,电流是跟随阳光辐射量等因素变化而变化。
从电源到负载,需要电缆做为导体来传递电能,由于电缆都有电阻,会产生电压降,所以尽管我国低压的单三相电压等级是220/380V,但并网逆变器做为电源,其单三相输出额定电压为230/400V。
5、电阻
一般来说,导体对电流的阻碍作用称为电阻,用字母R表示。电阻的单位为欧姆,简称欧,用字母Ω表示。如果导体两端的电压为1伏,通过的电流为1安,则该导体的电阻就是1欧。常用的电阻单位还有(kΩ)、兆欧(MΩ)。它们之间的关系为:1 kΩ=103Ω,1 MΩ=103kΩ。
应当强调指出:电阻是导体中客观存在的,它与导体两端电压变化情况无关,即使没有电压,导体中仍然有电阻存在。实验证明,当温度一定时,导体电阻只与材料及导体的几何尺寸有关。对于二根材质均匀、长度为L、截面积为S的导体而言,其电阻大小可用下式表示:
式中 R——导体电阻,单位为欧(Ω);
L——导体长度,单位为米(m);
s——导体截面积,单位为平方毫米(mm2);
ρ——电阻率,单位为欧·米(Ω·m)。
式中电阻率是与材料性质有关的物理量。电阻率的大小等于长度为1m,截面积为1mm2的导体在一定温度下的电阻值,其单位为欧米(Ω:m)。
例如,铜的电阻率为1.7×10-8Ω·m,就是指长为1m,截面积为1mm2的铜线的电阻是1.7×10-8Ω。
铜和铝的电阻率较小,是应用极为广泛的导电材料。以前,由于我国铝的矿藏量丰富,价格低廉,常用铝线作输电线。由于铜线有更好的电气特性,如强度高、电阻率小,现在铜制线材被更广泛应用。
分布式光伏系统直流电缆和交流电缆一般都采用铜电线或者铜电缆。这是由于铜线内阻少,消耗的电功也比较少。
6、电功、电功率
电流通过用电器时,用电器就将电能转换成其他形式的能,如热能、光能和机械能等。
我们把电能转换成其他形式的能叫做电流做功,简称电功,用字母W表示,电功是一个瞬时值。 电压单位为伏,电流单位为安,电阻单位为欧,时间单位为秒,则电功单位就是焦耳,简称焦,用字母J表示。电流在单位时间内通过用电器所做的功称为电功率,用字母P表示,电功率是一个带时间轴的二维值。
功率计算方法如下:
直流功率=直流电压*直流电流。单相交流功率=交流电压*交流电流;三相交流功率=线电压*电流*1.732,如一台三相逆变器,输出额定电压是400V,输出额定电流为64.5A,输出功率为400*64.5*1.732,约为44.7kW。
电功单位为焦耳,时间单位为秒,则电功率的单位就是焦耳/秒。焦耳/秒又叫瓦特,简称瓦,用字母W表示。在实际工作中,常用的电功率单位还有千瓦(kW)、毫瓦(mW)等。它们之间的关系为:1kW=103W,1W=103mW。
1)当用电器的电阻一定时,电功率与电流平方或电压平方成正比。若通过用电器的电流是原来电流的2倍,则电功率就是原功率的4倍;若加在用电器两端电压是原电压的2倍,则电功率就是原功率的4倍。
2)当流过用电器的电流一定时,电功率与电阻值成正比。对于串联电阻电路,流经各个电阻的电流是相同的,则串联电阻的总功率与各个电阻的电阻值的和成正比。
3)当加在用电器两端的电压一定时,电功率与电阻值成反比。对于并联电阻电路,各个电阻两端电压相等,则各个电阻的电功率与各电阻的阻值成反比。
在实际工作中,电功的单位常用千瓦小时(kW·h),也叫“度”。1千瓦小时是1度,它表示功率为1千瓦的用电器1小时所消耗的电能,即1kW·h=1kW×1h。
接地电阻是电流由接地装置流入大地再经大地流向另一接地体或向远处扩散所遇到的电阻。
接地电阻值体现电气装置与“地”接触的良好程度和反映接地网的规模。