建材秒知道
登录
建材号 > 硫酸 > 正文

亚硫酸盐处理的dna可以直接测序吗

香蕉奇异果
背后的小熊猫
2023-01-27 12:51:06

亚硫酸盐处理的dna可以直接测序吗

最佳答案
坚强的画笔
优雅的唇膏
2026-01-26 14:47:53

普通的测序不能找到甲基化位点。 这里有几种常用的找甲基化位点的测序方法: 第一种是重亚硫酸盐测序。重亚硫酸盐使DNA中未发生甲基化的胞嘧啶脱氨基转变成尿嘧啶,而甲基化的胞嘧啶保持不变,行PCR扩增(引物设计时尽量避免有CpG,以免受甲基化因素的影响)所需片段,则尿嘧啶全部转化成胸腺嘧啶。最后,对PCR产物进行测序,并且与未经处理的序列比较,判断是否CpG位点发生甲基化。

最新回答
孝顺的外套
虚拟的烤鸡
2026-01-26 14:47:53

所以首先需要搞清楚什么是表观修饰,表观遗传学,以及为什么关注DNA甲基化这其中一种表观修饰!

表观遗传修饰是指对基因组功能的相关修饰,通过一系列生物学修饰改变基因的活性而不是DNA的核苷酸序列影响基因的表达。对基因组功能的相关修饰主要包括对**DNA、RNA、以及组蛋白等的修饰,这些修饰改变了染色质的局部电化学特性和构象,从而调节基因的转录活性。

其中对 组蛋白修饰 主要是究方法通常是chip-seq技术,我们已经在生信技能树发布了系统性的chip-seq教程,这里就不再赘述。组蛋白是染色质的重要组成部分,主要分为H2A、H2B、H3、H4,与DNA缠绕可形成核小体。 组蛋白修饰 是在组蛋白N末端的氨基酸残基上发生的共价修饰,主要包括甲基化、乙酰化、泛素化、磷酸化、羰基化、糖基化等。

DNA甲基化 是表观遗传学领域一个重要的研究方向,真核生物中最常见的DNA修饰非 5-甲基胞嘧啶(5mC) 莫属了,然而在原核生物中最常见的DNA修饰方式则为 N6-methyladenine (6mA) ,即腺嘌呤第6位氮原子甲基化修饰。

人类是真核生物 ,所以当然是5mC的DNA甲基化形式的检测咯。人的参考基因组约30亿碱基,上面不到1%是 CpG位点,可以被甲基化,也就是说不到3千万个 CpG 位点。这些 CpG 位点中,大约 60~80% 被甲基化。主要是而启动子等特殊区域存在 未被甲基化的CpG 岛,那些区域的CpG 位点比较富集。目前研究表明,肿瘤细胞的甲基化水平平均是低于正常细胞的。

亚硫酸盐是甲基化探测的“金标准”,不管是芯片或者甲基化测序,都要先对DNA样品进行亚硫酸盐处理,使非甲基化的C变成U,而甲基化的C保持不变,从而在后续的测序或者杂交后区分出来。

关于DNA甲基化检测手段介绍,我觉得 Make Decision: DNA甲基化检测方法,哪一款适合你? 写的就足够好了。同样的,早期研究以芯片为主,从成本的角度来看,也是芯片为主,但是测序数据更丰富。

可选的甲基化芯片产品就少很多,绝大部分是illumina公司产品的,从27K到450K到850K甲基化芯片。比较好的介绍是:Illumina 琪先生 2018-07-17的 一文了解 MethylationEPIC 850K 甲基化芯片

Infinium MethylationEPIC BeadChip芯片包含了原先的Infinium Methylation450 BeadChip芯片90%以上的内容,这种选择可提供一种广泛、全面的甲基化组图谱。而且还靶定了ENCODE计划中确定为潜在增强子的区域,还有FANTOM5计划在各种组织类型中确定出的增强子。详细如下:

Infinium MethylationEPIC BeadChip芯片的数据分析是由GenomeStudio Methylation Module模块所支持,让研究人员能够对小规模研究开展差异甲基化分析。GenomeStudio软件2011.1版特有高级可视化工具,让研究人员能够在单幅图中查看大量的数据,如热图、散点图和线图

甲基化检测方法多达上百种,哪怕是基于NGS的测序技术,也有BS-Seq、MeDIP-Seq、RRBS-Seq、WGBS、MBD-Seq、SMRT 等,我发现 何聪聪 诺禾科服 2016-09-10 介绍的比较齐全,摘抄送给大家,原文在: DNA甲基化研究方法速递

我们我们介绍甲基化测序数据的一般分析流程的时候,主要是针对WGBS技术的数据。

BS-Seq(亚硫酸氢盐测序)有两个缺点:

针对这两个缺陷,科研界一直在尝试研发改进方法。

复旦大学于文强教授团队开发出了一种新的全基因组检测的方法 GPS。该方法利用 T4DNA 聚合酶的 3′-5′外切酶活性和 5′-3′聚合酶活性,使得双端测序的一端是基因组原序列,另一端是转化后的表观序列。该方法极大提高了比对效率和准确性。

当然了,也是可以用低通量手段,专注 特异性位点甲基化检测 ,有:

比如发表在BMC Med. 2009 Oct 的文章Genomic and epigenetic evidence for oxytocin receptor deficiency in autism.里面Gregory等研究者通过 亚硫酸氢盐测序 的方法对119例ASD患者和119名健康人进行了DNA甲基化分析,分析了与调节OXTR表达相关的CPG在外周血和颞叶皮质的甲基化水平,发现ASD患者的CPG甲基化水平在外周血和颞叶皮质均较健康人明显升高。这个研究里面的bisulfite sequencing (BSS)就是低通量,仅仅是关注感兴趣的基因而已:

生物学意义,通常是建议大家看教科书吧,DNA甲基化是最早被发现的表观遗传修饰途径之一,参与许多重要的细胞过程,如基因组印记、X染色体灭活、转录抑制、胚胎发育等,与精神分裂症、Rett综合征、肿瘤等多种疾病的发生和发展密切相关。

尤其是我感兴趣的肿瘤中普遍存在DNA甲基化状态的改变,其特点是总体甲基化水平的降低与局部甲基化水平的升高。在肿瘤细胞中,癌基因处于低甲基化状态而被激活,抑癌基因处于高甲基化状态而被抑制。

比如: DNA甲基化与肿瘤风险预测

再比如: DNA甲基化推进脑肿瘤的精准分型

随便 微信公众号搜索 了一下,发现大豆,柑橘,小麦,花菜都有报道,如下:

还有番茄,玉米的研究,大家自行检索深入学习哦。

当然,更值得一读的是2018年5月, Nature Reviews Molecular Cell Biology 发表的中国科学院上海植物逆境生物学研究中心 朱健康 研究员、 张惠明 研究员与 郎曌博 研究员共同完成的题为“Dynamics and function of DNA methylation in plants”的综述文章。 系统的讨论了植物中DNA甲基化过程。

人体内,DNA甲基转移酶主要有四种:DNMT1、DNMT3A、DNMT3B和DNMT3L。

因为药物研发也不是我的领域,这里略~~~

随着高通量生物技术(芯片、测序技术)的不断更新发展,高通量的DNA甲基化数据不断涌现,一些大型国际合作的生物大数据计划产生了Pb(petabyte)数量级的甲基化谱。由多个国家和地区的研究机构组成的“国际人类表观基因组同盟”(International Human Epigenome Consortium,简称IHEC)为了研究与人类健康和包括癌症在内的复杂疾病相关的细胞状态产出了超过1000个表观基因组的数据

摘自: https://mp.weixin.qq.com/s/-E50Jvzo8aNqVgvEB0nVGA

疯狂的钻石
眯眯眼的夕阳
2026-01-26 14:47:53

表观遗传学,研究基因的核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。

发展

一直以来人们都认为基因组DNA决定着生物体的全部表型,但逐渐发现有些现象无法用经典遗传学理论解释,比如基因完全相同的同卵双生双胞胎在同样的环境中长大后,他们在性格、健康等方面会有较大的差异。

这说明在DNA序列没有发生变化的情况下,生物体的一些表型却发生了改变。因此,科学家们又提出表观遗传学的概念,它是在研究与经典遗传学不相符的许多生命现象过程中逐步发展起来的一门前沿学科,它是与经典遗传学相对应的概念。

人们认为,基因组含有两类遗传信息,一类为传统意义上的遗传信息,即基因组DNA序列所提供的遗传信息,另一类则是表观遗传学信息,即基因组DNA的修饰,它提供了何时、何地、以何种方式去应用DNA遗传信息的指令。

扩展资料

表观遗传特点

1、可遗传,即这类改变通过有丝分裂或减数分裂,能在细胞或个体世代间遗传。

2、可逆性的基因表达。

3、没有DNA序列的改变或不能用DNA序列变化来解释。

在生物学中,表观遗传学这个名词为基因表达中的多种变化。这种变化在细胞分裂的过程中,有时甚至是在隔代遗传中保持稳定,但是不涉及到基本DNA的改变。

这个概念意味着即使环境因素会导致生物的基因表达出不同,但是基因本身不会发生改变。表观遗传学在真核生物中的变化主要被举例为细胞分化过程中干细胞分化成与胚胎有关的多种细胞这一过程。这个过程通过一些可能包含某些基因的沉默,移除某些基因上沉默的标志并且永久的失活于其他基因的机制变得稳定。

参考资料来源:百度百科-表观遗传学

参考资料来源:百度百科-表观遗传

有魅力的鸡翅
开朗的河马
2026-01-26 14:47:53
         WGBS全称Whole Genome Bisulfite Seuqneicng: 即全基因组重亚硫酸盐测序。该方法通过Bisulfite处理,将原基因组中未发生甲基化的C碱基转换成U的同时,保留所有甲基化C的碱基不发生转变,从而帮助科研人员识别发生甲基化的CpG位点。该种测序技术适用于绘制单碱基分辨率的全基因组DNA甲基化图谱。

         RRBS全称Reduced Representation Bisulfite Sequencing: 即简化代表性重亚硫酸盐测序。该方法在Bisulfite处理前,使用MspI(该酶的酶切位点为CCGG)酶切对样本进行处理, 去除低CG含量DNA片段 ,从而使用较小的数据量富集到尽可能多的包含CpG位点的DNA片段。

        相比于WGBS技术,RRBS是一种准确、高效且经济的DNA甲基化研究方法,通过酶切,并进行Bisulfite测序,该方法在保证DNA甲基化状态检测的高分辨率的同时提升测序数据的高利用率。

甲基化数据处理流程:

机智的玉米
多情的招牌
2026-01-26 14:47:53
DNA序列中胞嘧啶(C)5’ 碳位结合一个甲基基团而转变成5mC的现象称为DNA基甲基化。在5mC去甲基化的过程中,其会被氧化成5hmC,这种新的修饰称为DNA羟甲基化。

因为5hmC是5mC去甲基化的中间产物,所以对于多细胞来说,同一个C位点上不同细胞往往会存在5mC或5hmC不同修饰,而5mC与5hmC对基因表达的调控作用又完全不同:启动子区的DNA甲基化对基因表达的有抑制作用,DNA羟甲基化则会促进基因的表达。因此,对5mC及5hmC的水平进行精确地定量并分别研究十分有必要。

ACE-seq是一种全新的检测DNA羟甲基化的技术,由美国宾夕法尼亚大学Emily K Schutsky等在2018年发表在Nature Biotechnology杂志上。不同于传统的BS-Seq,该技术使用AID/APOBEC家族DNA脱氨酶APOBEC3A (A3A)代替化学脱氨,保证了DNA的完整性。A3A能够特异地脱去C及5mC的氨基使其变为U,而5hmC则因为不被该酶识别,测序时仍被检测为C。这样,便将5hmC与C及5mC区分开来。该技术原理示意图如下:

首先,利用T4 β-葡糖基转移酶(βGT)将5hmC转化成5ghmC,5ghmC不会被A3A酶脱氨基;然后,利用A3A酶特异去除C和5mC的氨基,使其转变成U,而5hmC保持为C,从而将5hmC和C/5mC区分开来。

ACE-Seq具有以下优势:

(1)检测范围为全基因组,可以得到基因组上大部分C位点的羟甲基化水平。

(2)单碱基分辨率。能够检测单个C碱基的羟甲基化水平,精确度高。

(3)低起始量。ACE-Seq利用脱氨酶实现5hmC与C及5mC的区分,反应条件温和,不破坏基因组,大大减少基因组DNA的损失,因此起始DNA量比常规的oxBS技术降低100倍。

(4)高准确性。绝大部分甲基化修饰的C都被转化成U,而绝大部分经过糖基化修饰的5hmC(5ghmC)则保持为C,表明该技术具有充分的可靠性。如下图:

(5)经济性。仅需一个文库解决问题,羟甲基化研究成本大大降低。 ACE-Seq独有的优势使其在羟甲基化检测领域拥有巨大的潜力。

为了让大家全面理解掌握自己究竟该选择哪种羟甲基化研究技术,我们再来温习一下oxWGBS-Seq。该技术将传统的BS-Seq技术与化学氧化相结合,先利用高钌酸钾将DNA上的5hmC氧化成5fC,再用重亚硫酸盐处理,5fC和没有任何修饰的C就被转化成U,而5mC则不会被转化,仍然保持为C。原理示意图如下:

该技术需要构建两个文库,图中蓝色虚线标出的为BS文库,紫色虚线标出的为OXBS文库。利用BS文库可以得到5mC和5hmC总的水平,利用OXBS文库可以得到精确的5mC的水平,两个文库相减,即可得到精确的5hmC的水平。根据该技术的原理可知,该技术可以同时得到精确的甲基化水平和羟甲基化水平。

oxWGBS具有以下优势:

(1)可以同时检测甲基化和羟甲基化的水平。

(2)检测范围为全基因组,可以得到基因组上大部分C位点的甲基化和羟甲基化水平。

(3)单碱基分辨率。能够检测单个C碱基的甲基化和羟甲基化水平,精确度高。

由于以上优点,oxWGBS被称为精准甲基化和羟甲基化检测的“金标准”。

根据oxWGBS还可以衍生出oxRRBS技术。oxRRBS是简化代表性重亚硫酸盐测序(RRBS-Seq)技术与化学氧化技术的结合,可以针对基因组上CpG含量高的区域(如CGI,启动子等重要的调控区域)进行甲基化及羟甲基化水平检测。由于oxRRBS只针对CpG含量高的区域进行检测,而这些区域往往是重要的调控区域,使得oxRRBS技术能够以较低的成本检测关键基因组区域的甲基化及羟甲基化水平。

然而以上两种技术有两个共同的缺点。首先,由于重亚硫酸盐处理对DNA有强烈的破坏作用,导致建库过程中会损失大量DNA,因此该技术需要的DNA起始量较高;另外,由于该技术需要构建两个文库,会导致成本的上升。

此外,还可以利用hMeDIP-Seq技术来检测DNA羟甲基化。hMeDIP利用5hmC特异性抗体富集基因组上发生羟甲基化的DNA片段,结合高通量测序,检测基因组上羟甲基化的区域。原理示意图如下:

 该技术针对羟甲基化的片段进行测序和定量,成本大大降低。但该技术无法达到单碱基分辨率,也无法得到精确的羟甲基化率,只能得到羟甲基化修饰的信号强度。

淡淡的哑铃
清秀的钢笔
2026-01-26 14:47:53
什么是DNA甲基化?

简单来说,DNA甲基化就是在DNA甲基化转移酶(DNMT)的作用下将甲基选择性地添加到胞嘧啶上形成5′-甲基胞嘧啶的过程。DNA甲基化是最早发现的基因表观修饰方式之一,在维持正常细胞功能、遗传印记、胚胎发育和肿瘤发生发展中起着重要作用,是目前及未来很长一段时间的研究热点之一。

DNA甲基化测序

随着高通量测序技术的发展,我们能够从全基因组水平来分析5’-甲基胞嘧啶及组蛋白修饰等事件,发现很多基因组学研究发现不了的东西,这就是 “DNA甲基化测序”!且近年来测序成本的不断下降及测序技术的迭代更新,DNA甲基化测序方法可选择性更多了。

目前表观遗传学DNA甲基化研究测序方法常见的有:全基因组重亚硫酸盐甲基化测序[WGBS]、精准DNA甲基化和羟甲基化测序[oxBS-seq]、优化版简化甲基化测序[RRBS/dRRBS/XRBS]、单/微量细胞全基因组甲基化测序[scWGBS]、扩增子(羟)甲基化测序、(羟)甲基化DNA免疫共沉淀测序[(h)MeDIP-seq]等6种,适用于不同DNA甲基化研究方向的解决方案。

(1)全基因组重亚硫酸盐甲基化测序(WGBS)

全基因组重亚硫酸盐甲基化测序(WGBS)可以在全基因组范围内精确的检测所有单个胞嘧啶碱基(C碱基)的甲基化水平,是DNA甲基化研究的金标准。WGBS能为基因组DNA甲基化时空特异性修饰的研究提供重要技术支持,能广泛应用在个体发育、衰老和疾病等生命过程的机制研究中,也是各物种甲基化图谱研究的首选方法。

常规全基因组甲基化测序技术通过T4-DNA连接酶,在超声波打断基因组DNA片段的两端连接接头序列,连接产物通过重亚硫酸盐处理将未甲基化修饰的胞嘧啶C转变为尿嘧啶U,进而通过接头序列介导的 PCR 技术将尿嘧啶U转变为胸腺嘧啶T。

技术优势:

l 应用范围广:适用于人和大多数动植物研究(参考基因组已知)

l 全基因组覆盖:最大限度地获取完整的全基因组甲基化信息,精确绘制甲基化图谱

l 单碱基分辨率:可精确分析每一个C碱基的甲基化状态

研究案例:

Whole-Genome Bisulfite Sequencing of Two Distinct Interconvertible DNA Methylomes of Mouse Embryonic Stem Cells. 两种状态的小鼠胚胎干细胞的甲基化组学研究

①背景

小鼠胚胎干细胞一般生长在含有血清的基质中,被称作血清干细胞(serum ESCs);加两种激酶抑制因子使胚胎干细胞在无血清的情况下更能保持多能性的基态,这种干细胞称为2i干细胞(2i ESCs);这两种状态的胚胎干细胞可以互相转化。以前这方面的甲基化研究大多基于质谱,覆盖度和研究结果有限,尚缺乏2i胚胎干细胞的甲基化组学研究。

②方法

利用全基因组重亚硫酸盐甲基化测序(WGBS),对这两种可互相转换的小鼠胚胎干细胞进行甲基化组学研究

③结论

全面准确的检测了两种小鼠胚胎干细胞的DNA甲基化修饰并进行了系统的比较;同serum ESCs相比,雄性2iESCs全局低甲基化;在血清中,雌性ESCs跟雄性2i ESCs类似呈现全局低甲基化,而在2i ESCs状态下,甲基化水平会进一步降低。

(2)精准DNA甲基化和羟甲基化测序(oxBS-seq)

DNA羟甲基化是近年发现的一种新的DNA修饰并迅速成为研究热点。随着研究的深入,发现之前被认为是检测DNA甲基化“金标准”的重亚硫酸盐测序并不能区分DNA甲基化(5mC)和DNA羟甲基化(5hmC)。易基因联合剑桥大学建立了化学氧化法结合重亚硫酸盐转化的测序技术(oxidative bisulfite sequencing, oxBS-Seq),该技术不仅可以精确检测DNA甲基化,排除DNA羟甲基化的影响,还可以双文库结合同时单碱基分辨率精确检测DNA羟甲基化。

技术原理:

oxBS-Seq将5hmC氧化5fC,后者可以被Bisulfite转为U,从而实现5mC的精准检测;同时,经过与常规Bisulfite结果比较可以实现对5hmC的准确检测。

技术优势:

l DNA甲基化检测全新的“金标准”

l 全基因组单碱基检测DNA羟甲基化修饰

l 多重标准验证高氧化效率和高Bisulfite转换率

l 实验偏好性低,重复性高(R²>0.98)

l 可满足多种测序应用需求:简化基因组氧化甲基化测序(oxRRBS),目标区域氧化甲基化测序(Target-oxBS)

研究案例:

Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution (oxBS 技术单碱基检测5mC和5hmC在鼠胚胎干细胞中的水平)

①背景

随着5hmC在哺乳动物基因组中的发现,传统的bisulfite测序已不能精确区分5mC和5hmC的修饰差异,传统BS的测序结果中,5mC的修饰水平实际是5mC和5hmC两者信号的合集,建立一种精确区分两者的实验技术迫在眉睫。

②方法

利用oxBS测序技术对小鼠胚胎干细胞DNA甲基化和羟甲基化进行检测和定量。

③结论

本研究首次建立了通过化学氧化结合重亚硫酸盐处理的实验技术。该技术首先将5hmC氧化为5fC,进而可被重亚硫酸盐转换成U,从而排除了5hmC对5mC的信号干扰,达到精确检测基因组5mC的目的。运用该技术对小鼠胚胎干细胞的研究发现,5hmC在CGI相关的转录调控区域和LINE1元件中含量较高,表明其对表观重编程可能起到重要作用。

(3)简化甲基化测序(RRBS/dRRBS/XRBS)

简化甲基化测序(Reduced Representation Bisulfite Sequencing,RRBS)是利用限制性内切酶对基因组进行酶切,富集启动子及CpG岛等重要的表观调控区域并进行重亚硫酸盐测序。该技术显著提高了高CpG区域的测序深度,在CpG岛、启动子区域和增强子元件区域可以获得高精度的分辨率,是一种准确、高效、经济的DNA甲基化研究方法,在大规模临床样本的研究中具有广泛的应用前景。为了适应科研技术的需要,我们进一步开发了可在更大区域内捕获CpG位点的双酶切RRBS(dRRBS),可研究更广泛区域的甲基化,包括CGI shore等区域。

为助力低样本量多维度分析,我们开发了富集覆盖CpG岛、启动子、增强子、CTCF结合位点的甲基化靶向测序方法:extend-ed-representation bisulfite sequencing(XRBS),实现了高灵敏度和样本复用,使其具有高度可扩展性,并适用于有限的样本和单个细胞。

技术优势:

l 精确度高:在其覆盖范围内可达到单碱基分辨率。

l 重复性好:多样本的覆盖区域重复性可达到85%-95%,适用于多样本间的差异分析。

l 性价比高:测序区域针对高CpG区域,数据利用率更高。

研究案例:

DNA Methyltransferase Inhibition Reverses Epigenetically Embedded Phenotypes in Lung Cancer Preferentially Affecting Polycomb Target Genes DNA甲基化的改变对癌症细胞侵袭能力的影响

①背景

癌细胞的表型在一定程度上由表观决定,比如DNA甲基化。癌症发展后期的转移特性可能与表观遗传修饰的改变有关。

②方法

利用RRBS技术检测具有高侵袭性的非小细胞肺癌细胞系(A549和HTB56)以及相应经过甲基化抑制剂氮杂胞苷(azacytidine)处理过的细胞系的甲基化修饰。探讨甲基化的改变对肺癌细胞系的侵袭能力的影响。

③结论

高侵袭性细胞系在发展过程中,DNA甲基化修饰发生了广泛的改变。同低侵袭能力的细胞系相比,RRBS检测到的CpG富集的区域中有2.5%的区域发生了差异修饰。当使用了DNA甲基化抑制剂azacytidine,伴随着这些高甲基化修饰的位点出现甲基化修饰的丢失,细胞系的侵袭能力也发生了逆转。

5-Azacytidine诱导的侵袭能力逆转

(4)单/微量细胞全基因组甲基化测序(scWGBS)

单细胞及微量样本的DNA甲基化组学研究很大程度上受制于建库测序技术。传统的文库构建方法或类似于基因组DNA的单细胞扩增技术很难应用到甲基化实验过程中。易基因建立了基于线性扩增和单管建库的技术,可充分降低文库偏好性,准确的完成珍贵样本的全基因组甲基化研究。

单细胞及微量珍稀样本的甲基化研究主要应用于肿瘤发生机制,癌症研究,胚胎植入前诊断,胚胎早期发育,生殖细胞重组,干细胞及细胞异质性等研究领域。应用的样本包括单细胞、微量细胞等。

技术优势:

l 超低起始量:单细胞或超低的建库DNA起始量

l 测序覆盖度高 :最大限度地获取完整的全基因组甲基化信息,精确绘制甲基化图谱

l 单碱基分辨率:可精确分析每一个C碱基的甲基化状态

研究案例:

Single-cell DNA methylome sequencing of human preimplantation embryos. 人类植入前胚胎发育的单细胞DNA甲基化组图谱

①背景

在哺乳动物基因组上,胞嘧啶(主要是CpG二连体中的胞嘧啶)在DNA甲基化酶的催化下会发生甲基化。研究显示,DNA甲基化对多个生物学过程都至关重要,如基因表达抑制、转座子转录活性调节、X染色体的失活,以及基因组印记的维持等。此前研究显示在着床前的早期胚胎发育过程中只有大规模的DNA去甲基化。而此次研究数据显示,精子和卵细胞结合受精之后,在人类早期胚胎大规模DNA去甲基化的同时,也在大量高度特异的DNA从头加甲基化,这表明在人类早期胚胎第一轮DNA甲基化组重编程过程中,全局的DNA去甲基化‘净结果’实际上是高度有序的大规模DNA去甲基化和局部DNA加甲基化两种分子过程相互拮抗产生的动态平衡的结果。

②方法

利用单细胞DNA甲基化组高通量测序方法,首次在单细胞分辨率对人类植入前胚胎发育过程进行了更加深入的分析。

③结论

在这篇文章中,为了进一步在单细胞水平研究DNA甲基化重编程过程的动态特征,利用单细胞全基因组DNA甲基化组高通量测序技术,对人类植入前胚胎发育的各个关键阶段进行了单细胞、单碱基分辨率的系统研究,主要发现有:(a)首次发现了人类植入前胚胎发育过程中存在大量特异性的DNA从头加甲基。(b)首次发现从二细胞胚胎阶段开始父母本基因组上的剩余甲基化水平发生逆转,在同一个单细胞中母本基因组上的剩余甲基化水平显著高于父本基因组上的剩余甲基化水平。(c)首次发现DNA甲基化在早期胚胎卵裂过程中的不对称分配可以用来追溯同一个胚胎中每个细胞的遗传谱系。内容来源:易基因科技

欢呼的花瓣
动人的热狗
2026-01-26 14:47:53

是对葡萄糖特殊杂质的检查,葡萄糖的特殊杂质检查:1、溶液的澄清度与颜色。2、亚硫酸盐和可溶性淀粉。3、蛋白质。4、乙醇溶液的澄清度。

亚硫酸盐与可溶性淀粉是特殊杂质,蛋白质和微生物属于一般杂质