怎样根据分析物质的性质选择毛细管柱?使用色谱柱需要注意哪些
1)固定相(Stationary Phase Selectivity)
相似相溶原理,选用非极性的固定相分析非极性化合物
如果化合物可以用不同极性的固定相分析,首选最小极性的固定相
非极性的固定相使用寿命大于极性固定相
最通用的固定相是-1和-5.
对于偶极或氢键化合物,选用含腈基或聚乙二醇的固定相。
轻烃或永久气体,选用PLOT柱
应用范围最广的五种的固定相:-1,-5,-1701,-17,-Wax,能满足90%以上的分析应用。
(2)柱内径(mm)
0.2-0.25柱效高、负荷量低、流失小
0.3-0.35负荷量大于毛细口径柱60%,柱效低
0.53-0.6大口径毛细柱,负荷量近似填充柱,总柱效远远超过填充柱
增加直径意味着需要更多的固定相,即使厚度不增加,也有较大的样品容量。同时也意味着降低了分离能力且流失较大。小口径柱为复杂样品提供了所需的分离,但通常因为柱容量低需要分流进样。如果分离度的降低能够接受的话,大口径柱可以避免这一点。当样品容量是主要考虑因素时,如气体,强挥发性样品,吹扫和捕集或顶空进样,大孔径柱甚至PLOT柱可能比较适合。
同时要考虑仪器的限制和要求。一个装配了填充柱的进样口可以用大口径毛细管柱(0.53mm)但不能用小口径柱。专用于毛细管柱的进样口一般可以用于所有内径范围的毛细柱。直接联用的GC/MS和MSD需要小口径,因为真空泵不能处理大口径的大流量。确实查明你的整个系统看看适合哪些柱内径的选择。
(3)柱长(m)
短柱10-15米 分离少于10个组分的样品
中长柱20-30米 分离10-15个组分的样品
长柱50米以上 分离50个组分以上的样品
一般情况,15m柱用于快速筛选,简单混合物或分子量极高的化合物。30m柱是最普遍的柱长。超柱长(50,60或105m)用于非常复杂的样品。
柱长度是改变柱性能的一个重要参数,例如,加倍柱长,恒温分析时间则加倍,峰分辨率增加大约40%。
分析活性较强的组分是一种特殊情况,如果样品与柱材质接触,那么峰会严重拖尾。较厚的膜,相对短的柱子可以由于较少的柱材和较厚的固定液,掩盖并屏蔽活性表面从而减少相互作用的机会。
(4)液膜厚度(um)
薄液膜0.1-0.2um低负荷量、高沸点化合物
标准液膜0.25-0.33um一般标准毛细柱分析
厚液膜0.5-1um负荷量较大,低沸点样品
特厚液膜1-5um取代填充柱,分析沸点200℃以下复杂样品
一般来说,薄膜比厚膜洗脱组分快,峰分离好,温度低,这表明他们适用于高沸点化合物,组分密集化合物或热敏化合物。
标准膜厚对于流出达300℃的大多数样品来说分析很好。对于更高的洗脱温度,可以用0.1um的液膜。当标准或薄膜适用于高沸点化合物时,厚膜对于低沸点化合物有利。对于流出温度在100℃-200℃之间的物质,用1-1.5um的液膜效果更好。
作为气相色谱载气的气体,要求要化学稳定性好;纯度高;价格便宜并易取得;能适合于所用的检测器。常用的载气有氢气、氮气、氩气、氦气、二氧化碳气等等。 其中氢气和氮气价格便宜,性质良好,是用作载气的良好气体。
(1)氢气:由于它具有分子量小,分子半径大,热导系数大,粘度小等特点,因此在使用TCD时常采用它作载气。在FID中它是必用的燃气。氢气的来源目前除氢气高压钢瓶外,还可以采用电解水的氢气发生器,氢气易燃易爆,使用时,应特别注意安全。
(2)氮气:由于它的扩散系数小,柱效比较高,致使除TCD外,在其他形式的检测器中,多采用氮气作载气。它之所以在TCD中用的较少,主要因为氮气热导系统小,灵敏度低,但在分析H2时,必须采用N2作载气,否则无法用TCD解决H2的分析问题。
(3)氦气:从色谱载气性能上看,与氢气性质接近,且具有安全性高的优秀特点。但由于价格较高,使用较少。
。
一、载气种类的原则
选择何种气体作载气,首先要考虑使用何种检测器、使用热导池检测器时,选用氢 或氦作载气,能提高灵敏度,氢载气还能延长热敏元件钨丝的寿命、氢火焰检测器宜用氮气作载气,也可用氢气;电子捕获检测器常用氮气纯度大于;火焰光度检测器常用氮气和氢气、扩散系数与载气性质有关,与载气的摩尔质量平方根成反比,所以选用摩尔质量大的载气、可以使减小分子扩散系数,提高柱效、但选用摩尔质量小的载气,使增大,会使气相传质阻力系数减小使柱效提高、因此使用低线速载气时,应选用摩尔质量大的,使用高线速时,宜选用摩尔量小的。
二、载气纯度的选择
原则上讲,选择气体纯度时,主要取决于① 分析对象;②色谱柱中填充物;③检测器。
我们建议在满足分析要求的前提下,尽可能选用纯度较高的气体。这样不但会提高(保持)仪器的高灵敏度,而且会延长色谱柱,整台仪器(气路控制部件,气体过滤器)的寿命。
实践证明,作为中高档仪器,长期使用较低纯度的气体气源,一旦要求分析低浓度的样品时,要想恢复仪器的高灵敏度有时十分困难。对于低档仪器,作常量或半微量分析,选用高纯度的气体,不但增加了运行成本,为了纯化气体还需要增加净化器,这样增加了气路的复杂性,更容易出现漏气或其他的问题而影响仪器的正常操作。因此不推荐对这样的色谱载气进行纯化。另外,为了某些特殊的分析目的要求特意在载气中加入某些“不纯物”,如:分析极性化合物添加适量的水蒸气,操作火焰光度检测器时,为了提高分析硫化物的灵敏度,而添加微量硫。操作氦离子化检测器要氖的含量必须在5~25ppm,否则会在分析氢,氮和氩气时产生负峰或“W”形峰等。
气体纯度低的不良影响
根据分析对象,色谱柱的类型,操作仪器的挡次和具体检测器,若使用不合要求的低纯度气体,不良影响有以下几种可能:
1)样品失真或消失:如H2O气使氯硅样品水解;
2)色谱柱失效:H2O,CO2使分子筛柱失去活性,H2O气使聚脂类固定液分解,O2使PEG断链。
3)有时某些气体杂质和固定液相互作用而产生假峰;
4)对柱保留特性的影响:如:H2O对聚乙二醇等亲水性固定液的保留指数会有所增加,载气中氧含量过高时,无论是极性或是非极性固定液柱的保留特性,都会产生变化,使用时间越长影响越大。
一、最佳选择题
1、属于主动靶向制剂的是()。
A、糖基修饰脂质体
B、聚乳酸微球
C、静脉注射用乳剂
D、氰基丙烯酸烷酯纳米囊
E、pH敏感的口服结肠定位给药系统
2、将微粒表面加以修饰作为“导弹”载体,使药物选择性地浓集于病变部位的靶向制剂称为()。
A、被动靶向制剂
B、主动靶向制剂
C、物理靶向制剂
D、化学靶向制剂
E、物理化学靶向制剂
3、药物透皮吸收是指()。
A、药物通过表皮到达深层组织
B、药物主要通过毛囊和皮脂腺到达体内
C、药物通过表皮在用药部位发挥作用
D、药物通过破损的皮肤,进入体内的过程
E、药物通过表皮,被毛细血管和淋巴吸收进入体循环的过程
4、口服缓控释制剂的特点不包括()。
A、可减少给药次数
B、可提高患者的服药顺应性
C、可避免或减少血药浓度的峰谷现象
D、有利于降低肝首过效应
E、有利于降低药物的不良反应
5、控制颗粒的大小,其缓控释制剂释药所利用的原理是()。
A、扩散原理
B、溶出原理
C、渗透泵原理
D、溶蚀与扩散相结合原理
E、离子交换作用原理
6、微囊的特点不包括()。
A、防止药物在胃肠道内失活
B、可使某些药物迅速达到作用部位
C、可使液态药物固态化
D、可使某些药物具有靶向作用
E、可使药物具有缓控释的功能
7、关于微囊技术的说法错误的是()。
A、将对光、湿度和氧不稳定的药物制成微囊,可防止药物降解
B、利用缓释材料将药物微囊化后,可延缓药物释放
C、挥发油药物不适宜制成微囊
D、PLA 是可生物降解的高分子囊材
E、将不同药物分别包囊后,可减少药物之间的配伍变化
8、滴丸的脂溶性基质是()。
A、明胶
B、硬脂酸
C、泊洛沙姆
D、聚乙二醇4000
E、聚乙二醇6000
9、被动靶向制剂经静脉注射后,其在体内的分布首先取决于()。
A、粒径大小
B、荷电性
C、疏水性
D、溶解性
E、酸碱性
10、属于主动靶向制剂的是()。
A、磁性靶向制剂
B、栓塞靶向制剂
C、免疫脂质体
D、pH敏感靶向制剂
E、热敏感靶向制剂
11、不属于物理化学靶向制剂的是()。
A、磁性靶向制剂
B、热敏靶向制剂
C、栓塞靶向制剂
D、pH敏感靶向制剂
E、免疫靶向制剂
12、粒径小于10nm的被动靶向微粒,静脉注射后的靶部位是()。
A、骨髓
B、肝、脾
C、肺
D、脑
E、肾
13、用修饰的药物载体作为“导弹”,将药物定向地运送到靶区浓集发挥药效的靶向制剂称为()。
A、被动靶向制剂
B、主动靶向制剂
C、物理靶向制剂
D、化学靶向制剂
E、物理化学靶向制剂
14、关于口服缓、控释制剂描述错误的是()。
A、剂量调整的灵活性降低
B、药物的剂量、溶解度和脂水分配系数都会影响口服缓、控释制剂的设计
C、药物释放速率可为一级也可以为零级
D、口服缓、控释制剂应与相应的普通制剂生物等效
E、服药时间间隔一般为24h或48h
15、利用扩散原理制备缓(控)制剂的方法不包括()。
A、包衣
B、制成不溶性骨架片
C、制成植入剂
D、微囊化
E、制成溶解度小的盐
16、有关缓、控释制剂的特点不正确的是()。
A、减少给药次数
B、避免峰谷现象
C、降低药物的毒副作用
D、首过效应大的药物制成缓控释制剂生物利用度高
E、减少用药总剂量
17、下列缓、控释制剂不包括()。
A、分散片
B、植入剂
C、渗透泵片
D、骨架片
E、胃内漂浮片
18、有关分散片的叙述错误的是()。
A、分散片中的药物应是难溶性的
B、不适用于毒副作用较大、安全系数较低的药物
C、分散片可加水分散后口服,但不能含于口中吮服或吞服
D、易溶于水的药物不能应用
E、生产成本低,适合于老、幼和吞服困难患者
19、舌下片给药属于哪种给药途径()。
A、注射给药剂型
B、皮肤给药剂型
C、呼吸道给药剂型
D、黏膜给药剂型
E、腔道给药剂型
20、以下关于吸入制剂的说法错误的是()。
A、吸收速度快
B、肺部沉积量小于药物标示量
C、吸入粉雾剂的计量不准确
D、可转变成蒸汽的制剂包括固体制剂
E、吸入气雾剂含抛射剂
21、以下不属于微球合成载体材料的是()。
A、聚乳酸
B、聚丙交酯已交酯
C、壳聚糖
D、聚已内酯
E、聚羟丁酸
22、微球的质量要求不包括()。
A、粒子大小
B、载药量
C、有机溶剂残留
D、融变时限
E、释放度
乙烯吡咯烷酮聚合体
水溶性聚酰胺
物化性质
应用
聚乙烯吡咯烷酮的用途
溶液的流变性质
配伍性
安全性
鉴别试验
鉴别试验
含量分析
毒性
毒性
使用限量
MSDS
用途与合成方法
聚乙烯吡咯烷酮 价格(试剂级)
上下游产品信息
供应商
价格
新闻专题
供应信息
相关产品
网站主页 化工产品目录 原料药 血液系统用药 血容量扩充剂 聚乙烯吡咯烷酮
聚乙烯吡咯烷酮
聚乙烯吡咯烷酮
中文名称:聚乙烯吡咯烷酮
英文名称:Polyvinylpyrrolidone
CAS号:9003-39-8
分子式:CH4
分子量:16.04246
EINECS号:1312995-182-4
Mol文件:9003-39-8.mol
聚乙烯吡咯烷酮
聚乙烯吡咯烷酮 性质
熔点 >300 °C
沸点 90-93 °C
密度 1,69 g/cm3
储存条件 2-8°C
溶解度 H2O: soluble100mg/mL
形态powder
颜色White to yellow-white
PH值3.0-5.0
水溶解性 Soluble in water.
敏感性 Hygroscopic
Merck 14,7697
稳定性Stable. Incompatible with strong oxidizing agents. Light sensitive. Hygroscopic.
(IARC)致癌物分类3 (Vol. 19, Sup 7, 71) 1987
EPA化学物质信息Polyvinylpyrrolidone (9003-39-8)
聚乙烯吡咯烷酮 用途与合成方法
乙烯吡咯烷酮聚合体聚乙烯吡咯烷酮简称PVP,为乙烯吡咯烷酮的聚合体,因其聚合度不同,又分为可溶性的PVP和不溶性的 PVPP(polyvinyl polypyrrolidone)。可溶性PVP的相对分子质量为8000~10000,可作为沉淀剂用,与多酚物质作用而沉淀下来,采用此法,酒内容易有残留的PVP。因为PVP在人体内有积蓄作用,世界卫生组织对此物质不予建议采用。近年来,对可溶性PVP的采用已不多见。 不溶性的PVPP系60年代初开始用于啤酒工业,其相对子质量大于700000,是PVP进一步交联聚合形成的高分子不溶物,可作为多酚物质的吸附剂用,效果很好。
聚乙烯吡咯烷酮结构式
聚乙烯吡咯烷酮结构式
聚乙烯吡咯烷酮PVP是三大药用新辅料之一,可用作片剂、颗粒剂、注射剂的助溶剂,胶囊剂的助流剂、液体制剂及着色剂的分散剂、酶及热敏药物的稳定剂,难溶药物的共沉淀剂,眼药的去毒剂及润滑剂等。
工业上用作发泡聚苯乙烯助剂,悬浮聚合用的胶凝剂、稳定剂、纤维处理剂、纸加工助剂、胶粘剂、增稠剂。
聚乙烯吡咯烷酮PVP及其共聚物CAP是化妆品的重要原料,主要用于发型保持剂,它在头发上形成的薄膜富有弹性和光泽,梳理性能优良,不沾灰尘,采用不同规格的树脂,可满足各种相对湿度气候条件,因此它是定型发乳、发胶、摩丝所不可缺少的原料。还能用于化妆品之护肤滋润剂及脂膏基料染发分散剂、泡沫稳定剂,能改善洗发水的稠度。
不溶性PVP是啤酒、果汁的稳定剂,可改善其透明度、色泽、味道。
水溶性聚酰胺聚乙烯吡咯烷酮(PVP)是一种水溶性聚酰胺。市售的PVP按K值(Fikentscher K值)分成四种粘度等级:K-15、K-30、K-60、K-90,其数均相对分子质量分别为10000和40000,160000和360000。K值或相对分子质量是决定PVP各种性质的重要因素之一。
聚乙烯吡咯烷酮(PVP)溶于水、含氯溶剂、乙醇、胺、硝基烷烃以及低分子脂肪酸,与大多数无机盐和多种树脂相溶;不溶于丙酮、乙醚等。用于滴丸基质的聚乙烯吡咯烷酮(PVP)为无臭,无味,白色至淡黄色蜡状固体, 相对密度为1.062,5%水溶液的pH值为3~7,聚乙烯吡咯烷酮具有引湿性。对热稳定性好,能溶于多种有机溶剂中,熔点较高。加入某些天然的或合成的高分子聚合物或有机化合物,可有效地调节PVP的引湿性和柔软性。聚乙烯吡咯烷酮不易发生化学反应,在正常条件下贮存,干燥的PVP是很稳定的。PVP具有优良的生理惰性和生物相容性,对皮肤、眼睛无刺激,无过敏反应,无毒。
由于氢键作用或络合作用,聚乙烯吡咯烷酮(PVP)的黏度增大而抑制药物晶核的形成及成长,使药物成无定型态。以聚乙烯吡咯烷酮(PVP)为基质的滴丸能提高难溶性药物的溶出度和生物利用度。一般来说,PVP用量越大,药物在介质中的溶出度和溶解度就越大。Susana等研究了微溶性药物阿苯达唑的PVP(k30)固体分散体的溶出度。PVP(k30)的用量增加,固体分散体中药物的溶出速度和溶出效率都随之增加。Teresa等研究了难溶性药物,氟桂利嗪的PVP固体分散体的溶出度,也发现PVP含量越高,溶出度增加越显著。IR表明,氟桂利嗪与PVP无化学作用。但是也有例外,有些药物与PVP在一定比例下溶出效果最佳。Tantishaiyakul等研究发现:当吡罗昔康∶PVP为1∶5和1∶6时,固体分散体的溶出度最大,在5min内比单一药物高出40倍。
聚乙烯吡咯烷酮(PVP)也能溶于熔化的其他滴丸基质,如聚乙二醇(PEG)、聚氧乙烯单硬脂酸酯(S-40)、泊洛沙姆(poloxamer)以及硬脂酸、单硬脂酸甘油酯等,做成复合基质。
物化性质化妆品工业中常用的PVP等级是K-30。市售的PVP是白色可自由流动的粉末或固体,其含量为质量分数为20%、30%、45%和50%的水溶液等形式。PVP可溶于水,具有吸湿性,其平衡吸湿量约为环境的相对湿度1/3,与蛋白质的水合作用相似,每个单体与0.5mol的水缔合。 聚乙烯吡咯烷酮(PVP)不易发生化学反应。在正常条件下贮存,干燥的PVP是很稳定的。经防霉处理的溶液也是稳定的。当在空气中加热至150℃或与过硫酸铵混合在90℃下加热30min,PVP会交换而成不溶于水的化合物。在偶氮化合物或重铬酸盐等氧化剂存在下,光照会使PVP溶液变成凝胶。其溶液和强碱(如硅酸钠或磷酸三钠)共热时会生成沉淀。许多不同的化合物可与PVP生成络合物,如PVP与碘生成的络合物很稳定,并有很好的杀菌作用,并能降低其毒性把聚丙烯酸、丹宁酸或甲基乙烯醚和马来酸的共聚物加到聚乙烯吡咯烷酮PVP的水溶液中,就会生成不溶解的络合物,这些络合物不溶于水、醇和酮,但用碱中和其中的多元酸,可使反应逆转PVP与毒素、药物及化学毒品络合可降低它们的毒性某些染料也可与PVP强烈络合,这就是聚乙烯吡咯烷酮PVP用作染料脱色剂的基础。
应用聚乙烯吡咯烷酮为酮类有机物,可用作澄清剂;稳定剂;稠化剂;压片填充剂;分散剂。分子量为36万的高分子PVP常用作啤酒、醋、葡萄酒等澄清剂。
聚乙烯吡咯烷酮的用途在50年代初期,较老的、以虫胶和油为基础的头发定型剂迅速被聚乙烯吡咯烷酮PVP喷雾剂所取代至今,仍较普遍地使用。它在头发上能形成可再湿的、透明的薄膜,且带有光泽,润滑性好。PVP与各种推进剂配伍性好,并有防腐性能,它广泛地用于头发定型及梳理产品中作为成膜剂、护肤乳液和膏霜的柔润剂及稳定剂、眼部与面部美容化妆品及唇膏的基料、染发剂中的分散剂和香波的稳泡剂。PVP有解毒作用和降低其他制剂对皮肤和眼睛的刺激作用。它也用于牙膏作为去污剂、胶凝剂和解毒剂。聚乙烯吡咯烷酮PVP主要的缺点是对潮性较敏感,但可通过使用它的醋酸乙烯酯共聚物,以减轻水分和湿度的影响。此外,PVP在医药、饮料和纺织等工业都有广泛的应用。
溶液的流变性质水和甲醇是聚乙烯吡咯烷酮(PVP)最好的溶剂。pH值对PVP水溶液的粘度影响不大,如25℃时,pH0.1~10范围内,质量分数为5%浓度PVP K-30的水溶液的粘度2.3~2.4mPa·s;在浓盐酸中为4.96mPa·s。温度对PVP水溶液的粘度影响也较不明显。未交联的PVP溶液没有特殊的触变性,除非浓度非常高时才会有触变性,并显示很短的松驰时间。下图表3列出聚乙烯吡咯烷酮PVP K-30在各种溶剂中的粘度。
室温下聚乙烯吡咯烷酮PVP K-30在各种有机溶剂中的粘度
图表3:聚乙烯吡咯烷酮PVP K-30在各种有机溶剂中(w%)的粘度(室温)
参考资料:裘炳毅 编著.化妆品化学与工艺技术大全·上册.北京:中国轻工业出版社.1997年。
配伍性聚乙烯吡咯烷酮主要用作药物赋形剂、血液增容剂、化妆品增稠剂、胶乳稳定剂以及啤酒酿造澄清剂等。
不论是在溶液中或是以薄膜的形式,聚乙烯吡咯烷酮PVP均有高度的相容性,它能同大多数的无机盐溶液、许多天然和合成树脂以及其他化学品配伍。它们配伍性的例子见图表4和图表5。
聚乙烯吡咯烷酮PVP和一些物质在水或乙醇中的配伍性
图表4:聚乙烯吡咯烷酮PVP和一些物质在水或乙醇中的配伍性
聚乙烯吡咯烷酮PVP在各种溶剂的溶解性和配伍性
图表5:聚乙烯吡咯烷酮PVP在各种溶剂的溶解性和配伍性
安全性PVP在生理上是惰性的。PVP的急性口服毒性LD50>100g/kg。它不刺激皮肤或眼睛,也不会使皮肤过敏。长期大量的毒理学研究证实,聚乙烯吡咯烷酮(PVP)能容许进行腹膜内、肌肉、静脉内注射和非肠道应用等。亚急性和慢性毒性作用结果为阴性。
鉴别试验
溶解性溶于水、乙醇和氯仿,不溶于乙醚。按OT-42方法测定。
重铬酸盐沉淀试验在2%的试样液5ml中,加入稀盐酸试液(TS-117)5ml,再加水5ml和10%重铬酸钾液2ml。应形成橙黄色沉淀。
取硝酸钴75mg和硫氰酸铵300mg溶于2ml水中,加2%的试样水溶液5ml,混合后用稀盐酸试液(TS-117)酸化。应形成淡蓝色沉淀。
取2%试样液5ml,加入25%盐酸lml、5%氯化钡溶液5ml及5%磷酸钼钨酸溶液1mL应产生大量白色沉淀,并在日光下逐渐变成蓝色。
5%试样液的pH值应为3.0~3.7。按常规方法测定。
于0.5%试样液5ml中,加碘试液(TS-124)数滴。应产生深红色。
鉴别试验取试样1g,加水至10ml配制成悬浮液,加碘试液(TS-124)0.1ml,经混合振摇30s后,碘试液应褪色(以与聚乙烯吡咯烷酮相区别,因聚乙烯吡咯烷酮可形成红色)。加淀粉试液(TS-235)1ml,振摇混合后,应无蓝色产生。
含量分析按下述质量指标分析中所得含氮量推算。
毒性
ADI 0~50(FAO/WHO,2001)
LD50>100g/kg(大鼠,经口)。
可安全用于食品(FDA,§173.55,2000)。
毒性
ADI不作特殊规定(FAO/WHO,2001)。
可安全用于食品(FDA, §121.1110,§173.50,2000)。
LD5012g/kg(小鼠,腹注)。
使用限量GB 2760-1996:啤酒GMP。
化学性质 纯的乙烯基吡咯烷酮的交联均聚物。具确吸湿性的易流动白色或近乎白色的粉末。有微臭。医不溶于水和乙醇、乙醚等所有常用的溶剂,故分子鱼范围无法测定。但具有聚乙烯吡咯烷酮(PVP)相厉的与多种物质(如导致葡萄酒等饮料变色的各种醐类)络合的能力。并因其不溶性而易于过滤后除去。
用途 澄清剂;色素稳定剂;胶体稳定剂。主要用于啤酒的澄清和质量稳定(参考用量8~20g/100L,维持24h后过滤除去),亦可与酶类(蛋白酶)及蛋白吸附剂合并使用。亦用于葡萄酒的澄清和防止变色的稳定剂(参考用量24~72g/100L)。
用途 澄清剂;稳定剂;稠化剂;压片填充剂;分散剂。分子量为36万的高分子PVP常用作啤酒、醋、葡萄酒等澄清剂。
用途 用作气相色谱固定液
用途 广泛作为增稠剂、乳化剂、润滑剂和澄清剂使用,也作为消毒灭菌剂PVP-I的络合体
用途 作胶体稳定剂和澄清剂,可用于啤酒的澄清,按生产需要适量使用。
用途 医用、水产养殖、畜牧消毒剂。用于皮肤、粘膜的消毒。
用途 PolyFilterTM分子具有酰胺键及吸附多酚分子上的氢氧基从而形成氢键,因此,可用作啤酒、果酒/葡萄酒、饮料酒的稳定剂,延长其货架寿命,并改善其透明度、色泽和味道。该产品有一次性和再生性两种规格,一次性产品适合中小企业使用;再生性产品需购置专用过滤设备,但可回收利用,适合大型啤酒厂循环使用。
用途 在日用化妆品中, PVP 及共聚物的良好分散性及成膜性,可以用作定型液、喷发胶及摩丝的定型剂、护发剂的遮光剂、香波的泡沫稳定剂、波浪定型剂及染发剂中的分散剂和亲合剂。在雪花膏、防晒霜、脱毛剂中添加 PVP ,可增强湿润和润滑效果。利用 PVP 优异的表面活性、成膜性及对皮肤无刺激、无过敏反应等特点,在护发品、护肤品、等方面的应用具有广阔的前景
用途 用于从水提物中吸收酚类和鞣酸以提纯植物酶。用作色谱吸附剂以分离芳香酸类、醛类、酚类。用于啤酒、葡萄酒的澄清。
生产方法 由N-乙烯基-2-吡咯烷酮在碱性催化剂或N,N’-二乙烯脒存在下进行聚合、交联得粗品,再用水、5%醋酸和50%乙醇回流至萃取物≤50mg/kg为止。
生产方法 由纯化的1-乙烯-2-吡咯烷酮的30%~60%水溶液,在氨或胺等存在下,以过氧化氢为催化剂,在50℃温度下进行交链均聚后提纯而得。
生产方法 由N-乙烯基-2-吡咯烷酮在碱性催化剂或N,N’-二乙烯咪唑存在下进行聚合、交联反应而成粗品,再用水、5%醋酸和50%乙醇回流至萃出物≤50mg/kg为止(约3h以上)。
安全信息
安全说明 22-24/25
WGK Germany 1
RTECS号TR8370000
自燃温度440 °C
TSCA Yes
海关编码 39059990
毒害物质数据9003-39-8(Hazardous Substances Data)
毒性LD50 orally in Rabbit: >2000 mg/kg
MSDS信息
语言:English提供商:Polyvinylpyrrolidone
语言:English提供商:ACROS
语言:English提供商:SigmaAldrich
语言:Chinese提供商:ALFA
语言:English提供商:ALFA
聚乙烯吡咯烷酮 价格(试剂级)
更新日期2022-11-07
产品编号A14315
产品名称聚乙烯吡咯烷酮, 平均 M.W. 58,000
CAS编号9003-39-8
包装100g
价格450
更新日期2022-11-07
产品编号A14315
产品名称聚乙烯吡咯烷酮, 平均 M.W. 58,000
CAS编号9003-39-8
包装500g
价格1419
聚乙烯吡咯烷酮 上下游产品信息
上游原料乙醇胺1,3-丁二烯1,4-丁二醇N-乙烯基吡咯烷酮
聚乙烯吡咯烷酮供应商更多
公司名称:上海诚裕生物科技有限公司 黄金产品
联系电话:+86-021-51525055 13818175442
产品介绍: 中文名称:聚维酮聚乙烯吡咯烷酮
英文名称:PovidonePVPPolyvinylpyrrolidone
CAS:9003-39-8
纯度:USP/BP/EP/TECH/COSMETIC 包装信息:25KG 备注:1
公司名称:合肥天健化工有限公司 黄金产品
联系电话:551-65418679 15837135945
产品介绍: 中文名称:聚乙烯吡咯烷酮
英文名称:Polyvinylpyrrolidone
CAS:9003-39-8
纯度:99%min 包装信息:25kg/drum 备注:Manufacture
公司名称:上海阿拉丁生化科技股份有限公司 黄金产品
联系电话:400-62063333-1 15601730970
产品介绍: 中文名称:聚乙烯吡咯烷酮
英文名称:Polyvinylpyrrolidone
CAS:9003-39-8
包装信息:899.1RMB/2.5KG 备注:试剂级 平均分子量 58000,K29-32
公司名称:北京迈瑞达科技有限公司 黄金产品
联系电话:010-82387566 010-82387566
产品介绍: 中文名称:聚乙烯吡咯烷酮
CAS:9003-39-8
纯度:8000, K16-18 包装信息:100g 备注:平均分子量 8000, K16-18 8g
公司名称:江苏艾康生物医药研发有限公司 黄金产品
联系电话:025-58859352 18068836627
产品介绍: 英文名称:Polyvinylpyrrolidone
CAS:9003-39-8
纯度:95% HPLC or GC 包装信息:10G,5G1G
聚乙烯吡咯烷酮价格
12月6日 聚乙烯吡咯烷酮最新价格
12月6日 聚乙烯吡咯烷酮厂家最新报价:78元/千克。
2022-12-07 08:35:05
12月4日 聚乙烯吡咯烷酮最新价格
12月4日 聚乙烯吡咯烷酮厂家最新报价:78元/千克。
2022-12-05 08:33:32
聚乙烯吡咯烷酮新闻专题更多
2021-08-05聚乙烯吡咯烷酮的性质与用途
2021-05-11聚乙烯吡咯烷酮的功能
2021-02-23聚乙烯吡咯烷酮的几种制备方法
2020-10-24聚乙烯吡咯烷酮的副作用
2019-01-30聚乙烯吡咯烷酮的应用
聚乙烯吡咯烷酮生产厂家及价格列表
2022-12-11 聚乙烯吡咯烷酮PVPK30/K90 河北茹麒科技有限公司
2022-12-11 聚乙烯吡咯烷酮 广州远达新材料有限公司
"聚乙烯吡咯烷酮"相关产品信息
月桂基聚氧乙烯醚硫酸钠 乙二胺氯化铂 1,1,3,3-四甲基丁基异氰 乙酰丙酮银 异氰酸叔丁酯 异氰基乙酸乙酯 乙酰丙酮铬盐 三乙酰丙酮铝 异腈基乙酸甲酯 三(2,2,6,6-四甲基-3,5-庚二酸)铕 乙酰丙酮酸铜 双水杨酰胺乙基钴 聚维酮碘 聚氯乙烯 交联聚乙烯基吡咯烷酮 聚乙烯醇 聚醋酸乙烯酯 聚乙烯吡咯烷酮
进入官方账号
MSDS|CAS|常用CAS|化工产品目录|新产品
联系我们|电脑版Chemical Book
乳液配制长期以来是依靠经验建立起来的,逐步充实完善了理论,正在走向依靠理论指导生产。但在实际工作中,仍然有赖于操作者的经验。至今,研究和生产乳化产品的专家,仍然承认经验的重要性,这是因为乳液制备时涉及的因素很多,还没有哪一种理论能够定量地指导乳化操作。即使经验丰富的操作者,也很难保证每批都乳化得很好。
经过小试选定乳化剂后,还应制定相应的乳化工艺及操作方法,以实现工业化生产。制备乳状液的经验方法很多,各种方法都有其特点,选用哪种方法全凭个人的经验和企业具备的条件,但必须符合化妆品生产的基本要求。
一、乳化体制备工艺
在实际生产过程中,有时虽然采用同样的配方,但是由于操作时温度、乳化时间、加料方法和搅拌条件等不同,制得的产品的稳定度及其他物理性能也会不同,有时相差悬殊。因此根据不同的配方和不同的要求,采用合适的配制方法,才能得到较高质量的产品。
(一)生产程序
(1)油相的制备 将油、脂、蜡、乳化剂和其他油溶性成分加入夹套溶解锅内,开启蒸汽加热,在不断搅拌条件下加热至70-75℃,使其充分熔化或溶解均匀待用。要避免过度加热和长时间加热以防止原料成分氧化变质。容易氧化的油分、防腐剂和乳化剂等可在乳化之前加入油相,溶解均匀,即可进行乳化。
(2)水相的制备 先将去离子水加人夹套溶解锅中,水溶性成分如甘油、丙二醇、山梨醇等保湿剂,碱类,水溶性乳化剂等加人其中,搅拌下加热至90-100℃,维持20min灭菌,然后冷却至70~80℃待用。如配方中含有水溶性聚合物,应单独配制,将其溶解在水中,在室温下充分搅拌使其均匀溶胀,防止结团,如有必要可进行均质,在乳化前加入水相。要避免长时间加热,以免引起粘度变化。为补充加热和乳化时挥发掉的水分,可按配方多加3%~5%的水,精确数量可在第一批制成后分析成品水分而求得。
(3)乳化和冷却 上述油相和水相原料通过过滤器按照一定的顺序加入乳化锅内,在一定的温度(如70-80℃)条件下,进行一定时间的搅拌和乳化。乳化过程中,油相和水相的添加方法(油相加入水相或水相加入油相)、添加的速度、搅拌条件、乳化温度和时间、乳化器的结构和种类等对乳化体粒子的形状及其分布状态都有很大影响。均质的速度和时间因不同的乳化体系而异。含有水溶性聚合物的体系、均质的速度和时间应加以严格控制,以免过度剪切,破坏,聚合物的结构,造成不可逆的变化,改变体系的流变性质。如配方中含有维生素或热敏的添加剂,则在乳化后较低温下加入,以确保其活性,但应注意其溶解性能。
乳化后,乳化体系要冷却到接近室温。卸料温度取决于乳化体系的软化温度,一般应使其借助自身的重力,能从乳化锅内流出为宜。当然也可用泵抽出或用加压空气压出。冷却方式一般是将冷却水通人乳化锅的夹套内,边搅拌,边冷却。冷却速度,冷却时的剪切应力,终点温度等对乳化剂体系的粒子大小和分布都有影响,必须根据不同乳化体系,选择最优条件。特别是从实验室小试转人大规模工业化生产时尤为重要。
(4) 陈化和灌装 一般是贮存陈化l天或几天后再用灌装机灌装。灌装前需对产品进行质量评定,质量合格后方可进行灌装。
(二)乳化剂的加入方法
(1)乳化剂溶于水中的方法
这种方法是将乳化剂直接溶解于水中,然后在激烈搅拌作用下慢慢地把油加入水中,制成油/水型乳化体。如果要制成水/油型乳化体,那么就继续加人油相,直到转相变为水/油型乳化体为止,此法所得的乳化体颗粒大小很不均匀,因而也不很稳定。
(2)乳化剂溶于油中的方法
将乳化剂溶于油相(用非离子表面活性剂作乳化剂时,一般用这种方法),有2种方法可得到乳化体。
①将乳化剂和油脂的混合物直接加入水中形成为油/水型乳化体。
②将乳化剂溶于油中,将水相加入油脂混合物中,开始时形成为水/油型乳化体,当加入多量的水后,粘度突然下降,转相变型为油/水型乳化体。
这种制备方法所得乳化体颗粒均匀,其平均直径约为0.5цm,因此常用此法。
(3)乳化剂分别溶解的方法
这种方法是将水溶性乳化剂溶于水中,油溶性乳化剂溶于油中,再把水相加人油相中,开始形成水/油型乳化体,当加人多量的水后,粘度突然下降,转相变型为油/水型乳化体。如果做成W/O型乳化体,先将油相加入水相生成O/W型乳化体,再经转相生成W/O型乳化体。
这种方法制得的乳化体颗粒也较细,因此常采用此法。
(4)初生皂法
用皂类稳定的O/W型或W/O型乳化体都可以用这个方法来制备。将脂肪酸类溶于油中,碱类溶于水中,加热后混合并搅拌,2相接触在界面上发生中和反应生成肥皂,起乳化作用。这种方法能得到稳定的乳化体。例如硬脂酸钾皂制成的雪花膏,硬脂酸胺皂制成的膏霜、奶液等。
(5)交替加液的方法 在空的容器里先放人乳化剂,然后边搅拌边少量交替加入油相和水相。这种方法对于乳化植物油脂是比较适宜的,在食品工业中应用较多,在化妆品生产中此法很少应用。
以上几种方法中,第1种方法制得的乳化体较为粗糙,颗粒大小不均匀,也不稳定;第2、第3、第4种方法是化妆品生产中常采用的方法,其中第2、第3种方法制得的产品一般讲颗粒较细,较均匀,也较稳定,应用最多。
(三)转相的方法
所谓转相的方法,就是由O/W(或W/O)型转变成W/O(或O/W)型的方法。在化妆品乳化体的制备过程中,利用转相法可以制得稳定且颗粒均匀的制品。
(1)增加外相的转相法
当需制备一个O/W型的乳化体时,可以将水相慢慢加入油相中,开始时由于水相量少,体系容易形成W/O型乳液。随着水相的不断加入,使得油相无法将这许多水相包住,只能发生转相,形成O/W型乳化体。当然这种情况必须在合适的乳化剂条件下才能进行。在转相发生时,一般乳化体表现为粘度明显下降,界面张力急剧下降,因而容易得到稳定,颗粒分布均匀且较细的乳化体。
(2)降低温度的转相法
对于用非离子表面活性剂稳定的O/W型乳液,在某一温度点,内相和外相将互相转化,变型成为W/O乳液,这一温度叫做转相温度。由于非离子表面活性剂有浊点的特性,在高于浊点温度时,使非离子表面活性剂与水分子之间的氢键断裂,导致表面活性剂的HLB值下降,即亲水力变弱,从而形成W/O型乳液;当温度低于浊点时,亲水力又恢复,从而形成O/W型乳液。利用这一点可完成转相。一般选择浊点在50-60℃左右的非离子表面活性剂作为乳化剂,将其加入油相中,然后和水相在80℃左右混合,这时形成W/O型乳液。随着搅拌的进行乳化体系降温,当温度降至浊点以下不进行强烈的搅拌,乳化粒子也很容易变小。
(3)加入阴离子表面活性剂的转相法
在非离子表面活性剂的体系中,如加入少量的阴离子表面活性剂,将极大地提高乳化体系的浊点。利用这一点可以将浊点在50-60℃的非离子表面活性剂加入油相中,然后和水相在80℃左右混合,这时易形成W/O型的乳液,如此时加入少量的阴离子表面活性剂,并加强搅拌,体系将发生转相变成O/W型乳液。
在制备乳液类化妆品的过程中,往往这3种转相方法会同时发生。如在水相加入十二烷基硫酸钠,油相中加入十八醇聚氧乙烯醚(EO10)的非离子表面活性剂,油相温度在80-90℃,水相温度在60℃左右。当将水相慢慢加入油相中时,体系中开始时水相量少,阴离子表面活性剂浓度也极低,温度又较高,便形成了W/O型乳液。随着水相的不断加入,水量增大,阴离子表面活性剂浓度也变大,体系温度降低,便发生转相,因此这是诸因素共同作用的结果。
应当指出的是,在制备O/W型化妆品时,往往水含量在70%-80%之间,水油相如快速混合,一开始温度高时虽然会形成W/O型乳液,但这时如停止搅拌观察的话,会发现往往得到一个分层的体系,上层是W/O的乳液,油相也大部分在上层,而下层是O/W型的。这是因为水相量太大而油相量太小,在一般情况下无法使过少的油成为连续相而包住水相,另一方面这时的乳化剂性质又不利于生成O/W型乳液,因此体系便采取了折中的办法。
总之在需要转相的场合,一般油水相的混合是慢慢进行的,这样有利于转相的仔细进行。而在具有胶体磨、均化器等高效乳化设备的场合,油水相的混合要求快速进行。
(四)低能乳化法
在通常制造化妆品乳化体的过程中,先要将油相、水相分别加热至75-95℃,然后混合搅拌、冷却,而且冷却水带走的热量是不加利用的,因此在制造乳化体的过程中,能量的消耗是较大’的。如果采用低能乳化,大约可节约50%的热能。
低能乳化法在间歇操作中一般分为2步进行。
第l步先将部分的水相(B相)和油相分别加热到所需温度,将水相加入油相中,进行均质乳化搅拌,开始乳化体是W/O型,随着B相水的继续加入,变型成为O/W型乳化体,称为浓缩乳化体。
第2步再加入剩余的一部分未经加热而经过紫外线灭菌的去离子水(A相)进行稀释,因为浓缩乳化体的外相是水,所以乳化体的稀释能够顺利完成,此体。如果做成W/O型乳化体,先将油相加入水相生成O/W型乳化体,再经转相生成W/O型乳化体。
这种方法制得的乳化体颗粒也较细,因此常采用此法。
(4)初生皂法
用皂类稳定的O/W型或W/O型乳化体都可以用这个方法来制备。将脂肪酸类溶于油中,碱类溶于水中,加热后混合并搅拌,2相接触在界面上发生中和反应生成肥皂,起乳化作用。这种方法能得到稳定的乳化体。例如硬脂酸钾皂制成的雪花膏,硬脂酸胺皂制成的膏霜、奶液等。
(5)交替加液的方法
在空的容器里先放人乳化剂,然后边搅拌边少量交替加入油相和水相。这种方法对于乳化植物油脂是比较适宜的,在食品工业中应用较多,在化妆晶生产中此法很少应用。
以上几种方法中,第1种方法制得的乳化体较为粗糙,颗粒大小不均匀,也不稳定;第2、第3、第4种方法是化妆品生产中常采用的方法,其中第2、第3种方法制得的产品一般讲颗粒较细,较均匀,也较稳定,应用最多。
(三)转相的方法
所谓转相的方法,就是由O/W(或W/O)型转变成W/O(或O/W)型的方法。在化妆品乳化体的制备过程中,利用转相法可以制得稳定且颗粒均匀的制品。
(1)增加外相的转相法
当需制备一个O/W型的乳化体时,可以将水相慢慢加入油相中,开始时由于水相量少,体系容易形成W/O型乳液。随着水相的不断加入,使得油相无法将这许多水相包住,只能发生转相,形成O/W型乳化体。当然这种情况必须在合适的乳化剂条件下才能进行。在转相发生时,一般乳化体表现为粘度明显下降,界面张力急剧下降,因而容易得到稳定,颗粒分布均匀且较细的乳化体。
(2)降低温度的转相法
对于用非离子表面活性剂稳定的O/W型乳液,在某一温度点,内相和外相将互相转化,变型成为W/O乳液,这一温度叫做转相温度。由于非离子表面活性剂有浊点的特性,在高于浊点温度时,使非离子表面活性剂与水分子之间的氢键断裂,导致表面活性剂的HLB值下降,即亲水力变弱,从而形成W/O型乳液;当温度低于浊点时,亲水力又恢复,从而形成为O/W型乳液。利用这一点可完成转相。一般选择浊点在50-60℃左右的非离子表面活性剂作为乳化剂,将其加入油相中,然后和水相在80℃左右混合,这时形成W/O型乳液。随着搅拌的进行乳化体系降温,当温度降至浊点以下时,发生转相乳液变成了O/W型。
当温度在转相温度附近时,原来的油水相界面张力下降,也就是说降低了乳化它所需的功,所以即使不进行强烈的搅拌,乳化粒子也很容易变小。
(3)加入阴离子表面活性剂的转相法
在非离子表面活性剂的体系中,如加入少量的阴离子表面活性剂,将极大地提高乳化体系的浊点。利用这一点可以将浊点在50-60℃的非离子表面活性剂加入油相中,然后和水相在8013左右混合,这时易形成W/O型的乳液,如此时加入少量的阴离子表面活性剂,并加强搅拌,体系将发生转相变成O/W型乳液。
在制备乳液类化妆品的过程中,往往这3种转相方法会同时发生。如在水相加入十二烷基硫酸钠,油相中加入十八醇聚氧乙烯醚(EOl0)的非离子表面活性剂,油相温度在80-90℃,水相温度在60℃左右。当将水相慢慢加入油相中时,体系中开始时水相量少,阴离子表面活性剂浓度也极低,温度又较高,便形成了W/O型乳液。随着水相的不断加入,水量增大,阴离子表面活性剂浓度也变大,体系温度降低,便发生转相,因此这是诸因素共同作用的结果。
应当指出的是,在制备O/W型化妆品时,往往水含量在70%-80%之间,水油相如快速混合,一开始温度高时虽然会形成W/O型乳液,但这时如停止搅拌观察的话,会发现往往得到一个分层的体系,上层是W/O的乳液,油相也大部分在上层,而下层是O/W型的。这是因为水相量太大而油相量太小,在一般情况下无法使过少的油成为连续相而包住水相,另一方面这时的乳化剂性质又不利于生成O/W型乳液,因此体系便采取了折中的办法。
总之在需要转相的场合,一般油水相的混合是慢慢进行的,这样有利于转相的仔细进行。而在具有胶体磨、均化器等高效乳化设备的场合,油水相的混合要求快速进行。
(四)低能乳化法
在通常制造化妆品乳化体的过程中,先要将油相、水相分别加热至75~95℃,然后混合搅拌、冷却,而且冷却水带走的热量是不加利用的,因此在制造乳化体的过程中,能量的消耗是较大的。如果采用低能乳化,大约可节约50%的热能。
低能乳化法在间歇操作中一般分为2步进行。
第1步先将部分的水相(B相)和油相分别加热到所需温度,将水相加入油相中,进行均质乳化搅拌,开始乳化体是W/O型,随着B相水的继续加入,变型成为O/W型乳化体,称为浓缩乳化体。
第2步再加入剩余的一部分未经加热而经过紫外线灭菌的去离子水(A相)进行稀释,因为浓缩乳化体的外相是水,所以乳化体的稀释能够顺利完成,此过程中,乳化体的温度下降很快,当A相加完之后,乳化体的温度能下降到50~60C。
这种低能乳化法主要适用于制备O/W型乳体,其中A相和B相水的比率要经过实验来决定,它和各种配方要求以及制成的乳化体稠度有关。在乳化过程中,例如选用乳化剂的HLB值较高或者要乳状液的稠度较低时,则可将B相压缩到较低值。
低能乳化法的优点:①A相的水不用加热、节约了这部分热能;
②在乳化过程中,基本上不用冷却强制回流冷却,节约了冷却水循环所需要的功能;
③由75-95℃冷却到50-60℃通常要占去整个操作过程时间的一半,采用低能乳化大大节省了冷却时间,加快了生产周期。大约节约整个制作过程总时间的三分之一到二分之一;
④由于操作时间短,提高了设备利用率;
⑤低能乳化法和其他方法所制成的乳化体质量没多大差别。
乳化过程中应注意的问题:
①B相的温度,不但影响浓缩乳化体的粘度,而且涉及到相变型,当B相水的量较少时,一般温度应适当高一些;
②均质机搅拌的速率会影响乳化体颗粒大小的分布,最好使用超声设备、均化器或胶体磨等高效乳化设备;
③A相水和B相水的比率(见下表-1)一定要选择适当,一般,低粘度的浓缩乳化体会使下一步A相水的加入容易进行。
表-1 A相和B相水的比率
乳化剂HLB值 油脂比率搅拌条件选择B值选择A值
10-12 20-25 强 0.2-0.3 0.7-0.8
6-825-35弱 0.4-0.5 0.5-0.7
(五)搅拌条件
乳化时搅拌愈强烈,乳化剂用量可以愈低。但乳化体颗粒大小与搅拌强度和乳化剂用量均有关系,一般规律如表-2所示。
表-2 搅拌强度与颗粒大小及乳化剂用量之关系
搅拌强度颗粒大小 乳化剂用量
差(手工或桨式搅拌) 极大(乳化差) 少量
差 中等 中量
强(胶体磨) 中等 少至中量
强(均质器) 小少至中量
中等(手工或旋桨式) 小中至高量
差 极细(清晰) 极高量
过分的强烈搅拌对降低颗粒大小并不一定有效,而且易将空气混人。在采用中等搅拌强度时,运用转相办法可以得到细的颗粒,采用桨式或旋桨式搅拌时,应注意不使空气搅人乳化体中。
一般情况是,在开始乳化时采用较高速搅拌对乳化有利,在乳化结束而进入冷却阶段后,则以中等速度或慢速搅拌有利,这样可减少混入气泡。如果是膏状产品,则搅拌到固化温度止。如果是液状产品,则一直搅拌至室温。
(六)混合速度
分散相加人的速度和机械搅拌的快慢对乳化效果十分重要,可以形成内相完全分散的良好乳化体系,也可形成乳化不好的混合乳化体系,后者主要是内相加得太快和搅拌效力差所造成。乳化操作的条件影响乳化体的稠度、粘度和乳化稳定性。研究表明,在制备O/W型乳化体时,最好的方法是在激烈的持续搅拌下将水相加入油相中,且高温混合较低温混合好。
在制备W/O型乳化体时,建议在不断搅拌下,将水相慢慢地加到油相中去,可制得内相粒子均匀、稳定性和光泽性好的乳化体。对内相浓·度较高的乳化体系,内相加入的流速应该比内相浓度较低的乳化体系为慢。采用高效的乳化设备较搅拌差的设备在乳化时流速可以快一些。
但必须指出的是,由于化妆晶组成的复杂性,配方与配方之间有时差异很大,对于任何一个配方,都应进行加料速度试验,以求最佳的混合速度,制得稳定的乳化体。
(七)温度控制
制备乳化体时,除了控制搅拌条件外,还要控制温度,包括乳化时与乳化后的温度。
由于温度对乳化剂溶解性和固态油、脂、蜡的熔化等的影响,乳化时温度控制对乳化效果的影响很大。如果温度太低,乳化剂溶解度低,且固态油、脂、蜡未熔化,乳化效果差;温度太高,加热时间长,冷却时间也长,浪费能源,加长生产周期。一般常使油相温度控制高于其熔点10-15℃,而水相温度则稍高于油相温度。通常膏霜类在75~95℃条件下进行乳化。
最好水相加热至90~100℃,维持20min灭菌,然后再冷却到70-80℃进行乳化。在制备W/O型乳化体时,水相温度高一些,此时水相体积较大,水相分散形成乳化体后,随着温度的降低,水珠体积变小,有利于形成均匀、细小的颗粒。如果水相温度低于油相温度,两相混合后可能使油相固化(油相熔点较高时),影响乳化效果。
冷却速度的影响也很大,通常较快的冷却能够获得较细的颗粒。当温度较高时,由于布朗运动比较强烈,小的颗粒会发生相互碰撞而合并成较大的颗粒;反之,当乳化操作结束后,对膏体立刻进行快速冷却,从而使小的颗粒“冻结”住,这样小颗粒的碰撞、合并作用可减少到最低的程度心但冷却速度太快,高熔点的蜡就会产生结晶,导致乳化剂所生成的保护胶体的破坏,因此冷却的速度最好通过试验来决定。
(八)香精和防腐剂的加入
(1)香精的加入
香精是易挥发性物质,并且其组成十分复杂,在温度较高时,不但容易损失掉,而
且会发生一些化学反应,使香味变化,也可能引起颜色变深。因此一般化妆品中香精的加入都是在后期进行。对乳液类化妆品,一般待乳化已经完成并冷却至50~60℃时加入香精。如在真空乳化锅中加香,这时不应开启真空泵,而只维持原来的真空度即可,吸人香精后搅拌均匀。对敞口的乳化锅而言,由于温度高,香精易挥发损失,因此加香温度要控制低些,但温度过低使香精不易分布均匀。
(2)防腐剂的加入
微生物的生存是离不开水的,因此水相中防腐剂的浓度是影响微生物生长的关键。
乳液类化妆品含有水相、油相和表面活性剂,而常用的防腐剂往往是油溶性的,在水中溶解度较低。有的化妆品制造者,常把防腐剂先加入油相中然后去乳化,这样防腐剂在油相中的分配浓度就较大,而水相中的浓度就小。更主要的是非离子表面活性剂往往也加在油相,使得有更大的机会增溶防腐剂,而溶解在油相中和被表面活性剂胶束增溶的防腐剂对微生物是没有作用的,因此加入防腐剂的最好时机是待油水相混合乳化完毕后(O/W)加入,这时可获得水中最大的防腐剂浓度。当然温度不能过低,不然分布不均匀,有些固体状的防腐剂最好先用溶剂溶解后再加入。例如尼泊金酯类就可先用温热的乙醇溶解,这样加到乳液中能保证分布均匀。
配方中如有盐类,固体物质或其他成分,最好在乳化体形成及冷却后加入,否则易造成产品的发粗现象。
(九)粘度的调节
影响乳化体粘度的主要因素是连续相的粘度,因此乳化体的粘度可以通过增加外相的粘度来调节。对于。O/W型乳化体,可加入合成的或天然的树胶,和适当的乳化剂如钾皂,钠皂等。对于W/0型乳化体,加人多价金属皂和高熔点的蜡和树胶到油相中可增加体系粘度。
第二部分 雪花膏的生产
雪花膏搽在皮肤上会立即消失,与雪在皮肤上融化相似,故而得名。它是水和硬脂酸在碱的作用下进行乳化的产物。生产雪花膏的主要原料为硬脂酸、碱、水和香精。但为了使其有良好的保湿效果,常常添加甘油、山梨醇、丙二醇和聚乙二醇等。雪花膏的膏体应洁白细密,无粗颗粒,不刺激皮肤,香气味宜人,主要用作润肤、打粉底和剃须后用化妆品。
(一)原料加热
(1)油脂类原料加热 甘油、硬脂酸和单硬脂酸甘油酯投入设有蒸汽夹套的不锈钢加热锅内。总油脂类投入量的体积,应占不锈钢加热锅有效容积的70%-80%,例如500L不锈钢加热锅,油脂类原料至少占有350L体积,这样受热面积可充分利用,加热升温速度较快。
油脂类原料溶解后硬脂酸相对密度小,浮在上面,甘油相对密度高,沉于锅底,硬脂酸和甘油互不相溶,油脂类原料加热至90-95℃,维持30min灭菌。如果加热温度超过110℃,油脂色泽将逐渐变黄。夹套加热锅蒸汽不能超过规定压力。如果采用耐酸搪瓷锅加热,则热传导性差,不仅加热速度慢,而且热源消耗较多。
(2)去离子水加热 去离子水和防腐剂尼泊金酯类在另一不锈钢夹套锅内加热至90—95℃,加热锅装有简单涡轮搅拌机,将尼泊金酯类搅拌溶解,维持30min灭菌,将氢氧化钾溶液加入水中搅拌均匀,立即开启锅底阀门,稀淡的碱水流人乳化搅拌锅。水溶液中尼泊金酯类与稀淡的碱水接触,在几分钟内不致被水解。
如果采用自来水,因含有Ca2+、Mg2+离子,在氢氧化钾碱性条件下,生成钙、镁的氢氧化合物,是一种絮状的凝聚悬浮物,当放人乳化搅拌锅时,往往堵住管道过滤器的网布,致使稀淡碱水不能畅流。
因去离子水加热时和搅拌过程中的蒸发,总计损失约2%-3%,为做到雪花膏制品收得率100%,往往额外多加2%-3%水分,补充水的损失。
(二)乳化搅拌和搅拌冷却
1.乳化搅拌
(1)乳化搅拌锅的主要装置
乳化搅拌锅有夹套蒸汽加热和温水循环回流系统,500L乳化搅拌锅的搅拌桨转速约50r/min较适宜。密闭的乳化搅拌锅使用无菌压缩空气,用于制造完毕时压出雪花膏。
预先开启夹套蒸汽,使乳化搅拌锅预热保温,目的使放人乳化搅拌锅的油脂类原料保持规定范围的温度。
(2)油脂加热锅操作
测量油脂加热锅油温,并做好记录,开启油脂加热锅底部放料阀门,使升温到规定温度的油脂经过滤器流入乳化搅拌锅,油脂放完后,即关闭放油阀门。
(3)搅拌乳化和水加热锅操作
启动搅拌机,开启水加热锅底部放水阀门,使水经过油脂同一过滤器流入乳化搅拌锅,这样下一锅制造时,过滤器不致被固体硬脂酸所堵塞,稀淡的碱溶液放完后,即关闭放水阀门。
应十分注意的是:油脂和水加热锅的放料管道,都应装设单相止逆阀。当乳化搅拌锅用无菌压缩空气压空锅内雪花膏后,可能操作失误,未将锅内存有0.1~0.2MPa的压缩空气排放,当下锅开启油或水加热底部放料阀门时,乳化搅拌锅的压缩空气将倒流至油或水加热锅,使高温的油或水向锅外飞溅,造成人身事故。
(4)雪花膏乳液的轴流方向
乳化搅拌叶桨与水平线成45‘安装在转轴上,叶桨的长度尽可能靠近锅壁,使之搅拌均匀和提高热交换效率。搅拌桨转动方向,应使乳液的轴流方向往上流动,目的使下部的乳液随时向上冲散上浮的硬脂酸和硬脂酸钾皂,加强分散上浮油脂效果。不应使乳液的轴流方向往下流动,否则埋人乳液的搅拌叶桨,不能将部分上浮的硬脂酸、硬脂酸钾皂和水混在一起的半透明软性蜡状