对乙酰氨基酚,实验室合成方法和制药一样吗
应该是一样的吧。
对乙酰氨基酚不同合成路线的比较 化学制药工艺技术 一、以对硝基苯酚钠为原料的路线 对硝基苯酚钠是染料或农药的中间体,也广泛应用于制药工业生产。 它的工艺路线成熟,产量大,成本低,由氯苯出发经硝化和碱水
解等反应制得。 对硝基苯酚钠再经盐酸化、铁屑-盐酸还原和醋酸的乙酰化反应而得对乙酰氨基酚 工艺优缺点 优点: 此路线很简捷,适合于大生产 缺点: 1.原料供应常常受染料和农药生产的制约,对硝基氯苯毒性很大, 2.用铁屑-盐酸还原后,产生的铁泥在“三废”防治和处理上困难 3.中间体对氨基苯酚具有刺激性,能引起皮炎及过敏症,处理时应 避免与皮肤或呼吸道接触. 二、以苯酚为原料的路线 1.苯酚亚硝化法 苯酚0~5℃下与NaNO2和硫酸作用生成对亚硝基苯酚,再经Na2S还原得对氨基苯酚,收率80~85%,但使用硫化钠作还原剂,成本偏高,同时产生大量碱性废水,操作复杂,收率较低。 2.苯酚硝化法 苯酚硝化、还原得对氨基苯酚,反应T:0~5℃,并有NO2产生,需要耐酸设备及废气吸收装置。 (1)铁屑还原法:目前生产上已很少使用。 (2)加氢还原法:目前工业上优先采用之法。 以水作溶剂并添加无机酸、NaOH或Na2CO3,催化剂采用骨架镍、铂、钯 -炭。 可在≤0.5 MPa进行,反应温度在50~100℃,产率在85%以上。 加氢还原法的优点是产品质量好、收率高,且“三废”少。 3.苯酚偶合法 苯酚与苯胺重氨盐在碱性环境中偶合,酸化得对羟基偶氮苯,再用钯/炭为催化剂在甲醇溶液中氢解得对氨基苯酚。 本法原料易得,工艺简单,收率很高(95%-98%),氢解后生成的苯胺可回收套用。但在甲醇中氢解,需用昂贵的钯/炭作催化剂,成本高 三、以硝基苯为原料的路线 硝基苯由铝屑还原或电解还原或催化氢化等方法直接制成中间体对氨基苯酚
对乙酰氨基酚的合成方法
1合成方法
方法1[1]:以对硝基苯酚为原料
以对硝基苯酚为原料,用铁粉还原,滤除铁泥,滤液冷却结晶,再经重结晶、干燥等步骤制得成品PAP,再在含对氨基酚硫酸盐和苯胺硫酸盐的水溶液中,用氨水调节pH到5,用蒸馏法除去苯胺后在20℃用醋酐酰化,同时用氨水维持pH在5,可得含量为95%的APAP。文献报道,用醋酸乙酯或醋酸代替水介质,可提高酰化率到92.2%,且溶剂易回收,废水污染降低。
优缺点:此法工艺简单,技术成熟,但收率低,产品质量不稳定,产生大量废铁泥和废水,严重污染环境,国外许多国家已淘汰此法。
方法2[3]:以苯酚为原料
OH的衍生以苯酚为原料,以聚磷酸为催化剂,与冰醋酸和NH
2
物或盐,在80℃反应后用冰水处理,再用10%NaOH调节pH值到4,经回流、冷却、萃取等步骤得APAP,纯度可达98%。反应式为:
方法3[3]:以PNP为原料
以PNP为原料,在醋酸和醋酐混合液中,用5%Pd/C作催化剂,催化氢化继而乙酰化,一步合成APAP,总收率为80%。美国专利采用5%Pd/C催化剂将PNP还原一半后加入乙酐,使加氢与酰化同时进行,总收率为81.2%。反应式为:
采用Pd-La/C催化加氢一步合成的最佳工艺条件为:温度140℃,
压力0.7Mpa,时间2h,收率97%。
方法4[4]:以对羟基苯乙酮为原料
以对羟基苯乙酮为原料,在KI、醋酸酯存在下,经Beckmann重排可得APAP。进行Beckmann重排反应时,常用氯化亚砜、三氯氧磷、甲磺酸、硫酸、五氯化磷作催化剂,文献报道对羟基苯乙酮于液体二氧化硫中用氯化亚砜作催化剂,收率88.7%,但需-50℃低温。用氯化亚砜在回流下通氮气进行重排,并加入少量碘化钾以防止3-氯-4-羟乙酰苯胺副产物的生成,收率99%。
优缺点:反应条件非常苛刻需,-50℃低温,但收率较高。
若对氨基酚乙酸酯在仲丁醇、磷酸、醋酸存在下加热到100℃,反应一定时间后,真空蒸除溶剂可得到含量95%的粗APAP。
方法5[5]:生化合成法
生化合成法是利用生物工程技术进行APAP的生产研究。通过在酿酒酵母中表达一个融合基因,可产生一个由鼠肝细胞色素P450和NADPH-细胞色素P450还原酶基因构成的融合酶。该酶同时具有氧化和还原能力,可提供比单一细胞色素P450更为有效的电子转移系统。借助转基因酵母可使乙酰苯胺对位羟化,其产率为33nmol·mL-1。
优缺点:生化合成法对环境污染小,选择性高,但产率低,尚处于研究阶段。
方法6[3]:以硝基苯为原料
以硝基苯为原料,在稀硫酸中,以铝粉或镁粉为催化剂将硝基苯一步还原为PAP。还可用锌粉为催化剂。该法主要反应机理为硝基苯被氢化生成苯基羟胺,然后进行Bamberg er重排制得PAP。将PAP 溶解在10%醋酸中,在85~90℃下,加Na2S2O4,在一定时间内加入醋酐,在85℃进行酰化可得纯度>99%的APAP。
优缺点:该法工艺简单,原料易得,工艺途径多,降低成本的潜力较大,是近年来研究的热点,但金属消耗量大,且存在回收利用等后处理问题,因此难于大规模生产。
方法7[6]:以对硝基苯酚为原料
以对硝基苯酚为原料,经催化加氢和酸化合成了对乙酞氨基苯酚.该法一般以Pt/C、Pd/C作催化剂,在大约0.2~0.5MPa,70~90℃加氢还原PNP制备PAP粗品。国外有报道用Ni-Al-Pd-Zn复合催化剂加氢还原PNP,收率达到90%~95%。催化剂活性稳定,运转500h,不用再生。
优缺点:催化剂昂贵,且该法催化剂制备复杂且损失率高达0. 81~1g/kg氢化产物。但收率较高。
方法8[7]:以磺酸基偶氮苯酚为原料
以磺酸基偶氮苯酚为原料,在60~80℃时,同时将硫酸亚铁稀溶液和氨水加入到Ⅰ(磺酸基也可在间位)的悬胶液中,然后用乙酸酐处理,得本品。与此同时,交替地将邻磺酸苯偶氮基对苯酚Ⅰ边搅拌边分批加入到50~60℃的含有粉末状的铁和盐酸的悬浮液中,然后将以上混合物用乙酸酐处理,如上进行反应,即得N-(4-羟基苯基)乙酰胺溶液,可用氯化钠盐析或从浓溶液中结晶出本品Ⅱ。
优缺点:反应条件友好,收率尚可。
方法9[8]:以对硝基苯酚、异丙醇为原料
将220g对硝基苯酚、80g异丙醇、140g水和0.22g3%的Pb/C
催化剂的混合物在压力585kPa,温度为110℃时热压处理8min并在59min内加入180g乙酸酐,然后再保持压力585kPa,温度110℃53 min,即可得本品,收率90%。
方法10[8]:以对亚硝基苯酚为原料
以对亚硝基苯酚为原料,将对亚硝基苯酚用硫化钠还原,所得对氨基苯酚进行乙酰基化,所得粗品用氧化剂(如:浓HNO3)的水溶液处理,并且加活性炭搅拌,用氧化铁除去活性炭。从脱色后的滤液中得85~95%的N-(4-羟基苯基)乙酰胺,即本品。
优缺点:反应条件温和,产品收率较高。
方法11[2]:以对羟基苯乙酮为原料
以对羟基苯乙酮为原料,于反应瓶中,加入对羟基苯乙酮(2.72g,0.02mol)、盐酸羟胺(1.53g,0.022mol)、三乙胺(2. 26g,0.022mol)和乙醇(20ml),回流2h后,蒸干,加乙酸乙酯(40ml)溶解,以水(20ml)洗涤,蒸干得白色固体2(2.85g,87.4%)。乙酸乙酯重结晶得白色粒状结晶,mp143~145℃。于反应瓶中加入粗品2(1.0g,0.0067mol)、乙酸乙酯(10ml),于
50~60℃,滴加三氯氧磷(1.2g,0.0082mol)的乙酸乙酯溶液,2. 5h后,冷却至室温,加乙酸乙酯(50ml),以水(50ml)洗涤,蒸干得粗品1(0.93,93%),用无水乙醇重结晶得白色结晶1(0.75g, 80.6%),mp166~168℃。
优缺点:产品收率比较高,但操作比较繁琐。
方法12[7]:以硝基苯为原料
以硝基苯为原料,在三口瓶中加入250ml蒸馏水,依次加浓硫酸36g,硝基苯60g,十六烷基三甲基氯化氨0.6g,催化剂(自制3%Pt/C催化剂)。通氮气置换空气3次,再通氢气置换氮气3次,再连续通氢气,升温至90℃,搅拌加快到300r/min,分别记录通入氢气的流量与尾气的流量,计算吸氢量。约反应3h结束,再加入56 g硝基苯,冷却至室温,静置分层。水层调节pH至4~4.5,用甲苯-苯胺(1:1)溶液30ml分3次萃取,合并有机层。调节母液pH=7. 5,加入Na2SO3s析出沉淀,用水蒸汽蒸馏蒸出剩余硝基苯、苯胺等杂质,趁热加入乙酐-乙酸(2B1)溶液25g,于100℃下反应3h。冷却结晶,过滤得粗品,经精制干燥得产品48.6g,熔点168~ 170℃,回收率64.3%。
优缺点:方应操作繁琐,且产率比较低。
方法13[3]:对苯二酚和乙酰胺为原料
对苯二酚和乙酰胺为原料,在ZSM5分子筛的催化下,在真空Carius管中,300℃反应1h可缩合得到APAP,转化率为93.6%,摩尔选择性为45.9%。若以硅酸钛为催化剂,则摩尔选择性为67.5%,转化率为90.8%。
优缺点:反应条件比较友好,产率较高。
反应式为:
方法14[7]:以苯酚为原料制得对氨基苯酚
以苯酚为原料制得对氨基苯酚,再在三口烧瓶中按配比加入物料(对氨基苯酚B乙酸酐=1:1.3),回流搅拌反应,温度升至120~ 140℃,保温15min,冷却结晶,抽滤,用少许冰水冲洗,得类白色晶体,为扑热息痛.产率为87%.方应方程式:
本实验最佳工艺条件是:
(1):NaNO2=1.0:1.36,t=-3℃.pH=1.5~0.3.
(2)亚硝基苯酚:Na2S=1.0:1.22,t=45℃,中和后pH为9.
(3)对氨基苯酚:乙酸酐=1:1.3,t=130~140℃.
优缺点:按本实验的最佳工艺条件作试验,得到的产品产率高,纯度也高,具有较高的实用价值。
2目前工业上主要采用的方法
用铁粉还原法生产,该法是以对硝基氯苯为原料,经水解、酸化、还原制得对氨基酚,再经酰化得到乙酰氨基酚。铁粉还原法虽技术成熟,工艺简单,但产品收率低、质量较差、毒性大、成本高,更严重的是,生产过程中会产生大量含酚、含胺的铁泥和污水,污染严重。因此,急需进行技术改进。
3将来在国内可能会采用的方法
采用加氢工艺代替铁屑还原。特别是用Pd/C催化剂,以对硝基酚为原料,一步合成对乙酰氨基酚的方法,具有生产工序少,产品收率高,节省能源,废液大大减少,环境污染小,生产成本低等特点。而且针对我国生产厂家现有设备,设备投资小,可大大降低技改
费用。如能实现此法的工业化生产,对增加企业经济效益,有效地减少化工厂的三废污染都有积极意义,而且必将进一步促进精细化工生产的发展。
4参考文献
[1]刘竹青,胡爱琳,王公应.对氨基苯酚的合成研究进[J].工业催化,1999,(2):11-16.
[2]谢剑华,李光华,鲁晟.扑热息痛的又一合成路线[J].中国医药工业杂志,1999(7).
[3]严焕新,许丹倩,怀哲明,等.扑热息痛合成工艺研究[J].中国现代应用医学杂志,2000,17(1):32-33.
[4]魏昭云,樊明月,陈自诚.合成扑热息痛新路线的研究Ⅰ.对羟基苯乙酮肟的合成研究[J].安庆师范学院学报(自然科学版), 1997,3(3):42-43.
[5]赵海,王纪康.对乙酰胺基苯酚的合成进展[J].化工技术与开发,2004(1)
[6]方岩雄,张维刚,刘春英等.Pd-La/C催化加氢酰化一步合成扑热息痛[J].现代化工,2000,20(8):37-39.
[7]关燕琼,杨辉荣,陈文庆等.扑热息痛合成工艺的研究[J].广东工业大学学报,1997(2).
[8]陈光勇,陈旭冰,刘光明.对乙酰氨基酚的合成进展[J].西南国防医药,2007,17(1):114-117.
¥
5.9
百度文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
对乙酰氨基酚的合成方法
对乙酰氨基酚的合成方法
1合成方法
方法1[1]:以对硝基苯酚为原料
以对硝基苯酚为原料,用铁粉还原,滤除铁泥,滤液冷却结晶,再经重结晶、干燥等步骤制得成品PAP,再在含对氨基酚硫酸盐和苯胺硫酸盐的水溶液中,用氨水调节pH到5,用蒸馏法除去苯胺后在20℃用醋酐酰化,同时用氨水维持pH在5,可得含量为95%的APAP。文献报道,用醋酸乙酯或醋酸代替水介质,可提高酰化率到92.2%,且溶剂易回收,废水污染降低。
优缺点:此法工艺简单,技术成熟,但收率低,产品质量不稳定,产生大量废铁泥和废水,严重污染环境,国外许多国家已淘汰此法。
第 1 页
方法2[3]:以苯酚为原料
OH的衍生以苯酚为原料,以聚磷酸为催化剂,与冰醋酸和NH
2
物或盐,在80℃反应后用冰水处理,再用10%NaOH调节pH值到4,经回流、冷却、萃取等步骤得APAP,纯度可达98%。反应式为:
时钧一生从教,60多年来,他在化工高等教育辛勤耕耘,1980年起,他开始招收研究生(1945年在重庆曾招过2名研究生),到现在已有5人获得博士学位。他的学生有不少是蜚声中外的科学家,两院院士就有16位,获得高级职称的数以百计,在化工、炼油、冶金、建材、机械、医药等领域作出了卓越的贡献 。半个多世纪的辛劳熬白了他的鬓发,而他的青春活力却在一代代弟子身上得到焕发,他的事业正由众多的学生去弘扬光大。
在他的从教生涯中,所带过的学生中先后产生了16名院士。名单如下 : 姓名院士主要成果备注陈家镛中国科学院院士中国湿法冶金开拓者1943年毕业于国立中央大学(现为南京工业大学)化学系梁晓天中国科学院院士药物化学和有机化学1942年考入中央大学化学工程系(现南京工业大学化工系)闵恩泽中科院、工程院院士石油化工催化剂专家1946年夏从国立中央大学化学工程系(今南京工业大学)毕业,闵恩泽和陆婉珍(女)为同班同学,也是夫妻 陆婉珍中国科学院院士分析、石油化学家胡宏纹中国科学院院士有机合成化学专家1946年毕业于原中央大学化学系(今南京工业大学)张存浩中国科学院院士物理化学家1947年毕业于南京中央大学化学工程系(现南京工业大学)朱起鹤中国科学院院士分子反应动力学家1947年毕业于南京中央大学化工系(现南京工业大学)陆钟武中国工程院院士热能工程专家1950年毕业于大同大学(前三年在中央大学)时铭显中国工程院院士石油化工机械专家1952年7月毕业于南京大学化工系(现南京工业大学)陈懿中国科学院院士物理化学家1955年毕业于南京大学化学系(现南京工业大学)唐明述中国工程院院士无机非金属材料专家1956年南京工学院(现东南大学)化工系研究生毕业曹湘洪中国工程院院士石油化工专家1967年毕业于南京化工学院(现南京工业大学)江东亮中国工程院院士材料科学1960年毕业于南京化工学院(现南京工业大学)徐德龙中国工程院院士无机非金属材料专家1983年南京化工大学(现南京工业大学)硕士毕业欧阳平凯中国工程院院士生物化工1981年来到南京化工学院(南京工业大学的前身)工作徐南平中国工程院院士化学工程领域1989年南京化工学院化学工程专业博士毕业根据全国图书参考资料联盟,时均共培养硕士2名,博士52名,具体情况如下 : 年度论文名称作者授予单位学位2005《苯氯化三相催化精馏过程研究》崔咪芬南京工业大学博士2007《里氏木霉分泌蛋白降解木质纤维素的研究》欧阳嘉南京工业大学博士2003《陶瓷膜处理含油乳化废水的技术开发及传递模型研究》谷和平南京工业大学博士2002《溶液结晶动力学实验与模型研究》伍川南京工业大学博士2002《有机羧酸稀溶液的络合萃取过程研究》管国锋南京工业大学博士2002《吸附制冷工质对及其制冷过程研究》崔群南京工业大学博士2004《陶瓷膜分离对氨基苯酚生产中镍催化剂的研究》金珊南京工业大学博士2004《一体式陶瓷膜乳化装置的研究和应用》景文珩南京工业大学博士2004《面向中药水提液体系的陶瓷膜设计与应用》李卫星南京工业大学博士2004《料仓内散体流动的数值模拟研究》肖国先南京工业大学博士2003《综合建模方法和先进控制技术在两个化工过程中的应用》张湜南京工业大学博士2003《分光光度分析专家系统》陈国松南京工业大学博士2003《钙钛矿型透氧材料的制备与研究》谭亮南京工业大学博士2003《新型锆基钙钛矿型致密透氧膜的研究》杨丽南京工业大学博士2002《面向钛白工业废水处理的陶瓷膜材料设计与应用》赵宜江南京工业大学博士2002《乙烯/乙烷络合分离吸附剂的制备及表征》梅华南京工业大学博士2002《陶瓷膜成套装备与工程应用技术的研究》邢卫红南京工业大学博士2002《纳滤浓缩和脱盐的传质过程研究》杨刚南京工业大学博士2002《陶瓷膜生物反应器的研究》徐农南京工业大学博士2002《混合导体致密透氧膜反应器进行甲烷催化氧化反应的研究》顾学红南京工业大学博士2002《D-氨基酸的制备研究》韦萍南京工业大学博士2001《三相流态化光催化过程的研究》崔鹏南京工业大学博士2001《NaA型沸石分子筛膜的合成及渗透性能研究》董强南京工业大学博士2000《氧化锆陶瓷超滤膜制备及相关基础技术研究》琚行松南京化工大学博士2000《强化传递的多相催化内循环气升反应器研究》 吕效平南京化工大学博士2000《高质量低成本钛酸钾晶须的制备及其在复合材料中的应用》 冯新南京化工大学博士1999《硫酸钾生产工艺模拟及其溶解动力学研究》陈栋梁南京化工大学硕士1999《混合传导型致密透氧陶瓷膜》李世光南京化工大学博士1999《TiO2起滤膜和超薄Pd/TiO2复合膜的研究》吴立群南京化工大学博士1999《甲缩醛合成流化催化精馏过程研究》乔旭南京化工大学博士2001《单分散二氧化钛纳米微粒合成及在光解水制氢反应中的应用》陈洪龄南京工业大学硕士1999《光催化陶瓷膜反应器的实验研究与数学模拟》 史载锋南京化工大学博士1999《液体混合物的吸附平衡及动力学研究》 刘晓勤南京化工大学博士1999《面向过程模拟的电解质溶液化学和相平衡研究》 吉晓燕南京化工大学博士1999《担载钙钛矿型透氧膜的制备及甲烷部分氧化制合成气管式致密膜反应器的研究》 金万勤南京化工大学博士1999《处理含油乳化液废水的研究》 王春梅南京化工大学硕士1998《新型干法回转窑内煤粉燃烧、高温传热、煅烧熟料热工过程的应用基础研究》 叶旭初南京化工大学1998《流体微观结构及扩散性质的分子动力学模拟研究》 周健南京化工大学博士1998《陶瓷微滤膜过滤微米、亚微米级颗粒体系的基础研究和应用开发》 钟璟南京化工大学博士1998《甲烷部分氧化膜催化反应的数学模拟和实验研究》 杨超南京化工大学博士1997《络合吸附净化含氮气体中微量一氧化碳的研究》居沈贵南京化工大学博士1997《气固吸附平衡与吸附动力学研究》马正飞南京化工大学博士1997《液体粘度的关联推算及醇烃体系混合物粘度的测定》沈式泉南京化工大学博士1997《超临界流体沉积技术的研究与应用》汪朝晖南京化工大学博士1997《氧化铝微滤膜的制备和工业化研究》王沛南京化工大学博士1996《氧化铝陶瓷膜的制备、表征及应用研究》黄培南京化工大学博士1996《高压相平衡与状态方程研究》 云志南京化工大学博士1995《液相扩散系数的测定与研究》 范益群南京化工大学博士1995《高压流体相平衡及状态方程的若干研究和应用》董军航南京化工学院博士1994《电解质溶液相平衡的热力学研究》张吕正南京化工学院博士1992《统计热力学的相对性及其应用》王仁远南京化工学院博士1992《临界区域相平衡测定及状态方程的研究》 卞白桂南京化工学院博士1989《高压流体相平衡的实验测定和状态方程研究》 徐南平南京化工学院博士1988《强电解质混合溶剂体系的热力学研究》陆小华南京化工学院博士1988《非电解质溶液过量热力学性质的研究》沈树宝南京化工学院博士 时钧治学严谨,一丝不苟。他在担任《中国大百科全书.化工卷》常务副主编时,为编纂这部巨著倾注了大量心血,不仅肩负着繁重的组织领导工作,还亲自撰写修改了若干重要条目,有的甚至五易其稿。他亲手撰写了《综论》中的若干篇章。他还撰写了《化学工程手册》中的“传质”和“吸收”两篇,并主持翻译了《传质学》以及《流态化工程》和《翅管换热器设计计算》等书。
时钧非常注重科学研究。早在清华大学读书的时候,便在《清华大学学报》和《中国化学会杂志》上发表过有关探讨制备有色烟幕的规律和有关有机定性分析的3篇论文(英文稿)。他在缅因大学的硕士论文《关于机械木浆的筛分和性能的关系》,由导师分成两篇论文发表在美国造纸专业杂志上。1957年,由他指导的杨南如作的研究生论文《关于高铝水泥原料粒度与烧成温度的关系》发表在《硅酸盐学报》创刊号上。在逆境中,时钧于1965年做过湍流塔的试验;1972年起进行了膜分离的研究,都取得了可喜的成果,但由于当时试验条件的限制,无法深入下去。自1974年起,时钧参加了国产填料(以拉西环为主)的性能评定试验,曾发表了4篇论文(均未署名)。对于几种填料的试验全过程,如试验方案的确定,装置的设计安装,数据的测定、整理和关联,计算公式的应用,以及试验报告的撰写等,都是在他亲自主持下进行的。有关试验方法的一些内容,如试验体系的选择原则、数据的处理及表达方法等,后来一直被国内有关方面所引用。1979年后,时钧带领助手们开始了系统的研究工作。研究的内容主要包括3个方面:流体热力学性质的实验测定、色谱法研究溶液热力学和膜分离技术 。 时钧认为工程科学迄今仍是一门实验科学。化学工程研究、设计和开发所用的基础物性则更需精密的实验测量。自80年代初起,他就有计划地着手组建一个热力学基础物性的测定中心,对广泛范围的相平衡、容积性质和过量性质进行了研究,并培养了一批从事这方面研究的专门人才,在国内外重要期刊上发表论文30余篇。在流体相平衡方面,高压下流体的热力学性质测定的投资费用较高,并且费工费时,因而迄今有用的实测数据极为缺乏,影响了这一领域的理论进展。有鉴于此,时钧、王延儒等筹建了精度较高的高压相平衡装置,对含氯氟烃替代物体系和高压二氧化碳气田气体系的相平衡,以及多元体系近临界区域和混合物临界轨迹等方面进行了广泛测定。有关的论文在国内外重要期刊上发表后,已有10多个国家和地区的专家和数据库来函索取单印本。有些实测结果纠正了前人所测数据的偏差,扩充了测量范围。最近,在原有的静态法基础上,结合Bumett 膨胀法成功地建立了在一台装置上同时测量高压流体相平衡组成和平衡相密度的简便方法,为快速而有效地获取高压下的流体基础物性提供了新的手段。此外,他和助手们一起建立了一套流体压缩因子的Bumett 法精密测量装置,用以求取高压下混合气体的P-V-T 基础数据。当论文在国外重要期刊上发表时,美国热力研究中心(TRC)的评阅者认为文中所测的混合物压缩因子精度“已达同类装置的最好水准”。在建立高压装置的同时,时钧与合作者还对常压下的相平衡,包括汽-液、液-液以及液—固相平衡进行了广泛而实用的测量研究。这方面发表的10多篇论文,为C5 烃的溶剂萃取、甲乙苯—甲基苯乙烯分离、重要溶剂4-甲基-戊酮的分离提纯,以及氯甲烷在偏三甲苯中溶解性能等化工工艺的开发设计,提供了必不可少的基础物性数据。
溶液的混合热(过量焓)是一类既具有重要理论意义,又有工程设计用途的基础物性。时钧与合作者经过多年的努力,改进并逐步完善了一套精密测量微量热效应的装置。这套装置可用以测得各种纯物质或生物物质在混合、反应或其他物理化学变化中产生或吸收的微量热效应(可灵敏反映出1焦耳)。在这一领域中,已经接连测量了多种有机物的二元三元体系混合热和强电解质混合溶剂体系的过量焓、稀释热、溶解热等基础物性数据,并在国际化学热力学期刊上发表近10篇论文。
含有有机物的电解质水溶液是一类在工业实际过程中经常会遇到的复杂体系。有关的相平衡数据比较缺乏,且其热力学特性目前尚很难用一般电解质溶液理论或半经验模型来预测和推算。时钧与合作者利用不同浓度溶液电导率的差异与电导滴定相结合,以及采用离子选择性电极的连续测定方法,方便而准确地测量了多种强电解质有机物水溶液的相平衡组成,并且测量精度显著提高。有关研究在国际学术会议上发表,得到众多专家好评。
从统计力学理论建立流体状态方程的关键,在于包括径向分布函数和势能函数乘积的积分难以计算。国内外学者一般均采用数值积分进行处理,或对径向分布函数g(r) 作简化。时钧与合作者则将这一积分作为整体量处理,引用统计力学压缩性方程,通过简化势能函数形式而得到这一积分的解析计算公式,从而能够直接得到形式简单、计算精度高的状态方程,并将这一思想用于流体局部组成研究,将局部组成这一微观量首次与压缩系数这一宏观量联系起来,为局部组成研究提供了新方法。新的局部组成模型已在强非理想体系的汽液平衡计算中获得了成功。
溶液热力学是化学热力学的重要组成部分,也是化学工程学科的基础。作为热力学研究工作者,时钧从80年代起即根据国内外当时最新的研究动态和学院具有的条件,领导科研人员用仅有的一台气相色谱仪开展色谱法测定热力学性质的研究。经过10多年的努力,时钧和汪绍昆等在这一方向上培养了多名研究生,先后发表论文20余篇。除用色谱测定了众多体系的无限稀释活度系数外,他们还改进了国外学者70年代中期提出的r与(dr/dx)x=0 预测全浓度范围活度系数的模型与方法,建立了自己的经验关联式,用于预测汽液平衡,取得了比国际上现有的UNIFAC基团贡献法还要好的预测精度。他们还利用色谱仪测定了挥发性溶质在混合不挥发溶剂中无限稀释活度系数,在实验基础上研究了Wilcon 方程的参数多解,对称与多元系汽液平衡的预测,研究了台阶脉冲法测汽液平衡,使色谱法扩大用于含极性组分和聚合物组分的多种体系,用于吸附研究,以推算气固平衡;研究了测定有加合物生成体系的加合常数,进而预测这种体系的固液平衡。在测定无限稀释活度系数的基础上,还对80 年代国外提出的预测无限稀释活度系数的修正分离凝聚能密度模型进行了改进,提高了预测精度。
在膜分离方面,时钧和他的合作者主要做了有关气体膜分离的研究,还做了一些渗透汽化过程和液膜分离设备性能的研究。前后已经发表论文30余篇(包括国际会议大会报告)。80年代初期,时钧和陈鸣德等用改性含氟树脂膜对氨、氢、氮混合气体进行渗透分离,为从混合气体中分离氨提供了一个新方法,在国内外是一项首创工作。1986年在东京国际膜及膜过程大会报告后,引起了各方注意,至今还被国外学者在有关论文中引用。
1985年后,时钧和庄震万等在气体膜分离方面做了较为系统的研究工作。用各种不同的国产膜,组成单膜和双膜渗透器以及连续膜塔,以He-N2-CH4,CH4-CO2-N2 等混合气体为对象,进行分离试验,并从理论上阐述气体在膜中的溶解与渗透机理,还探索了各种膜渗透器及其系统的气体分离计算方法,从而建立了一个新的数学模型。这个新模型对任意组分数的混合气体在不同类型的膜渗透器及其系统中的分离计算都是适用的。此外,他们还建立了气体在膜中溶解和渗透机理的通用热力学模型,以及存在有增塑化作用时的渗透机理模型等。目前时钧又和杨南如等在研究无机膜及膜反应器的国家重点课题。
在液膜分离方面,时钧和裘元焘等主要进行了油一乳一水体系在多孔转盘塔中的流体力学性能、液滴直径分布以及传质效果等的研究,从而探讨在液膜分离中采用多孔转盘塔的可能性。
为了表彰时钧的卓著成就,化学工业部特授予他“全国化工有重大贡献的优秀专家”的光荣称号,成为我国首批享受政府特殊津贴的专家。时钧是第六届、第七届全国政协委员、中国科学院学部委员、化学工程一级教授,南京化工学院化学工程系名誉系主任。同时,他还兼任国家自然科学基金委员会化学学科评议组成员、化工组组长,中国石化总公司技术经济顾问委员会委员,化学工程国家重点实验室学术委员会主任,煤转化国家重点实验室学术委员会委员,中国化工学会常务理事,江苏省化学化工学会理事长,《化工百科全书》编委会副主任委员,《化学工程手册》编委会主任,《化工学报》副主编,《中国化学工程学报》(英文)编委会委员等职。
年逾八旬、童颜鹤发的时钧,依然精神矍铄,思路敏捷,继续培育一批又一批年轻人脱颖而出,有的荣获“洪堡研究奖学金”、“霍英东教育基金奖”,有的获得“优秀青年科技工作者”的光荣称号,普遍在各自的研究领域里卓有建树。这表明,时钧的事业后继有人。
1934年毕业于清华大学化学系。1936年获美国梅因大学化学工程硕士学位。1936年至1938年在美国马萨诸塞理工学院研究院学习。回国后,曾任重庆大学、中央大学教授、化工系主任。建国后,历任南京大学、南京工学院、南京化工学院教授、化工系主任,中国科学院化学部委员,国务院学位委员会第一届学科评议组成员,《中国大百科全书化工卷》副主编,中国化工学会第四届常务理事,江苏省化学化工学会第五届理事长。九三学社社员。是第六届全国政协委员。专于化学工程。1952年创设我国硅酸盐工艺学专业。合编《化学工程手册·气体吸收》,合译《水泥和混凝土化学》。 1 ShiJ,ChenM.PermeabilityofAmmonia,Hydrogen,NitrogenandTheirMixturesTroughFluoropolymerMembranesProceedingsoftheIntemationalCongressonMembranesandMembraneProcesses.okyo,Japan,1987:502
2 ShiJun,ZhuangZhenwan.MultipleMembraneSeparationSystem.ProceedingsoftheIntemationalSymposiumonMembranesandMembraneSeparationProcesses.MainLecture,Torun,Poland,1989:33
3 陆小华,王延儒,时钧.含盐溶液汽液平衡的预测(I)Pitzer模型的扩展及其在多元体系中的应用.化工学报,1989,40(3):293
4 陆小华,王延儒,时钧.含盐溶液汽液平衡的预测(Ⅱ)参数的物理意义及估算.化工学报,1989,40(3):301
5 LiJianminwangShaokun,shiJun.ModelofElutiononaPlateauMethod.ChromatographicScience.1989,27(10):596
6 LiJianmin,WangShaokun,ShiJun.Flexibility,MultiplicityandSymmetryofwi1sonParametersandVapor-liquid-EquilibriuminMultiComponentSystems.ChemicalEngineeringScience,1990,45(1):199
7 FengX,WangSK,ShiJ.MeasurementoftheAdductionConstantbyGas-LiquidChromatography.Chromatographia.1990,30(3/4):211
8 ZhuangZhenwan,ShiJun.GeneralMathematicalModelsofMembranePermeation.Proceedingsofthe1990IntemationalcongressonMembranesandMembraneProcessesChicago,U.S.A1990,V01-Ⅱ:1361.
9 XuNanping,YaoJianmin,WangYanru,ShiJun.VaporLiquidEquilibriaofFiveBinarySystemsContainingR-22.FluidPhaseEquilibria,1991,69:261—270
水氧化催化剂
研究水氧化作用催化剂
双语例句
1
Treatment of dye waste water by catalysis oxidation using TiO_2-Ag-modified bentonite as composite catalyst
用TiO_2-Ag-改性膨润土复合催化剂光催化氧化处理染料废水
2
The catalytic oxidation of para-aminophenol in supercritical water with oxidation catalyst Cu~ ( 2+) and oxidant H_2O_2 was investigated in a tubular continuous flow reactor at 24~ 30 MPa, 480~ 500 ℃.
采用Cu2+为催化剂、H2O2为氧化剂,在一连续流反应器中进行了催化超临界水氧化对氨基苯酚实验。
据悉,冀衡药业本次公开发行股票数量占发行后公司总股本的比例不低于25%且不超过3,000万股。拟于深交所主板上市,保荐机构为国金证券。
公开资料显示,冀衡药业是一家专业从事化学原料药、制剂以及医药中间体研发、生产和销售的高新技术企业,凭借产业链优势、产品质量优势、规模优势及良好的市场信誉,在所属细分领域处于领先地位。目前,公司的主要产品包括以对乙酰氨基酚为核心的多种原料药、制剂以及医药中间体,主要品种有对乙酰氨基酚、安乃近、氨基比林、安替比林、叶酸等。
对乙酰氨基酚是全球主要的解热镇痛药物之一,目前是全球市场销量最大的解热镇痛药,被世界卫生组织(WHO)列入《世界卫生组织儿童基本药物标准清单》,我国现已成为全世界对乙酰氨基酚的第一大生产国和出口国。除用于医药领域,对乙酰氨基酚还在染料生产、医用X光底片的显影剂和橡胶制品的防老化剂等众多领域得到应用。安乃近、安替比林、氨基比林产品至今已有百年历史,均属于解热镇痛类药物,虽其下游部分产品如安乃近注射液、安乃近滴鼻液、氨基比林单方制剂等存在不良反应而被我国以及部分国家禁用,但因其具有效果强、吸收好、起效快、价格低廉等特征,作为原料药仍有一定的市场空间。叶酸又称维生素B9、蝶酰谷氨酸等,是一种水溶性维生素,对细胞的分裂生长及核酸、氨基酸、蛋白质的合成起着重要的作用。
公司属于河北省高新技术企业,为河北省企业技术中心、河北省对氨基苯酚衍生物与叶酸药物工程技术研究中心、河北省工业企业A级研发机构、河北科技大学研究生工作站,在生产经营过程中,公司高度注重产品质量、生产工艺的提升。围绕核心产品,公司曾先后获得14项河北省科技成果证书,包括“对乙酰氨基酚洁净生产处理过程”“活性炭浆料脱色法生产对乙酰氨基酚”“对乙酰氨基酚精制母液回收处理方法”“釜式连续加氢生产对氨基苯酚的新技术”“醇溶MAA结晶法生产COS安乃近”“氨基比林生产新方法”“叶酸废水的处理技术”“控制蝶酸含量的叶酸生产新方法”“叶酸酸溶废水的处理