高中研究性学习论文 肥皂的制取
各种肥皂的制取
[原理]
高级脂肪酸盐(主要是碱金属钾、钠)虽是肥皂的主要成分,但由于需要不同,制造过程的步骤不同,以及应用原料、水质的不同,会产生很多不同的肥皂。
使用肥皂洗涤能去污,也能使皮肤发生易干裂的现象。为此,在不影响去污的基础上,采用中性油脂、橄榄油、羊毛脂等,就可制得过脂皂。
[用品]
1.仪器 烧瓶、硬试管、铁架台及附件、搅拌玻璃棒、烧杯、温度计、导管、乳胶管和酒精灯等。
2.试剂 皂液、蓖麻油、松香、糖、乙醇、甘油、椰子油、10mol·L-1氢氧化钠溶液、氢氧化钾溶液、棕榈油、植物油、月桂醚硫酸二乙醇胺盐、椰子酰二乙醇胺、亚麻仁、硬脂酸乙二醇酯、二乙醇按、烷基醚硫酸铵、合成蜡、月桂基硫酸钠、椰子酰丙基甜菜碱、柠檬酸、氯化钠、椰子油酸、油酸、三乙醇胺、苦杏仁油、皂用抗氧剂、聚乙二醇、季铵化合物、去离子水、硅酸镁铝、丙二醇、氢氧化钠溶液(密度1.168g/cm3)、精制豆油、葵子油、香料、二氧化钛等。
[操作]
(一)液体皂和软皂
1.液体皂。
在盛水的烧杯中要保持水温达到70~72℃后,慢慢加入椰子油酰丙基甜菜碱,不断搅匀,待降温至58℃时,再加防腐剂和香料,并持续搅拌半小时,用柠檬酸调到pH6.0±2,再用氯化钠调节粘度,等到温度低于46℃时,即可以取出。
液体皂的配方如下:合蜡1.5%,月桂基硫酸钠29.0%,椰子酰二乙醇胺2%,椰子酰丙基甜菜碱6%,水61.5%。
这种肥皂能使皮肤脱脂,合成蜡能以珍珠般的泡沫提高柔润感,它在皮肤上行成无油腻感的保护膜。
2.软皂。
在烧瓶中放进亚麻油或大豆油50mL并在水浴上加热,保持80℃时,把10mol·L-1氢氧化钠溶液60mL慢慢加入瓶内,随加随振荡,或搅拌,使其成透明的肥皂液,再把5mL乙醇倒入、不断溶解,如透明就可以蒸发一段时间。当看到液体有淡黄色、黄绿色和黄棕色的透明、且粘滑的软块出现时,即可倾出。
软皂可用于外科手术前洗手,作灌肠剂时调成5%的溶液,制成搽剂,也可以医治关节神经痛等。
(二)珠光洗手皂和天然液体皂
1.天然液体皂。
(1)用椰子油酸10.8%、油酸4.3%、乙醇胺2.2%、三乙醇胺4.9%、甘油2.2%、苦杏仁油0.2%、聚乙二醇60羊毛脂2%、季胺化合物0.3%、再混以适量的防腐剂、色料和抗氧剂配料后,放入大烧杯中再加入
(2)取1%的硅酸镁铝慢慢地加入一半水的烧杯中,混合匀,加热并保持70℃。另取一烧杯,把2%氢氧化钾溶于37.5%水的溶液,慢慢注入后,加热温度到70℃,再加2.5%丙二醇和6%月桂基硫酸钠,搅匀。最后把这两烧杯的混合液合并。把混合液倒入90℃的油酸内,待冷却即成。
2.珠光洗手皂。
把配料比为77.4%水和少量防腐剂放入烧杯中,把温度加热到60℃后,再逐渐地加入月桂醚硫酸二乙醇盐和椰子酰二乙醇胺10%、月桂酰二乙醇按和亚油酰二乙醇胺1.5%,同时把2.5%硬脂酸乙二醇胺溶解后,将温度冷却至40℃,混入烷基醚硫酸铵8.6%,最后调pH为7。即是白色珠光液体,它具有很好去污起泡作用。
(三)香皂
取烧瓶放入牛脂和椰子油,两者的比为80∶20,混合并注入氢氧化钠溶液,振荡,用酒精灯加热。有时还加入棕榈油、橄榄油、硬化油少许,用来进行皂化。最后加入香料,香料有檀香型、茉莉型、馥奇型、玫瑰型、桂花、兰花等。
皂化完成后,可用盐析法析出香皂。
检查香皂质量,可以将香皂泡在20℃恒温水中5h,之后可剖开测量其糊烂层的深度。易糊烂的出现,是由于皂体组织疏松和含水量低所致。将香皂用钢丝剖开,观察皂体组织是否光滑紧密,没有白芯就好。
小实验:肥皂的制取
认识重要的体内能源——油脂
油脂是人类的主要食物之一,是人体不可缺少的营养物质。让我们一起来认识一下油脂的成分。
油脂的成分:油脂的主要成分是高级脂肪酸与甘油所生成的酯,叫做甘油三酯。其中的烃基可以是饱和或不饱和的烃基,它们可以相同也可以不同。如果烃基相同,这样的油脂称为单甘油酯,如果烃基不同,就称为混甘油酯。天然油脂大多为混甘油酯。
形成油脂的脂肪酸的饱和程度,对油脂的熔点有着重要的影响。由饱和的软脂酸或硬脂酸生成的甘油酯熔点较高,在室温下呈固态。动物油如羊油、牛油等;由不饱和的油酸生成的甘油酯熔点较低,在室温下呈液态。如植物油的主要成份就是油酸甘油酯。
小实验:肥皂的制取
实验目的:1、了解肥皂的制取过程。2、认识油脂的重要性质——皂化反应。
实验用品:烧杯、量筒、蒸发皿、滴管、玻璃棒、纱布、铁架台(带铁圈)、酒精灯、火柴、植物油(或动物油)、乙醇、30%氢氧化钠溶液、氯化钠饱和溶液、蒸馏水
实验过程:
1、原料的准备:用三个量筒分别取植物油8毫升、乙醇8毫升、30%氢氧化钠溶液4毫升倒入同一个干燥蒸发皿中。
2、将原料加热:把盛原料的蒸发皿放在铁架台的铁圈上,并点燃酒精灯给其加热,为了使原料受热均匀,充分皂化,要用玻璃棒不断搅拌,加热至混合物变稠。
3、盐析:将油脂和碱经过皂化反应后形成的稠状物,一面用玻璃棒搅拌,一面加入饱和的氯化钠溶液25毫升,看到溶液分上下两层,有肥皂析出,最后肥皂成为糊状浮在液体上面,下层为黄色或黄褐色的水液层。(其中加入氯化钠的溶液的作用是使肥皂析出(盐析),因为氯化钠的加入降低了高级脂肪酸钠的溶解性。玻璃棒搅拌的目的是使氯化钠溶液与蒸发皿中液体混合均匀。)
4、 过滤:用纱布将盐析后的混合液过滤,并将纱布上的固体混合物挤干,加香料(松香)压制成条形,晾干即可。
问题思考:
1、 在原料的准备中,加入乙醇的目的是什么?加入氢氧化钠的作用是什么?(加入乙醇的目的是使反应物成为均一的液体,以增加反应的速率。氢氧化钠的作用是催化作用。
2、 植物油在氢氧化钠作用下发生了什么反应?反应类型是什么?写出化学反应方程式。(发生了皂化反应。反应类型是水解反应。方程式略。)
3、 植物油的成分是什么?肥皂的成分是什么?(植物油的成分是油酸甘油脂。肥皂的主要成分是高级脂肪肪酸钠。)
4、 在实验过程3中加入饱和氯化钠溶液的作用是什么?原因是什么?玻璃棒搅拌的作用是什么?在实验过程3中混合液产生了怎样的现象?(其中加入饱和氯化钠的溶液的作用是使肥皂析出(盐析)。 因为氯化钠的加入降低了高级脂肪酸钠的溶解性。 玻璃棒搅拌的目的是使氯化钠溶液与蒸发皿中液体混合均匀。 看到的现象是溶液分上下两层。)
5、 肥皂去污的原理是什么?(高级脂肪酸钠的羧基部分可溶于水,而烃基部分不溶于水,污垢中的油脂跟肥皂接触后,高级脂肪酸钠分子中的烃基就插入油滴内,而易溶于水的羧基部分伸在油滴的外面,插入水中,油滴就被肥皂分子包围起来。再经摩擦振动,大的油滴便分散成小的油珠,最后,脱离被洗的纤维织品,而分散到水中形成乳浊液,从而达到洗涤的目的。)
1.物质的理化常数:
国标编号 82504
CAS号 141-43-5
中文名称 2-氨基乙醇
英文名称 Monoethanolamine;2-Aminoethanol
别 名 乙醇胺;2-羟基乙胺
分子式 C2H7NO;HO(CH2)2NH2 外观与性状 无色液体,有氨的气味
分子量 61.08 蒸汽压 0.80kPa/60℃ 闪点:93℃
熔 点 10.5℃ 沸点:170.5℃ 溶解性 与水混溶,微溶于苯,可混溶于乙醇、四氯化碳、氯仿
密 度 相对密度(水=1)1.02;相对密度(空气=1)2.11 稳定性 稳定
危险标记 20(碱性腐蚀品) 主要用途 用作化学试剂、溶剂、乳化剂、橡胶促进剂、腐蚀抑制剂等
2.对环境的影响:
一、健康危害
侵入途径:吸入、食入、经皮吸收.
健康危害:蒸气对眼、鼻有刺激性.眼接触液状本品,造成眼损害;皮肤接触引起刺痛和灼伤.口服损害口腔和消化道.
二、毒理学资料及环境行为
急性毒性:LD502050mg/kg(大鼠经口);1000mg/kg(兔经皮);LC502120mg/m3,4小时(大鼠吸入)
亚急性和慢性毒性:大鼠吸入100~200mg/m3×6小时/日×5日/周,中枢神经系统抑制,条件反射改变;兔吸入24mg/m3×35日,中枢神经系统受到一定抑制,皮肤出现刺激现象.
危险特性:遇高热、明火或与氧化剂接触,有引起燃烧的危险.与硫酸、硝酸、盐酸等强酸发生剧烈反应.
燃烧(分解)产物:一氧化碳、二氧化碳、氧化氮.
3.现场应急监测方法:
4.实验室监测方法:
高效液相色谱法,参照《分析化学手册》(第四分册,色谱分析),化学工业出版社
5.环境标准:
前苏联 车间空气中有害物质的最高容许浓度 0.5mg/m3
前苏联(1975) 水体中有害物质最高允许浓度 0.5mg/L
水中嗅觉阈浓度 0.5mg/L
美国 车间卫生标准 6mg/m3
6.应急处理处置方法:
一、泄漏应急处理
疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,建议应急处理人员戴好防毒面具,穿化学防护服.不要直接接触泄漏物,在确保安全情况下堵漏.用沙土或其它不燃性吸附剂混合吸收,然后收集运至废物处理场所处置.也可以用大量水冲洗,经稀释的洗水放入废水系统.如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃.
二、防护措施
呼吸系统防护:可能接触其蒸气时,佩带防毒面具.紧急事态抢救或逃生时,建议佩带自给式呼吸器.
眼睛防护:戴化学安全防护眼镜.
防护服:穿工作服(防腐材料制作).
手防护:戴橡皮手套.
其它:工作现场禁止吸烟、进食和饮水.工作后,淋浴更衣.进行就业前和定期的体检.
三、急救措施
皮肤接触:脱去污染的衣着,立即用流动清水彻底冲洗.
眼睛接触:立即提起眼睑,用流动清水或生理盐水冲洗至少15分钟.或用3%硼酸溶液冲洗.立即就医.
吸入:迅速脱离现场至空气新鲜处.必要时进行人工呼吸.就医.
食入:误服者立即漱口,给饮牛奶或蛋清.就医.
灭火方法:雾状水、二氧化碳、砂土、泡沫、干粉.
下午好,二者不同,「乙醇铵」应该是显酸性的铵盐吧,乙醇胺则是一种有机碱并分为一、二和三乙醇胺。印象中没有听说过「乙醇铵」这种奇怪的单独铵盐,一般都是乙醇胺与有机弱酸反应后生成对应的盐,请酌情参考。
乙醇胺,141-43-5,结构式
乙醇胺
CAS号:141-43-5
英文名称:Ethanolamine
中文名称:乙醇胺
CBNumber:CB1218589
分子式:C2H7NO
分子量:61.08
MOL File:141-43-5.mol
乙醇胺化学性质
熔点 :10-11 °C(lit.)
沸点 :170 °C(lit.)
密度 :1.012 g/mL at 25 °C(lit.)
蒸气密度 :2.1 (vs air)
蒸气压 :0.2 mm Hg ( 20 °C)
折射率 :n20/D 1.454(lit.)
闪点 :200 °F
储存条件 :Store at RT.
溶解度 :Soluble in benzene, ether, carbon tetrachloride.
酸度系数(pKa) :9.5(at 25℃)
形态 :Liquid
颜色 :APHA: ≤15
比重 :1.012
相对极性 :0.651
PH值 :12.1 (100g/l, H2O, 20℃)
爆炸极限值(explosive limit) :3.4-27%(V)
水溶解性 :miscible
敏感性 :Air Sensitive &Hygroscopic
Merck :14,3727
BRN :505944
Henry's Law Constant :1.61(x 10-10 atm?m3/mol) at 20 °C (Bone et al., 1983)
暴露限值 :TLV-TWA 3 ppm (~7.5 mg/m3) (ACGIH, MSHA, and OSHA)TLV-STEL 6 ppm (~15 mg/m3) (ACGIH)IDLH 1000 ppm (NIOSH).
稳定性 :Stable. Flammableincompatible with strong oxidizing agents, strong acids. Hygroscopic.
InChIKey :HZAXFHJVJLSVMW-UHFFFAOYSA-N
CAS 数据库 :141-43-5(CAS DataBase Reference)
NIST化学物质信息 :Ethanolamine(141-43-5)
EPA化学物质信息 :Ethanolamine (141-43-5)
安全信息
危险品标志 :T,C
危险类别码 :20/21/22-34-39/23/24/25-23/24/25-10-52/53
安全说明 :26-36/37/39-45-61
危险品运输编号 :UN 2924 3/PG 3
WGK Germany :1
RTECS号 :KJ5775000
F :8-10-23
自燃温度 :410 °C
TSCA :Yes
HazardClass :8
PackingGroup :III
海关编码 :29221100
毒害物质数据 :141-43-5(Hazardous Substances Data)
毒性 :LD50 orally in rats: 10.20 g/kg (Smyth)
乙醇胺 MSDS
乙醇胺
乙醇胺 化学药品说明书
环吡酮胺原料药—2-氨基乙醇的测定—中和滴定法|药物分析方法信息
乙醇胺 农药中毒急救措施
注意事项本品对鱼和浮游动物有毒,不宜施用于鱼塘等水生动物养殖场内。
乙醇胺性质、用途与生产工艺
用途 乙醇胺用于制备各种药物化合物和抑制剂。以乙醇胺为原料合成取代羧基化合物,具有较强的抗肿瘤活性。也用于合成具有抗疟原虫活性的氨基喹诺酮类化合物。
毒性
LD50700mg/kg(小鼠,经口)。
LD502100(大鼠,经口)。
使用限量 以GMP为限。
食品添加剂最大允许使用量最大允许残留量标准
▼
添加剂中文名称 允许使用该种添加剂的食品中文名称 添加剂功能 最大允许使用量(g/kg) 最大允许残留量(g/kg)
单乙醇胺 食品 食品工业用加工助剂 / 食品工业用加工助剂一般应在制成最后成品之前出去,有规定食品中残留量的除外
化学性质 在室温下为无色透明的粘稠液体,有吸湿性和氨臭。 能与水、乙醇和丙酮等混溶,微溶于乙醚和四氯化碳。
用途 用作气相色谱固定液和溶剂
用途 GB 2760-96规定为允许使用的食品工业用加工助剂。
用途 一乙醇胺主要用作合成树脂和橡胶的增塑剂、硫化剂、促进剂和发泡剂、以及农药、医药和染料的中间体。也是合成洗涤剂、化妆品的乳化剂等的原料。纺织工业作为印染增白剂、抗静电剂、防蛀剂、清净剂。也可用作二氧化碳吸收剂、油墨助剂、石油添加剂。一乙醇胺广泛用作从各种气体(如天然气)中提取酸性组分的净化液。由一乙醇胺盐酸盐环合、中和可制得六水合哌嗪。一乙醇胺盐酸盐经氯化亚砜氯代,再被硫代硫酸钠取代,可制得β-氨基乙基硫代硫酸盐。这是一种染料中间体,用于生产缩聚翠蓝13G。一乙醇胺与二硫化碳反应可制得在橡胶和制药工业中有应用的中间体硫基噻唑啉。
用途 乙醇胺又名2-氨基乙醇、2-羟基乙胺和单乙醇胺。乙醇胺是制备氨基甲酸酯类杀虫剂双氧威的中间体,还广泛用作从各种气体(如天然气)中提取酸性组分的净化液。由乙醇胺与脂肪酸生成的烷基醇酰胺是有效的泡沫增效剂。乙醇胺还是乳化剂的中间体,用于纺织工业作为抗静电剂、防蛀剂、清洁剂。由乙醇胺盐酸盐环合、中和可制得六水合哌嗪,哌嗪以其磷酸盐或柠檬酸盐的形式可作为驱肠虫药。
用途 用于除去天然气和石油气中的酸性气体,制造非离子型洗涤剂、乳化剂等
用途 溶剂。有机合成, 从气体中除去二氧化碳及硫化氢。气相色谱固定液(最高使用温度50℃,溶剂为乙醚),用于分离低碳醇类、吡啶及其衍生物。
生产方法 乙醇胺可由氨与环氧乙烷反应制得。
环氧乙烷、氨水溶液和循环氨一起进入不锈钢制成的反应器,内设冷却装置,反应温度30~40℃,反应压力0.7~3MPa。反应产物进入脱氨塔,脱除的氨返回氨吸收器制备氨水溶液,塔底产物经蒸发浓缩和干燥脱水即得粗乙醇胺。采用减压蒸馏将一乙醇胺、二乙醇胺和三乙醇胺分别蒸出,纯度可达到98%~99%,环氧乙烷的转化率接近100%,乙醇胺的收率为95%左右。另外,尚有少量副产物聚醚生成,在原料中配入少量的二氧化碳可以减少副产物的生成。
生产方法 乙醇胺常存在于磷脂中,并常与胆碱共存,因此也称为胆胺。在血清蛋白腐烂发酵液中也发现有乙醇胺。工业上乙醇胺可由氨与环氧乙烷反应制得。将环氧乙烷、氨水送入反应器中,在反应温度30-40℃,反应压力70.9-304kPa下,进行缩合反应生成一、二、三乙醇胺混合液,在90-120℃下经脱水浓缩后,送入三个减压精馏塔进行减压蒸馏,按不同沸点截取馏分,则可得纯度达99%的一乙醇胺、二乙醇胺和三乙醇胺成品。在反应过程中,如加大环氧乙烷比例,则二、三乙醇胺生成比例增大,可提高二、三乙醇胺的收率。
生产方法 由环氧乙烷和氨水在30~40℃下、70.1~304kPa下缩合而成,其为单、二、三乙醇胺的混合液,在90~120℃下脱水、浓缩,然后于精馏塔中减压蒸馏,截取168~174℃馏分而得。
类别 易燃液体
毒性分级 中毒
急性毒性 口服- 大鼠 LD50: 1720 毫克/ 公斤口服- 小鼠 LD50: 700 毫克/ 公斤
刺激数据 皮肤- 兔子 505 毫克 中度眼- 兔子 760 微克 重度
爆炸物危险特性 与空气混合可爆
可燃性危险特性 遇明火、高温、强氧化剂可燃遇强酸起反应放热燃烧排放有毒氮氧化物和氨烟雾
储运特性 包装完整、轻装轻放库房通风、远离明火、高温、与氧化剂、强酸分开存放
灭火剂 泡沫、二氧化碳、干粉、雾状水
职业标准 TLV-TWA 3 PPM (6 毫克/ 立方米)STEL 6 PPM (15 毫克/ 立方米)
三乙醇胺的碱性比氨弱(pka7.82),具有叔胺和醇的性质。与有机酸反应低温时生成盐,高温时生成酯。与多种金属生成2~4个配位体的螯合物。用次氯酸氧化时生成胺氧化物。用高碘酸氧化分解成氨和甲醛。与硫酸作用生成吗啉代乙醇。三乙醇胺在低温时能吸收酸性气体,高温时则放出。
参考了百度的资料。
式:c6h15o3n,相质量149.19cas编号102-71-6结构式:n(ch2ch2oh)3
色至浅黄色黏稠液体稍氨味易溶于水、乙醇碱性水溶液ph值约10.5腐蚀铜、铝及其合金液体蒸气腐蚀皮肤眼睛与种酸反应酯、酰胺盐
熔点18~21℃,冷却形冷液体相密度约1.12沸点190~193℃(5*133pa),压约335℃解蒸气压约1.3pa闪点185℃,自燃温度315℃
市场tea产品纯度99%高纯度产品tea含量95%、90%、85%等品级产品般含水、二乙醇胺等级品纯度≥98.5%,水≤0.3%
1、表面活性
在恒温恒压下,纯液体因只有一种分子,其表面张力是一恒定值。
对于溶液,由于至少存在两种或两种以上的分子,因此其表面张力会随溶质的浓度变化而变化。
物质的水溶液其表面张力随浓度的变化可分为三种类型。
第一类是表面张力随其溶质浓度的增加略有上升,且往往近于直线(曲线A)
水溶液的表面张力与溶质浓度的几种典型关系
第二类是表面张力随溶质浓度增加而逐渐下降,在浓度很稀时,下降较快,随浓度增加下降变慢(曲线B)。
第三类是在溶液浓度稀时,溶液的表面张力随溶质浓度的增加急剧下降,当溶液的浓度增加到一定值后,溶液的表面张力就不再下降了(曲线C)。
如果A物质能降低B物质的表面张力,通常可以说A物质(溶质)对B物质(溶剂)有表面活性。若A物质不仅不能使B物质的表面张力降低,甚至使其升高,那么A物质对B物质则无表面活性。由于水是最重要的溶剂,因此表面活性往往是对水而言。
图中曲线A中的溶质对于水无表面活性,称之为非表面活性物质。曲线B和C的溶质对水有表面活性,被称为表面活性物质。而对于曲线C中的溶质在很低浓度时就能明显地降低水的表面张力,此类物质称之为表面活性剂。而曲线B中的溶质只能称为表面活性物质而不能称为表面活性剂。
2、表面活性剂的结构特点
不论表面活性剂属于何种类型,都是由性质不同的两部分组成。—部分是由疏水亲油的碳氢链组成的非极性基团,另一部分为亲水疏油的极性基。这两部分分别处于表面活性剂分子的两端。为不对称的分子结构。
两亲分子示意图
表面活性剂分子在其水溶液中很容易被吸附于气-水(或油-水)界面上形成独特的定向排列的单分子膜。
表面活性剂在溶液中超过某一特定浓度时(界面吸附达饱和)可通过碳氢键的疏水作用(Hydrophobic
Interaction)或“疏水效应”缔合成胶团。
表面活性剂在其溶液表面的定向吸附和在溶液内部形成胶团
表面活性剂分类与结构 か鶏群l'A*
表面活性剂的种类很多,分类方法也有多种,如根据用途可将表面活性剂分为润湿剂、渗透剂、乳化剂、分散剂、柔软剂、抗静电剂、洗涤剂等。比较常见的是根据表面活性剂在水溶液中的电离特性而将其分为阴离子、阳离子、两性离子以及非离子四大类的分类方法。 y5U⊿ 2�?
一、阴离子表面活性剂 ?lt~箾队?l
将在水中电离后起表面活性作用的部分带负电荷的表面活性剂称为阴离子表面活性剂。从结构上把阴离子表面活性剂分为脂肪酸盐、磺酸盐、硫酸酯盐和磷酸酯盐四大类。 辨溺xJ閍?
1.脂肪酸盐(RCOO-M+)炧mM $ z?
是亲水基为羧基的阴离子表面活性剂,包括高级脂肪酸的钾、钠、铵盐以及三乙醇铵盐。在水中电离后起表面活性作用的部分是脂肪酸根阴离子。如: R9$寜�_
电离 乞`?? 鮯
RCOONa ——>RCOO-+Na+ ?Uy扶ffI?
脂肪酸盐表面活性剂是历史上开发最早的阴离子表面活性剂,也是重要的洗涤剂,目前仍是皮肤清洁剂的重要品种。 ?诐o $??
(1)肥皂是最常见的脂肪酸盐阴离子表面活性剂 肥皂的主要性能特点是它的水溶液的pH在0.9~9.8,呈弱碱性,它有良好的润湿、发泡、去污等作用而被广泛用作洗涤剂。 w姇&7??v
肥皂的缺点是耐硬水性能差,在硬水中使用肥皂不仅洗涤力差,同时生成的钙皂污垢在酸水中悬浮并且粘附在衣物上很难去除。肥皂与硬水中的钙、镁等离子反应生成皂垢,不但增加肥皂的耗费,而且粘结在衣物上产生的斑点会使衣物发硬。含有皂垢的布在印染加工时会造造成染色不匀。sy 杈?'
肥皂在pH低于?的酸性介质中会转变成不溶于水的游离脂肪酸,会使皂液变混浊并粘附在衣物上不易被除去。因此肥皂只能在中性和碱性介质中使用。通常使用肥皂时常配合加人适量纯碱以保持皂液pH在10左右,其目的为防止肥皂水解和提高洗涤效果。注意在去除酸性污垢或在酸性媒液中不能使用肥皂。 昿祒 阍|+
软脂酸盐和硬脂酸盐水溶性差,要充分发挥它们的洗涤能力往往需要在较高温度条件下使用,而含有不饱和键的油酸盐比较适合在较低温度的洗涤场合。以上的高碳脂肪酸盐由于在水中溶解度太低,但油溶性好,所以适合作掺水干洗溶剂中的表面活性剂(变性皂),脂肪酸的有机胺盐和二乙醇胺、三乙醇胺盐大多表现为油溶性的,常用作乳化剂、润湿剂,如三乙醇胺肥皂常在有机溶剂中作乳化剂。 骸L?ltqpn,
(2)亲油基通过牛间键与羧基相连的羧酸盐(雷米邦A) 脂肪酸盐除了常见的月巴皂外,还有这种形式的羧酸盐,如用多肽混合物与脂肪酰氯发生缩合反应制成的N—烷酰基多肽。其中用油酰氯与脱脂皮屑等废蛋白的水解产物缩合制成的表面活性剂,商品名为雷米邦A (Lamepon A),国内商品名为613洗涤剂,化学名称为N—油酰基多缩氨基酸钠(或N—油酰基多肽)。其合成反应式为: VL屶抣幚 ?
0 惪棠-�)
油酰氯 多缩氨基酸钠 雷米邦A $ ? 芐??
(其中R'、R”是含有1~6个碳原子的烃基) B倲t?闽"f
雷米邦A在毛纺、丝绸、合成纤维及印染工业等纺织部门常做洗涤剂、乳化剂、扩散剂,也可做金属清洗剂和皮肤清洁剂,由于它结构中的多肽部分化学结构与蛋白质相似,对皮肤刺 、激性低,可形成良好的保护胶体,因此也适用于头发用品和香波中或用于护肤香脂中。用它洗涤丝、毛等蛋白质类纤维织品,有洗后柔软、富有光泽、弹性的优点。它有很强的乳化力,如22份雷米邦A可乳化1000份植物油。并且它对钙皂有很强的分散力。它在中性和碱性介质中稳定,在碱性介质中去污力更佳。但在pH值小于5的介质中会以沉淀形式析出。由于它的吸湿力强,通常不制成粉状产品,商售为黄棕色粘稠状液体产品,活性物含量为32%~40%。 そm?Q?l"
制造雷米邦A的多肤部分的原料来自皮屑、蚕蛹、猪毛、鸡毛、骨胶、豆饼、菜籽饼等蛋白质下脚料,经水解后得到水解蛋白液。油酰氯与水解蛋白液中的多缩氨基酸钠缩合即得到雷米邦A。 M ~}冮I瞤7
2.磺酸盐(R—SO-3M+) 3葵� 乌诀
把在水中电离后生成起表面活性作用阴离子为磺酸根(R--S03)者称为磺酸盐型阴离子表面活性剂,包括烷基苯磺酸盐、α-烯烃磺酸盐、烷基磺酸盐、α-磺基单羧酸酯、脂肪酸磺烷基酯、琥珀酸酯磺酸盐、烷基萘磺酸盐、石油磺酸盐、木质素磺酸盐、烷基甘油醚磺酸盐等多种类型,其中比较重要和常用作洗涤剂的有下列几种。 ?夑 裥埀
(1)烷基苯磺酸钠(LAS或ABS) 烷基苯磺酸钠通常是一种黄色油状液体,通式为CnH2n+1HC6H4SO3Na,其疏水基为烷基苯基,亲水基为磺酸基。 艌憙嵴?0?
其早期产品为四聚丙烯苯磺酸钠(ABS),曲于烷基部分带有支链,所以生物降解性差,60年代各国相继改为生产以正构烷烃为原料的直链烷基苯磺酸钠(LAS)。烷基苯磺酸盐不是纯化合物;烷基组成部分不完全相同,因此烷基苯磺酸盐性质受烷基部分碳原子数、烷基链支化度、苯环在烷基链的位置、磺酸基在苯环上的位置及数目以及磺酸盐反离子种类影响而发生很大变化。 "夬 0R㎏_
烷基苯磺酸盐是阴离子表面活性剂中最重要的一种品种,也是中国合成洗涤剂的主要活性成分。烷基苯磺酸钠去污力强、起泡力和泡沫稳定性以及化学稳定性好、而且原料来源充足、生产成本低,在民用和工业用清洗剂中有着广泛的用途。 tBAS��?
①支链烷基苯磺酸盐(ABS) 当高级烯烃(如十二碳烯)与苯发生反应时,生成支链烷基苯,再与浓硫酸发生磺化反应,得到支链型烷基苯磺酸,与碱(NaOH)中和后得到支链型烷基苯磺酸钠盐,其中十二烷基苯磺酸钠是最常见的产品。 朇嶆?P%M}
十二烷基苯磺酸钠是一种性能优良的合成阴离子表面活性剂,它比肥皂更易溶于水,是一种黄色油状液体。易起泡由于它的泡沫粘度低所以泡沫易于消失。它有很好的脱脂能力并有很好的降低水的表面张力和润湿、渗透和乳化的性能。它的化学性质稳定,在酸性或碱性介质中以及加热条件下都不会分解。与次氯酸钠过氧化物等氧化剂混合使用也不会分解。它可以用烷基苯经过磺化反应制备,原料来源充足,成本低,制造工艺成熟,产品纯度高。因此自1936年由美国国家苯胺公司开始生产烷基苯磺酸钠以来,迄今历经60多年一直受到使用者的欢迎和生产者的重视,成为消费量最大的民用洗涤剂,在工业清洗中也得到广泛应用。 愎~万'<??
其不足之处是用它洗过的纤维手感不好。皮肤与它长时间接触会受到刺激。它易在洗涤物体表面形成吸附膜残留在物体上,这种吸附膜在低温下不易被水冲洗去除。它起泡性好,因此在不希望产生泡沫的情况下又是不受欢迎的。 瓯3T?铜?
十二烷基苯磺酸钠特别容易与其他物质产生协同作用(把两种物质混合后能产生比原来各自性能更好的使用效果叫协同作用),因此它常与非离子表面活性剂和无机助洗剂复配使用,以提高去污效果。 ?晀艎 曫a
它在硬水中不会像肥皂那样生成钙皂沉淀,但生成的烷基苯磺酸钙不易溶于水,只能分散在水中使它的洗涤能力降低。使用时如果与三聚磷酸钠等络合剂复配,把钙、镁离子络合,就可以在硬水中使用而不影响它的洗涤效果。 h艂 �g箛?
支链结构的烷基苯磺酸钠由于难被微生物降解,对环境污染严重,所以从60年代中期,逐渐被直链烷基苯磺酸钠代替。 晰&缋儊=宕
②直链烷基苯磺酸钠(LAS) 直链烷基苯磺酸盐是由直链烷烃与苯在特殊催化剂作用下合成直链烷基苯,再经过磺化,中和反应制得的。典型代表结构为(对位)直链十二烷基苯磺酸钠,它的性能与支链烷基苯磺酸钠相同,其优点是易于被微生物降解,从环境保护角度看是性能更优良的产品。目前使用的烷基苯磺酸钠已全部是直链烷基结构的了。 A t岖?�
(2)α-烯烃磺酸盐(AOS) 是α-烯烃与SO3在适当条件下反应,然后中和、水解得到的具有表面活性阴离子的混合物,成分较复杂,随工艺条件和投料量不同成分有变化。其主要成分是烯基磺酸盐(R--CH==CH--(CH2)—pSOaNa)、羟烷基磺酸盐(RCH--(CH20)—pSO3Na)和少量二磺酸盐(R'—CH=CH—CH-(CH2)-SO3Na)或R'—CH—(CH2)—xCH—(CH2)—ySO3Na。其商品名为。—烯烃磺酸盐,缩写AOS。 靽-f ??
α—烯烃磺酸盐是一种性能优良的洗涤剂,尤其是在硬水中和有肥皂存在时具有很好的起泡力和优良的去污力。由于它的毒性低对皮肤刺激性小以及性能温和的优点,在家庭和工业、清洗中均有广泛的用途。常用作个人保护、卫生用品、手洗餐具清洗剂、重垢衣物洗涤剂、毛羽,毛清洗剂、洗衣用合成皂、液体皂以及家庭用和工业用硬表面清洗剂的主要成分。 虁{菕 ?
(3)烷基磺酸盐(AS和SAS) 烷基磺酸盐的通式为RSO3M(M为碱金属或碱土金属),R为C12~C20范围的烷基,其中以十六烷基磺酸盐性能最好。其中正构烷基在、引发剂作用下与SO2、O2反应得到的磺酸盐,分为伯烷基磺酸盐(AS)和仲烷基磺酸盐(SAS)两类。其中仲烷基磺酸盐结构式为R--CH--R',缩写名称为SAS,国内商品名为601洗涤剂,是一种具,有很好水溶性、润湿力、除油力的洗涤剂。烷基碳原子一般为C14~C18,以C15~C16去污方最强。其去污能力与直链烷基苯磺酸(LAS)相似,发泡力稍低,是配制重垢液体洗涤剂的主要原料。它的毒性和对皮肤的刺激性都比iLAS低,生物降解性好。使用时常与醇醚硫酸(AES),α—烯基磺酸盐(AOS)复配,以弥补SAS在硬水中泡沫性差的缺点。可做个人卫生盥洗制品、各种洗衣物以及硬表面清洗剂。 俣#t惞 ?
(4)α—磺基单羧酸及其衍生物(MES) 它们的结构式为CH2一COOR', (R为长链烃基或金属离子)。α-磺基单羧酸本身不具有表面活性,但通过酯化或酰胺化生成的衍生物具有表面活性,如CH2—C--OC12H25等。其中以脂肪酸甲酯为原料经磺化中和后得到的商品称为α-磺基脂肪酸甲酯,简称MES,通式为R--CH--COOCH3 。 -&� -R??
MES是近年来开发生产的一种由天然油脂为原料的阴离子表面活性剂。它有良好的生物降解性,有利于环境保护,使用安全而且去污力强。其去污力随水硬度增加下降较少,因此在硬水中有很好的去污力,如在洗衣粉配方中用MES取代蚝LAS则在低浓度高硬度水中的去污力明显高于只用LAS的配方。它还是优良的钙皂分散剂,它与肥皂配合使用可弥补肥皂不耐硬水会形成皂垢的缺点,因此它是液体皂的主要成分。MES起泡能力好。它对碱性蛋白酶、碱性脂肪酶的活性影响小,适合配制加酶洗衣粉。它对油污有很强的加溶能力,而且毒性低安全性好,因此是一种应用前景良好的新品种。但应防止其在碱性介质中水解失效。 >i J@F卢漥
(5)脂肪酸磺烷基酯(1geponA)和脂肪酸磺烷基酰胺(1gepon T) 商品名为伊捷邦A(1gepon A,洗净剂210)的阴离子表面活性剂典型代表物是油酰氧基乙磺酸钠 b?夆W a鸻
CH3(CH2)7CH=CH--(CH2)7—C—O CH2SO3Na。商品名为伊捷邦f(1gepon T又称FX洗涤剂,胰加漂T,万能皂,洗涤之王,209洗涤剂)的阴离子表面活性剂的典型代表物是N—油酰基N-甲基牛磺酸钠,其分子式为CH3(CH2)7CH-=CH(CH2)7C-CH2CH2SO3N。 熬?-x趘?
Igepon A是由羟乙基磺酸钠与脂肪酸或脂肪酰氯反应生成的: ?? n^??
R一C—Cl+HOCH2CH2— SO3Na——>O CH2CH2SO3Na+HCl 其通式为R1—C--O R2S03M。 '甲撋.40珄
Igepon T是由N—甲基牛磺酸钠与脂肪酸或脂肪酰氯反应生成的: 5綨賖J骂?
R—C—c1+HN一CH2CH2S03Na—>Rc—CH2CH2SO3Na+HCl 通式为R1c—N—R3SO3M 歝�栖殎�
当改变通式中R1、R2、R3、M四个可变因素时,表面活性剂的乳化、泡沫、润湿、洗涤性能会发生相应改变。 *耥锝_ 呎?
脂肪酸磺烷基酯(1gepon A)和脂肪酸磺烷基酰胺(1gepon T)最初是做纺织助剂使用的,特别是Igepon T系列产品具有对硬水不敏感、有良好去污能力、润湿力和对纤维柔软作用,并可在酸性介质中使用,所以在纺织工业中有广泛用途。其中N—油酰基—N甲基牛磺酸钠是最重要的一种,用于粗羊毛、合成纤维以及染色布料的清洗,而且对纤维有很好的柔软作用。磺烷基酯和磺烷基酰胺两类产品是重垢精细纺织品洗涤剂,手洗、机洗餐具洗涤剂,各种香波、泡沫浴,香皂的重要配方成分。通常用的是椰子油脂肪酸和牛油脂肪酸的磺烷基酯或磺烷基酰胺。其物理性质及表面活性见表7—7和表,7—8。 .胕@�I坊8
表7-7 脂肪酸磺烷基酯和磺烷基酰胺的物理性质 犫-?桙 檴
?�塼坤麧
①在35℃测定。 v穠?篞 ?
②克拉夫特点(KrafftP。int)。离子型表面活性剂在温度较低时溶解度很小,但随温度升高而逐渐增加,当到达某二特定温度时,溶解度急剧陡升,把该温度称为临界溶解温度(又称克拉夫特点)以rk表示。 U 箤so Y
(6)石油磺酸盐 是由天然石油馏分或化工反应所得高碳烃副产物经磺化、中和得到的,是多种烃磺化产物的混合物。石油磺酸盐主要用作发动机润滑油的清洁分散剂及起分污泥,保持金属部件清洁,降低酸性抑制锈蚀的作用。作这种用途的石油磺酸盐约占总产量60%。石油磺酸盐配制的金属清洗剂可有效地去除金属部件上的油污。 kK頪台??
(7)其他磺酸盐型阴离子表面活性剂 包括以下几种。 ?黠 ?滥�
表7-8 脂肪酸磺烷基酯和磺烷基酰胺的表面活性 裑j6簬 p
① 在35℃测定。 隒?lt?@8 W
①琥珀酸酯磺酸盐 按结构分为琥珀酸单酯磺酸盐和双酯磺酸盐。 ?h� �4
AerosolOT(渗透剂OT)是最早问世的一种琥珀酸双酯磺酸盐,是优良的工业用润湿剂渗透剂。它是由脂肪醇聚氧乙烯醚和脂肪酸单乙醇酰胺与马来酸酐生成的单酯经磺化得到的产品。它性能温和对皮肤、眼睛刺激性低、袍沫性优良,在个人保护用品中应用日益广泛。因原料充分、生产成本低并不产生三废,近年来得到很大发展。 J&?? 珔
AerosolOT化学名称为琥珀酸二异辛酯磺酸钠。 % L峯#袂(?
②烷基萘磺酸盐 典型产品如二丁基萘磺酸钠,俗称拉开粉,是纺织印染行业常用的一种渗透剂、乳化剂。 瘝?慠j,&'
另有烷基萘磺酸盐的甲醛缩合物,商品名称为分散剂NNO。 秓 ?韢v砸
③木质素磺酸盐 是造纸工业中亚硫酸法制浆过程中废水的主要化学成分。它的结构相当复杂,一般认为它是含有愈创木基丙基、紫丁香 佴1B收}w堻
基丙基和对羟苯基丙基的多聚物磺酸盐,相对分子质量200~10000,是以非石油化学制造的表面活性剂中重要的一类。由于价格低,具有低泡性,主要用作固体分散剂、O/W型乳状液的乳化剂,染料、农药、水泥等悬浮液的分散剂,可加在石油钻井泥浆配方中控制钻井泥浆的流动性,还可作矿石浮选剂或水处理剂。 玝泖 �d?
④烷基甘油醚磺酸盐(AGS) 其通式为ROCH2--CH—CH2SO-3M+,它具有良好的水溶性, OH对酸碱稳定是有效的润湿剂,泡沫剂和分散剂,但由于价格高,使应用和发展受到限制。 �m? H贲?
另外,磺酸盐型阴离子表面活性剂还有,净洗剂LS(净洗剂MA),化学名称为对甲氧基脂肪酰胺基苯磺酸钠,结构为 是一种有优良净洗、发泡、对钙皂分散能力好的表面活性剂,易溶于水,耐酸碱和硬水,可作羊毛和蚕丝的洗涤剂。 9w踨磍犃襶
3.硫酸酯盐 0e缯}桖�K
硫酸是一种二元酸与醇类发生酯化反应时可以生成硫酸单酯和硫酸双酯。硫酸单酯和碱中和生成的盐叫硫酸酯盐。 �7?j 庒?
ROH+HOSO2--OH===RO--SO2--OH+H2O r6哚/耆
(醇) (硫酸) (硫酸单酯) �醴0?E ?
RO--S02—OH+NaOH=RO--SO2--ONa+H20 @匮\ z袿诫
(硫酸酯盐) G ?徲)??
R0一S02—0Na一般写成R—OSO3Na形式,有的书上写成RSO4Na并简称为烷基硫酸酯盐。它与磺酸盐结构的区别在于硫酸酯盐中的硫原子不与烃基中的碳原子直接相连。它们性质上的最大区别在于硫酸酯盐在酸性条件下可以发生水解: y鑗瑭X#?処
闵捵萈R豮?
軃'H⒄韨K?
硫酸酯盐型阴离子表面活性剂主要有脂肪醇硫酸酯盐(又称伯烷基硫酸酯盐)和仲烷基硫酸酯盐两类。 6?諚姑�f
(1)脂肪醇硫酸(酯)盐(FAS或AS) 脂肪醇硫酸盐的通式为:ROS0-3M+,R为烷基,M+为钠、钾、铵、乙醇胺基等阳离子,又名伯烷基硫酸盐,英文简写为FAS或AS①。 ?▔?雎_
FAS是肥皂之后出现的最早阴离子表面活性剂,是由椰子油氢解生成的C12~C14脂肪醇与硫酸酯化并中和制得。它有合适的溶解性、泡沫性和去污性。大量应用于洁齿剂、香波、泡沫浴和化妆品中,也是轻垢、重垢洗涤剂、地毯清洗剂、硬表面清洗剂配方中的重要组分。’如月桂基硫酸钠(C12H25OSO3Na),商品名为K12的洗涤剂在洁齿剂中有润湿、起泡和洗涤的作用;而月桂基硫酸酯的重金属盐有杀灭真菌和细菌的作用;用牛脂和椰子油制成的钠肥皂与烷基硫酸酯的钠、钾盐配制成的富脂香皂泡沫丰富、细腻,还能防止皂钙的生成;高碳脂肪醇硫酸盐与两性离子表面活性剂复配制成的块状洗涤剂有良好的研磨性和物理性能,并具有调理作用。 ?m屺f斁)
高碳脂肪醇硫酸盐可用作工业清洁剂、柔软平滑剂、纺织油剂组分、乳液聚合用乳化剂等。它们的铵盐和三乙醇胺盐用于香波和溶剂中。 繴g锍??%
商品名为阴离子洗涤剂ASEA的表面活性剂成分为脂肪醇硫酸酯单乙醇胺盐,结构为 ROS03NHaCH2CH20H。i麙�?
(2)仲烷基硫酸盐(Teep01) 它是由。—烯烃与硫酸反应生成的仲烷基硫酸酯,经中和后得到的产品,通式为R厂CH—o—SOaN,,商品名为梯波尔(Teep01)。 躛恝8Z磐s&
与伯烷基硫酸(酯)盐不同,其硫酸酯盐部分一(O—SO3Na)是与烷基链上的仲碳原子相连,烷基链的碳原子数为10~18。 ?O]禡摗痼
梯波尔(Teep01)与FAS相似,也是一种性能良好的表面活性剂,但由于结构上的差异,它的溶解性和润湿性更好。因制成粉状产品易吸潮结块,一般制成液体或浆状洗涤剂。 鱃?歚�?
(3)脂肪醇聚氧乙烯醚硫酸酯盐(AES) 脂肪醇聚氧乙烯醚是一种非离.子表面活性剂,与硫酸酯化、中和得到硫酸酯盐(AES)。实际上AES是非离子—阴离子型两性混合表面活性剂,一般也将它归在阴离子型硫酸酯盐表面活性剂中。 >?&橩閖 $
脂肪醇聚氧乙烯醚硫酸酯盐,简称醇醚硫酸盐(AES)。由于它的溶解性能、抗硬水性能、 ?蒕?o犗
①AS可以是alk9nesul{。n9te,烷基磺酸盐,也可以是alkancswlfatc伯烷基硫酸酯盐的缩写,此处为后者。 褴L盀N,J寪
起泡性;润湿力均比脂肪醇硫酸盐(AS)好且刺激性低,因此常作为AS的替代晶广泛应用于香波、浴用品、剃须膏等盥洗卫生用品中,也是轻垢、重垢洗涤剂、地毯清洗剂、硬表面清洗剂的重要组分。 g c 7p嗘
(4)脂肪酸衍生物的硫酸酯盐 这类物质的通式为R一CXR'OSO-3M+ (X为氧原子、--N、-N、R',为烷基、亚烷基、羟烷基、烷氧基)。这类产品有良好的润湿性和乳化性,通常用润湿剂。如用硫酸处理含有羟基或不饱和键的油脂或脂肪酸酯,中和后得到的产品为油脂或脂肪酸酯的硫酸酯盐。其中有代表性的是用蓖麻油酸化、中和得到的土耳其红油(因适合做土耳其红染料的匀染助剂而得名)。 ?c}鰕 遽J
(5)不饱和醇的硫酸酯盐 当脂肪醇硫酸酯盐结构中脂肪醇部分是含有双键的不饱和醇时其性能有较大改变,如在低温时仍呈透明状,有较低表面张力和临界胶束浓度,有良好的润湿性能。其中油醇硫酸盐[CH3(CH2)7CH=CH(CH2)7一CH2OS3Na]是一种重要的不饱:和醇硫酸盐,它的起泡力好、去污力强并有良好的乳化能力和良好的钙皂分散力,是目前正在研制开发的新产品。 JH?u鉖榚
4.磷酸酯盐 ??m??i
烷基磷酸酯盐包括烷基磷酸单、双酯盐,也包括脂肪醇聚氧乙烯醚的磷酸单双酯盐和烷基酚聚氧乙烯醚的磷酸单、双酯盐。常见的是烷基磷酸单、双酯盐。 ^苯m?�^5
(1)烷基磷酸单、双酯盐(AP) 这是烷基醇与磷酸酯化、中和后的产物。磷酸是三元酸可与脂肪醇酯化生成单酯、双酯与三酯。形成单酯、双酯的产物中仍含有显酸性的氢离子可与碱中和生成盐。生成的烷基磷酸单、双酯盐具有表面活性。 ?K棔莗v
工业上从降低成本考虑,产物通常为单酯盐和双酯盐的混合物。从性能上看,烷基磷酸单酯盐的去污力差,烷基磷酸双酯盐稍好,其中又以二癸基磷酸双酯盐较好,但起泡性能差。由于具有降低纤维间静摩擦系数的作用,因此在纺织工业上常用作化纤产品的抗静电剂。 <肾7WA苳?
(2)醇醚、酚醚的磷酸酯盐 这是非离子表面活性剂烷基醇聚氧乙烯醚、烷基酚聚氧乙烯醚与磷酸发生酯化反应,经中和后得到的产物。 \蟾 ?阂*?
它们实际上是非离子—阴离子型两性混合表面活性剂,但常归之于阴离子表面活性剂中,由于含有聚氧乙烯链段,具有一些非离子表面活性剂的性质,因此与烷基磷酸酯盐同类产品相比,去污、润湿性能都有所改进。烷基醇聚氧乙烯醚磷酸酯盐商品名为6503洗涤剂。 )s汉'? ?
二、阳离子表面活性剂 8??lt0罾ё
阳离子表面活性剂在水溶液中电离时生成的表面活性离子带正电荷,其疏水基与阴离子表面活性剂相似。阳离子表面活性剂的亲水基离子中含有氮原子,根据氮原子在分子中的位置不同分为胺盐、季铵盐和杂环型三类。 �?鞵?!q
1.胺盐 �J??瑞?
胺盐是用酸中和烷基伯胺、仲胺、叔胺或乙醇胺得到的产物。根据胺的不同分为脂肪胺盐、乙醇胺盐和聚乙烯多胺盐。5僖5窣l匔
(1)脂肪胺盐 脂肪胺盐是用盐酸、甲酸、乙酸中和烷基伯胺、仲胺和叔胺得到的产物,如: ?6 蔗盺?
60~70℃ "@ |V ?
C12H25NH2+CH3COOH========C12H25NH+3•CH3COO- l?(t鵩鴋?
(2)乙醇胺盐 是酸与一、二、三乙醇胺反应的产物,如 瘑i"禄l A
R—N(CH2CH20H)2+HCl===[R--NH(CH2CH20H)2]+C1- 亷>0w?N蠎
(二乙醇胺) 哸z郲 递xn
纺织工业中常用的柔软剂索罗明A也属于这一’类。如索罗明A的制法为: 憭8剬槁罂R
CH2CH20H CH2CH20H �寔睖? p
C17HasCOOHd-《CHaCH20H1C17HasCOOCH2CHzN二 —HCOOH, 亢懄^杜?|
CH2CH20H CH2CH20H KV/傺蘹p K
(三乙醇胺)}JQ 挍?
CH2CH20H iz 笛壔 圴
/ 橞钁#�諍b
C17H35COOCH2CH2N •HC00H(索罗明A) 旗h侯『�
\*桔涓鲭礨
CH2CH20H t电 Ld9卍
(3)聚乙烯多胺盐 卤代烷与二乙三胺、三乙四胺反应可得到不同的N—烷基多胺,如: 蔪専- 翤獿
R—X+NH2CH2CH2NHCH2CH2NH2==R— NHCH2CH2NHCH2CH2NH2 啰驌 46顺?
(二乙三胺) (N—烷基二乙三胺) 茈�.>悇 ?
RNH2+n CH2—CH2==R—RH(CH2CH2NH).H 貈俹? 锔c
\/ W悯簴g UAU
N 溜 様 娵
H 秺� 4吘
(亚乙基亚胺) (N—烷基多乙多胺) 抬