什么是perc光伏电池
PERC电池(Passivated Emitterand Rear Cell)最早起源于上世纪八十年代,1989年由澳洲新南威尔士大学的MartinGreen研究组在AppliedPhysicsLetter首次正式报道了PERC电池结构,当时达到22.8%的实验室电池效率。到了1999年其实验室研究的PERL电池创造了转换效率25%的世界纪录。PERC电池的实验室制备,采用了光刻、蒸镀、热氧钝化、电镀等技术。PERC电池与常规电池最大的区别在背表面介质膜钝化,采用局域金属接触,大大降低被表面复合速度,同时提升了背表面的光反射。
2006年用于对P型PERC电池的背面的钝化的AlOx介质膜的钝化作用引起大家重视,使得PERC电池的产业化成为可能。随后随着沉积AlOx产业化制备技术和设备的成熟,加上激光技术的引入,PERC技术开始逐步走向产业化。2013年前后,开始有厂家导入PERC电池生产线,近几年PERC电池越来越引起行业重视,产能获得快速扩张。2017年全球预计新增产能6.5GW,从现有标准电池线升级2.5GW,预计至2017年底,全球PERC电池产能将达到20GW。
值得一提的是,2017年将可能是PERC电池与常规电池的市场份额的转折性的一年。随着PERC电池产能的扩张,常规电池的市场份额将逐步下降。
2015年光伏领跑者计划推出,国家通过此项计划引导光伏行业有序升级,行业积极响应并顺势加快高效电池技术从研发走向量产的步伐。经过市场大浪淘沙,光伏行业主要选择的主要高效电池技术有:多晶黑硅电池技术、N型单晶双面电池技术以及P型单晶PERC电池技术。下面就电池工艺、组件功率、光致衰减、隐裂等方面探讨上述几种技术的优劣。
一、PERC单晶电池
1、PERC单晶单面电池
常规单晶电池主要效率区间为19.8-20%,对应的组件功率为280W。为了进一步提升单晶电池效率,在电池背面增加了钝化层。通过背面钝化层的作用,电池的表面复合速率显著降低,电池的效率提升到20.8-21%,对应的组件功率由280W提升到290W。
和常规单晶电池工艺相比,PERC单晶电池主要增加了背面钝化、背面SiNx膜沉积和激光打孔三道工艺。其中激光打孔工艺是利用一定脉冲宽度的激光在去除部分覆盖在电池背面的钝化层和SiNx覆盖层,以使丝网印刷的铝浆可以与电池背面的硅片形成有效接触,从而使光生电流可以通过Al层导出。因Al浆无法穿透SiNx层,其余未被激光去除的钝化层被覆盖在其上方的SiNx覆盖层保护,发挥降低表面复合速率,提升效率的作用。
通常背面的激光开孔面积约占电池片表面积的5-10%,如激光开孔面积过低,则光生电流在传输过程中电阻较大,从而产生较大的热损失,导致电流效率降低。如激光开孔面积过大,则钝化层无法有效发挥降低表面复合速率的作用,导致电池的效率无法有效提升。激光开孔工艺在电池片表面产生了5-10%的损伤。作为整片单一晶体,PERC单晶由于背面的完整晶体结构被破坏,有很大的隐裂或破碎的风险,晶体损伤可能导致硅片沿着此损伤整片碎裂。PERC单晶电池由于正反面金属结构不同所造成的2-5mm的翘曲,翘曲应力和激光损伤的联合作用下,PERC单晶电池的隐裂或破碎的风险将显著提高。
组件应用在光伏电站后,在整个生命周期内,组件都需要持续经受机械载荷或风载荷等考验。为了保证组件在光伏电站使用的可靠性,组件都需通过5400Pa机械载荷测试,行业标准是测试后组件功率的衰减量小于5%,因为激光开孔工艺造成的损伤导致硅片破碎几率增大,因此PERC单晶组件经过机械载荷测试后的衰减普遍大于5%,而常规单多晶组件的机械载荷测试功率衰减量普遍小于3%。可以看出PERC单晶组件的机械载荷衰减率明显高于其他组件产品。对光伏电站来说,在雪载荷和风载荷等的持续用下,PERC单晶组件从激光开孔点开始逐渐出现隐裂和破片,伴随的是组件功率的持续下降。PERC电池的高机械载荷衰减率PERC单晶组件的这一缺陷给光伏电站发电量带来了极大不确定性。为了缓解PERC单晶在机械载荷和隐裂方面的缺陷,行业采取在组件背面添加加固横梁的方式,并进行了采用加厚硅片来缓解隐裂的尝试,但这些方法均提高了组件的单瓦成本,与降低度电成本的大方向背道而驰。
光致衰减方面,多晶黑硅光衰约为1.5%,N型单晶基本没有光衰,而PERC单晶的光衰在2-10%之间,从而导致PERC单晶组件应用在光伏电站后很可能光电转换效率大幅下降,光伏电站发电量和收益率而随之大幅下降。
2、PERC单晶双面电池
PERC单晶单面电池的背面为全Al层,背面入射光线无法穿透该全Al层,因此PERC单晶单面电池只有正面可以吸收入射光进行光电转换。为了使PERC电池均有双面光电转换功能,行业改变了PERC电池的印刷工艺,将背面全Al层印刷工艺修改为背面局部Al层印刷工艺。该工艺是尽量保证背面Al浆印刷在激光开孔点处,以使光生电流仍然可以通过激光开孔点的Al层导出。
PERC单晶双面电池背面由全Al层改为局部Al层,因此背面的入射光可由未被Al层遮挡的区域进入电池,实现双面光电转换功能。由于激光开孔点仍然需要Al浆来疏导光生电流,因此背面的大部分区域任然覆盖了Al浆,因此和电池正面超过20%的光电转换效率相比,PERC单晶双面电池背面可吸收光线的区域有限,背面的光电转换效率预计在10-15%。同时由于背面由全Al层改为局部Al层,电池的正面效率可能会下降0.2-0.5%。
由于PERC单晶双面电池的工艺与PERC单晶单面电池的工艺并无明显区别,因此PERC单晶双面电池任然面临隐裂率高、机械载荷衰减率高、光致衰减率高等问题。对光伏电站来说,使用PERC单晶双面组件仍然有明显的可靠性风险,对保证电站收益率也是巨大的考验。
二、N型单晶双面电池
N型单晶双面电池在近年也逐步释放产能,从相关资料来看,国内若干主要企业均具有一定技术储备。这种电池的特点也是双面皆可吸收入射光线,从而提升电池和组件的发电量。目前有企业宣传该款电池的正面效率大于21%,背面效率大于19%。封装成组件后,正面功率接近300W,背面功率接近270W。结合各种应用场景,组件发电功率较高。和常规电池相比,该款电池主要增加了双面浆料印刷和硼元素掺杂(如旋涂、印刷高温推进和固态源扩散等)等工艺。目前国内主要企业储备的该产品技术基本都没有用到激光等工艺,因此整个电池制作工艺不对硅片造成额外损伤,组件可在各种使用条件下保持稳定性。此外,还具有无光致衰减、弱光响应好等特点。
P型单多晶电池正面印刷Ag栅线,背面整面印刷Al浆,因此电池正面和背面的金属结构和成分不对称,在丝网印刷烧结后电池片会产生2-5mm的翘曲,从而在电池内部产生应力,由于翘曲和应力的作用,P型单多晶电池的破片率明显提升。由此包括电池生产、组件生产和光伏电站组件中的电池破裂率均提升。N型单晶双面电池正背面均印刷Ag栅线且图形相近,因此N型单晶双面电池结构均有对称性,电池在丝网烧结印刷后不产生翘曲。此外,N型单晶双面电池的工艺流程中无激光等损伤,保持完整晶体结构。综合以上因素,N型单晶双面电池破片率更低。
由于N型单晶双面电池正背面均印刷银浆,因此该款银浆的耗量高于P型单多晶电池。在产能方面,N型电池与P型电池的相比还有差距。
三、多晶黑硅电池
多晶硅片中具有若干不同晶向的晶体,因此单晶广泛应用NaOH溶液各向异性制绒工艺并不适用于多晶制绒。目前通行的多晶硅制绒工艺主要是HF/HNO3混合溶液的缺陷腐蚀制绒法,此方法制绒后的硅片反射率约为18%,高于常规单晶制绒后11%的反射率,不利于多晶电池对入射光线的有效吸收。为了进一步降低多晶硅片制绒后的反射率,采用特殊制绒工艺在多晶硅片表面形成纳米结构,增加有效多晶硅片对入射光线的吸收。采用这种制绒工艺生产的多晶电池有更低的反射率,此方法制绒的多晶电池从肉眼来看比普通多晶电池更黑,因此这种工艺被称为黑硅制绒。
多晶黑硅制绒工艺主要有干法制绒和湿法制绒两种。干法黑硅制绒工艺为反应离子刻蚀法(Reactive Ion Etching,RIE),该方法是等离子体在电场作用下加速撞击硅片,在硅片表面形成纳米结构,从而降低多晶硅片的反射率。湿法黑硅制绒工艺为金属催化化学腐蚀法(Metal Catalyzed Chemical Etching,MCCE),该方法是在硅片表面附着金属,利用HF与强氧化剂混合溶液腐蚀硅片表面,附着在硅片表面的金属随着腐蚀过程而向下沉积,从而在硅片表面形成纳米结构,有效降低硅片表面的反射率。无论干法或是湿法黑硅制绒工艺,都可将多晶电池效率提升0.6%以上,采用多晶黑硅电池封装的组件功率也可从265W提升到275W。多晶黑硅电池的整个制作工艺简单,不对硅片造成额外的损伤,使多晶组件可在各种使用条件下保持可靠性,保证了多晶组件在光伏电站整个生命周期发电量的稳定。此外,多晶电池还具有光致衰减低的特点,多晶电池的光致衰减普遍低于1.5%,而PERC单晶电池的光致衰减为2-10%。可以看出,与PERC单晶电池相比,多晶黑硅的光致衰减率具有很好的优势。
在全球的晶体硅光伏产品中,多晶产品仍然占有50%以上的市场需求。多晶产品具有单瓦价格低、工艺成熟、组件可靠性高的特点,有效降低光伏电站风险,为光伏电站收益提供可靠保障。
结语
多晶黑硅电池和N型单晶双面电池在光致衰减率、破片率和机械载荷衰减率等方面均明显好于PERC单晶电池。因此相比于PERC单晶电池,多晶黑硅电池和N型单晶电池将为光伏电站带来更为稳定的发电量,光伏电站业主的投资回报也可以得到更好的保障。光伏电站作为预期运营25年、30年乃至更长时间的投资项目,除了组件初始功率外,还需要关注组件功率在整个电站生命周期的稳定性和衰减率,以保证稳定的投资回报。
面积相关成本是指:光伏电站建设过程中和组件的面积直接相关的成本;例如光伏电站的运输、安装、线缆、支架、运维、土地等均为面积相关成本。面积相关成本与我们所熟悉的BOS成本有很大重叠部分,但也有诸多不同,例如逆变器成本算入BOS成本,但是逆变器属于容量相关的成本,功率越高逆变器成本就越大,所以选用高功率组件并不能摊低逆变器的成本;再例如运维成本属于电站建设好以后正常运营的支出,例如清洗维护成本、线缆更换、支架更换等维修成本。运维成本和面积相关,例如清洗面积越大清洗成本越高。但是运维成本并不算入BOS成本中。所以面积相关成本和BOS成本的区别以及共同点如下表:
面积相关成本 BOS成本
共同点 共同包含运输、安装、支架等成本
不同点 不包含逆变器成本
但包含运维成本 不包含运维成本
但包含逆变器成本
面积相关成本以单块组件所需为单位,不同电站类型、不同建设区域以及不同的劳动力成本都会导致面积相关成本有很大不同。但是综合各地、各种类型电站建设成本,我们会发现面积相关成本往往介于400元/片~800元/片之间。这就是说,电站建设过程中一片60型组件的运输、安装、支架、桩基、土地所需最少成本也在400元以上。所以提高发电功率摊低单位面积的相关成本成为急需解决的问题,也是高功率组件价格更贵的经济合理性基础。
由于不同组件封装形式不同、硅片质量不同、电池路线不同会导致功率有较大差异,目前普通多晶组件功率为275W,而单晶perc组件功率已经普遍达到300W+甚至310W的水平。我们选取单块组件面积相关成本为500元的常规电站为例,功率275W的组件单瓦需要摊销面积相关成本为500÷275=1.81元;功率达到305W的组件单瓦所摊销面积相关成本为500÷305=1.64元。功率更高的组件单瓦摊销面积相关成本更低,这是合理价差的根本来源,于是:
合理价差=500÷275-500÷305=0.17元。
按照上面的思路,我们可以先得到一个基本的计算合理价差的公式:
但是上述简单的计算公式有一个重大缺陷,那就是没有考虑perc大约3%的发电量增益。就是说305W的单晶perc组件等效于305W×1.03=314W的常规组件。单晶perc组件发电量有增益是有实证数据支持的,而且其理论原因也比较清晰,主要是由于:
1、单晶perc组件弱光效应好,由于能更好的吸纳弱光,电站每天启动时间更早、关闭时间更晚,相当于是每天早起晚睡勤劳的好同志。
2、第二个原因是工作温度低,由于单晶perc组件转化效率更高,工作时以热的形式耗散的能量少,正午艳阳高照下单晶perc组件相较于常规组件工作温度更低,我们都知道高温不利于组件正常发电,组件一般温度系数为0.46%,就是意味着组件温度每升高1度,发电量就会减少0.46%。更低的工作温度是提升发电量的又一关键原因。
当我们把单晶perc组件这3%发电增益也纳入考量带入计算公式时,结果就会大有不同。考虑3%的发电增益后主要带来两个变化:
1、等效功率变大,305W的单晶perc组件实际上相当于305×1.03=314W的常规组件。进而可以使面积相关成本摊低更多。
2、由于组件销售时还是按照305W的功率来计价,多发电相当赠送了一定功率的组件。就是说314W-305=9W相当于是赠送的。按照当前普通多晶组件2.45元/W的价格计算,价值相当于2.45×9=22元。由于组件功率是305W,则每瓦对应的价值为22÷305=0.072元。
考虑上述两个因素以后,对于一个每片60型组件面积相关成本为500元的电站项目,275W多晶组件和305W单晶组件的单瓦合理价格差为:
500÷275 - 500÷(305×1.03)+0.072=0.297元
这个公式可以分为三个部分来理解:
1、500÷275 是指面积相关成本500元的电站选用275W组件,单瓦所需摊销的成本。
2、500÷(305×1.03)是指一块组件面积相关成本为500元的电站项目选用305W功率的组件并且考虑3%的弱光效应发电增益后,单瓦功率要摊的成本。
3、0.072是指305W的单晶perc组件考虑3%的发电增益以后等效于314W的组件,但是组件销售的时候还是按照314W来计算,所以实际相当于“赠送”9W的功率,按照当前多晶组件每瓦售价2.45元计算,9W功率价值2.45×9=22.05元,对于一个305W的组件单瓦带来的价值提升为22.05÷305=0.072。
最后值得我们特别注意的是:这个公式最终结算得出的0.297元是该类电站最大可承受的价格差,如果此时单晶perc组件与常规多晶组件价格差<0.297元,则从经济理性的角度理应选择单晶perc组件,因为虽然价格贵一些但在电站假设过程中带来的摊销价值更大;但是如果单晶perc组件价格差>0.297,则从经济理性选择的角度,选择常规多晶组件更合适一些。
其实这个思维模型可以推而广之,可以用来计算双面组件的合理价差,对于有条件使用双面组件且假设背面功率增益为7%,面积相关成本为500元的电站项目,275W普通单面组件和300W双面组件的合理价差计算公式为:
500÷275 - 500÷(300×1.1)+0.245=0.548元
同样道理,这个公式也可以分为三个部分来解释:
1、500÷275 是指面积相关成本500元的电站选用275W组件,单瓦所需摊销的成本。
2、500÷(300×1.1)是指一块组件面积相关成本为500元的电站项目选用300W功率的组件并且考虑3%的弱光效应发电增益,以及7%的背面发电增益效应(合计10%的增益),单瓦功率要摊的成本。
3、0.245是指300W的双面组件,考虑弱光效应增益3%以及背面增益7%以后,等效于300×(1+3%+7%)=330W,相当于赠送30W功率的组件。按照当前组件价格2.45元计算,价值为73.5元,单片组件功率300W,则单瓦价值为73.5÷300=0.245元。
考虑这三个部分的增益以后,得出的结论我自己都是吃惊的,300W的单晶perc组件比275W的多晶组件卖贵0.5元都是合理的!所以对于地面电站有条件使用双面组件的项目,我的建议是能使用双面组件就选用双面。
大逻辑:
最近这些年,人力成本是不断上涨的,即便是印度地区,由于经济的发展,长期看人力成本也都是上涨趋势。再看看电站建设过程中所使用到的钢材、线缆等大宗商品,也是出在不断上涨的趋势中。这样的大格局下,要想继续降低光伏电站的建设成本,除了降低组件价格以外,最有效的办法便是提升组件效率了。有一些电站项目,面积相关的成本在项目总成本中占比突破一半,未来提效率带来的降本效果很可能远大于单纯降低组件价格所带来的效果。这也是我笃信单晶技术路线的最为核心、最为重要的原因。
我们再把这个思维模型推广到未来N型HIT电池路线,得到的效果就更加不可思议了,据说海外已经有优秀厂商可以把HIT组件正面功率做到360W,而且HIT同等容量的发电增益效果更加显著,双面率可以轻松做到90%+,那么360W的叠瓦双面HIT组件与当前275W的普通多晶组件合理价差是多少呢?
500÷275 - 500÷(360×1.15)+0.36=0.97元
就是说如果当前能生产出正面功率360W的HIT叠瓦双面组件,其每瓦卖贵0.9元以上都是完全合理的。高效高功率所体现出来的威力显露无遗,高效化几乎是未来的必然选择,理清这一事实,推广产业相关认知是本文期待的意义所在。
转发朋友圈~做光伏EPC两年来,接地气的分享。吴明轩期待大家看到能有感触!做一个可以读懂光伏的光伏人!互惠共赢!微信18132085793(手机同号)
PERC电池(Passivated Emitterand Rear Cell),是电池的一种结构。最早起源于上世纪八十年代,1989年由澳洲新南威尔士大学的MartinGreen研究组在AppliedPhysicsLetter首次正式报道了PERC电池结构,当时达到22.8%的实验室电池效率。
到了1999年其实验室研究的PERL电池创造了转换效率25%的世界纪录。PERC电池的实验室制备,采用了光刻、蒸镀、热氧钝化、电镀等技术。PERC电池与常规电池最大的区别在背表面介质膜钝化,采用局域金属接触,大大降低被表面复合速度,同时提升了背表面的光反射。
拓展资料PERC电池发电性能
PERC电池的发电性能是表征PERC电池竞争力的另一重要因素。在青海、海南、吐鲁番等不同的实证基地进行不同电池户外发电性能的对比分析,选用的组件类型包含常规单晶硅、常规多晶硅、单晶PERC、多晶PERC等,发现单晶PERC技术更高的单位发电特性(kwh/kw),大同基地报道了PERC单晶多发电2.61%的发电增益。
青海实证基地在一个月的采集数据中发现单晶PERC发电量最高(22.69kwh/kw),单晶常规电池次之(22.26kwh/kw),多晶常规电池再次之(22.20kwh/kw),多晶PERC电池与多晶常规电池接近,似乎更低(21.97kwh/kw)。需要指出的是,目前户外实测数据收集时间较短,更深入的研究还需要更长时间的发电性能数据收集与对比分析。
参考资料
全方位解析PERC电池——搜狐科技
什么是PERC光伏电池?—— 索比光伏专业知识网
PERG技术通过在电池的后侧上添加一个电介质钝化层来提高转换效率。标准电池结构中更高的效率水平受限于光生电子重组的趋势。PERC电池最大化跨越了P-N结的电势梯度,这使得电子更稳定的流动,减少电子重组,以及更高的效率水平。
太阳能电池:
又称为“ 太阳能芯片”或 “ 光电池”,是一种利用 太阳光直接发电的光电半导体薄片。它只要被满足一定照度条件的光照到,瞬间就可输出电压及在有回路的情况下产生 电流。在物理学上称为 太阳能光伏(Photovoltaic,缩写为 PV),简称 光伏。太阳能电池是通过 光电效应或者光化学效应直接把光能转化成 电能的装置。以光电效应工作的晶硅太阳能电池为主流,而以光化学效应工作的薄膜电池实施太阳能电池则还处于 萌芽阶段。
太阳能电池分类:硅太阳能、多晶体薄膜、有机聚合物、纳米晶、有机薄膜、染料敏化、塑料电池
上一篇文章发出之后,与朋友们又有了一些新的讨论。
整体上,大家能够清晰的感受到我对于光伏行业未来发展的看好。但这并不是说光伏行业目前已经很完美,甚至没有缺点。
事实上,光伏行业在过去十数年、甚至更长久的时间里,经历了太多的风风雨雨。
这个朝阳行业曾经像磁石一般,吸引着人才、技术与资本的蜂拥而至,并成就过中国福布斯富豪榜的首富。然而,随潮水落去,它也曾让英雄般的名字跌落神坛,无数投资者因此血本无归。
事物皆有两面,我们就来看看光伏的另外一面。
与朋友们讨论下来,主要的短板有这么五个:占地方、靠补贴、难消纳、不环保和不连续。篇幅关系,我们准备分成两篇,第一篇探讨前两个短板:占地方和靠补贴,后三个留到下一篇。
光伏发电的原理,来自于 光生伏特效应 。
一块暴露的半导体材料,阳光中的光子与之接触后会有一部分转化为电子。由于半导体内部材质的不均匀或者掺有杂质,不同的部位会产生不同数量的电子,有的地方多一些,有的地方少一点。电子数量的不同,使得不同部位之间产生了电压(电位差)。这个时候,如果以导电体将存在电位差的不同部位相连接,电流就形成了。
从最根本的角度来看,地球上绝大部分能源的最终来源,都是太阳。以煤炭、石油为代表的化石能源,来自于远古的动植物。植物依赖阳光进行光合作用,将水和二氧化碳转化为碳水化合物,这构成了所有动物的底层食物来源。
风能来自于大气运动,水能来自于水汽循环所带来的降雨,这背后的根本推动力还是太阳照射带来的温度变化。
这些天然存在的一次能源,经过各种形式的发电机转化为人类最重要的二次能源电力,再经由电网输送到千家万户,驱动着现代生活中所必不可少的各种电力设备和家用电器。
所以,光伏发电从一开始就带着人类十分美好的期盼,因为它避免了中间环节,可以直接从太阳能转换成为电能。
在光伏行业,最核心的研究课题就是 光电转换效率 ,即照射到太阳能面板上的光照有多少可以转换成电流。这个核心指标,驱动着整个行业不断的取得一个又一个技术进步。
既然是指标,就要计算。而要计算,就得有个标准。地球上即使是相同的时节,由于所处的地理纬度不同,太阳照射的强度差别会很大。高纬度的阳光常常照在身上却感受不到多少温暖,而此时赤道地区的阳光却能将人皮肤灼伤。所以,为了能够一致的做比较,光伏人将光电效率定义标准化了:
同时,规定了检测的条件:太阳能工作温度为25℃±2℃,以及照射强度为1000 W/M2。
看不懂也没关系,只要知道 转换效率越高越好 就行了,因为这意味着同样的光照条件下,可以发出更多的电量。
目前,学术界的研究认为,以晶体硅为材料的太阳能电池转换效率的 理论极限约为29%左右 。为了缩小与理论极限的差距,近年来在主流的P型单晶电池领域,晶科能源和隆基乐叶交替向世界纪录发起新的冲击。最新的记录由隆基乐叶在2019年1月16日创下, 转换效率为24.06% 。
在实际发电的时候,一片一片的太阳能电池片需要连接起来,构成一个发电的基本单元,这个单元就叫做组件。
我们来感受一下,一个组件所能够发出的电量,以目前较为典型的60片310Wp的单晶PERC组件为例。由于我国日照时间的不同,将全国划分为三类资源区,在计算中我们以二类资源区的中值1500小时/年作为参考。
即单个组件每年可以发电465度,按照家庭每天用电5度计算, 大概可供90天左右 。如果保障一个家庭的全年供电,大概需要4-5个组件。
当然,这是理想的情况,光伏发电受日照和环境温度的共同影响,而且随着使用年限的增加,发电能力会逐渐下降。
根据晶科能源的产品手册,我们大致可以看出,刚安装好的新组件初始发电功率实际为97%,经过12年使用后下降到90%,最终到达产品使用年限25年时进一步下降至80%。
这个组件有多大呢?根据产品手册的数据,长度为1.67米,宽度为1.00米,厚度为35毫米。这意味着,需要占地1.67平方米。也就是说,保障家庭每天5度的用电量,大概需要有1.67 * 4 = 6.68 平米的空旷空间。实际安装时,由于组件并不是平铺,而是有一定的倾斜角度,实际占地应该要少一些。
与之对比,我们以装机容量60万千瓦、火电设备利用小时4300小时/年、厂用电率4.34%的典型火力发电厂为例:
折合530万个组件的年发电量,按照每块1.67平米计算,约合886.37万平米,折合8.86 平方公里。
我们再做个极端测试,根据中国电力企业联合会报告,2018年我国全 社会 用电量 6.84 万亿千瓦时,假如全部采用上述的60片光伏组件来发电,大概需要占地 68400 / 24.68 * 8.86 = 2.46 万平方公里。大约占去了我国的960万平方公里国土面积的 0.26% 。
这就是光伏最大的短板, 单位面积发电量太低 ,远远不能够与火电相比。
理解了这一点,就能够理解为什么很多人仍然不看好光伏,因为光伏发电需要占用大量的土地面积,而我国的土地整体上是稀缺的,且价格不菲。
经过上面的计算,我们对光伏发电有了新的印象: 占地方 。
那在怎样的场景中,这个短板不是那么明显呢?
有这么几类:第一类,在我国的大西北,地广人稀、日照充足,适合建设大规模的光伏地面电站;在全世界范围内,符合这个特征的地方,还是挺多的,比如中东、北非、澳大利亚、美国的中西部等。
第二类,工业厂房、园区的屋顶。这些地方,本来就闲置在那里,利用起来装上光伏,完全不需要额外的土地成本。于是乎,我们看到京东的物流园、高铁的站台、谷歌的数据中心、甚至是苹果公司新建的总部大楼,都在屋顶装上了光伏。
第三类,以矿山的塌陷区、湿地、鱼塘、湖泊为代表,将光伏组件通过漂浮载体或者固定支架放置在这些区域。上市公司之中,阳光电源有不少漂浮载体的业务,而通威股份更是利用其深耕水产饲料的优势,搞起了渔光互补。
第四类,以农业大棚为载体,在其外部加上光伏,棚内搞种植,棚外搞发电,称之为农光互补。所发出来的电力,还能够为农业自动化提供能源。
在以上几类中,土地的成本较低、甚至可以忽略,所以只要光伏发电自身的成本能够有竞争优势,其应用就不可限量。毕竟,即使不考虑化石能源的不可再生因素,我国较高的工商业电价和居民电价本身就会对于低价的其他电力来源有着强烈的需求。
与单位面积发电量的不懈斗争,转换成了一个又一个的 光伏技术创新 。
这个过程最大的技术路线变革,是单晶电池片对于多晶的取代。所谓单晶,就是晶体硅中每一个硅原子都排列的整整齐齐,良好的晶体性质使得单晶有着更高的光电转换效率。
但这是有成本的,通过直拉法或者区熔法小心翼翼生成的单晶硅棒,成本一直居高不下,在和通过较低成本的铸锭法就能生成的多晶硅锭的竞争中处于下风。
近年来,隆基股份在单晶技术上连续取得突破,一方面通过拉晶设备的国产化和技术改进不断降低硅棒的生产成本,另一方面通过引入金刚线切割技术,大幅度的降低了硅片切割的成本,并通过硅片薄化技术进一步提高了出片率。
目前,电池片环节,单晶PERC技术引领了高效电池的产能升级,再叠加诸如双面双玻、半片等组件环节的诸多技术突破,共同将量产的高效光伏组件转换效率提升到 22% 以上。
这场单多晶的对决,让双方都突破了自我。
就在昨天,天合光能宣布其研发的高效N型单晶电池高达24.58%,创下了大面积TopCon电池效率最新的世界纪录。同一天,阿特斯发布新闻公告,其研发的高效多晶太阳能电池的转换效率达到22.28%,创造了新的大面积多晶电池的世界纪录。
似乎只在高 科技 领域才会有的百家争鸣,近年来在光伏行业正在不断上演。
就这样,随着 组件的转换效率 变得 越来越高,单位面积发电量 也就 越来越多, 而对于 土地的需求 也变得 相对减弱。
所以,有朝一日,像曾经风靡大江南北的太阳能热水器一样,家家的屋顶都变成了太阳能组件,也并非完全不可能。
作为新兴的可再生能源技术,光伏的产业化之路一直受到各国政府的高度重视。
实际上,在光伏成就无锡尚德的创始人施正荣先生以186亿元成为2006年中国大陆的新首富时,就是靠着欧洲、特别是德国政府对于光伏的大力补贴。
最终,市场证明靠着过度补贴成长起来的巨头,在补贴退去的时候也会推倒它们。时至今日,施正荣先生早已淡出人们的视角,尽管他仍然在这个行业里奋斗着。
在行业的起起落落之中,仍然有一些企业家在坚守,正是他们的坚持让这个行业迎来了新生。
在之前的文章中,我们通过对比火电龙头华能国际与光伏发电企业龙头协鑫新能源的财报数据,对于光伏发电成本做了推演。在数据的背后,光伏发电平价上网的脚步声正变得越来越清晰。
而这一天的到来,将会让很多的光伏发电项目,不再依赖国家补贴。
5月22日,国家发改委、能源局公布2019年第一批风电、光伏发电平价上网项目,其中光伏平价项目合计 14.78 GW 。
在全球市场上,平价上网项目也越来越多。2017年2月,日本丸红与晶科能源联合竞标阿布扎比大型光伏电站,累计装机1.18GW,中标电价为每度电2.42美分,折合人民币不到 0.17元 。
尽管光伏行业的企业一直在坚守,补贴的拖欠确实也对企业经营造成了实实在在的影响。
2018年,我国可再生能源补贴的缺口超过了1400亿元,这不可避免的会影响光伏补贴的及时发放。
光伏电站作为资本密集型的企业形态,由于不能够及时收到国家补贴导致运营资金的巨大压力,这会顺着产业链层层向上游传递。体现在财务数据上,就是光伏产业链上中游企业巨大的应收账款。
黑鹰光伏做过一个统计,截至2019年末,78家主要光伏公司应收账款和应收票据合计达到了1717.67亿元,大约是同期净利润的 8.03倍 。
所以,我们看到全球第二大光伏电站运营商协鑫新能源从去年开始,就在不断出售资产,开始了断臂求生。
2019年5月23日,协鑫新能源向云南能投集团一口气出售了19座国内正在运营的光伏电站,以换取资金减轻债务压力。这19座电站合计977MW,相当于其持有的全部7300MW光伏电站的13.38%。在此之前,协鑫新能源已经连续多次出售了合计760MW的光伏电站。和这次一样,接盘的都是能够以较低成本融资的国资企业。
这从一个侧面反映了, 如果能够以较低的利率融资,光伏电站的资产在当下已经具备相当的吸引力 。
所以,随着平价上网的到来,越来越多的光伏发电项目,可以在不依赖国家补贴的情况下运营。而这些电站的运营利润,将和其融资成本密切相关。
换句话说,后补贴时代, 融资成本的高低,才是决定光伏电站盈利质量的关键变量 。
未完待续。
新能源是二十一世纪世界经济发展中最具决定力的五大技术领域之一。太阳能是一种清洁、高效和永不衰竭的新能源。在新实际中,各国政府都将太阳能资源利用作为国家可持续发展战略的重要内容。而光伏发电具有安全可靠、无噪声、无污染、制约少、故障率低、维护简便等优点,在我国西部广袤严寒、地形多样和居住分散的现实条件下,有着非常独特的作用。
一、国内外太阳能利用概况
1.l国外现状
常规能源资源的有限性和环境压力的增加,使世界上许多国家重新加强了对新能源和可再生能源技术发展的支持。近几年,国际光伏发电迅猛发展。1973年,美国制定了政府级阳光发电计划;1980年又正式将光伏发电列入公共电力规划,累计投资达8亿多美元;1994年度的财政预算中,光伏发电的预算达7800多万美元,比1993年增加了23.4%;1997年美国和欧洲相继宣布"百万屋顶光伏计划",美国计划到2010年安装1000~3000MW太阳电池。日本不甘落后,1997年补贴"屋顶光伏计划"的经费高达9200万美元,安装目标是7600Mw。印度计划1998-002年太阳电池总产量为150MW,其中2002年为50MW。
国际光伏发电正在由边远农村和特殊应用向并网发电和与建筑结合供电的方向发展,光伏发电已由补充能源向替代能源过渡。到目前为止,世界太阳电池年销售量己超过60兆瓦,电池转换效率提高到15%以上,系统造价和发电成本已分别降至4美元/峰瓦和25美分/度电;在太阳热利用方面,由于技术日趋成熟,应用规模越来越大,仅美国太阳能热水器年销售额就逾10亿美元。太阳能热发电在技术上也有所突破,目前已有20余座大型太阳能热发电站正在运行或建设。
1.2国内现状
煤炭巨量消费已成为我国大气污染的主要来源。我国具有丰富的太阳能、风能、生物质能、地热能和海洋能等新能源和可再生能源资源,开发利用前景广阔。太阳能光伏发电应用始于70年代,真正快速发展是在80年代。在1983年一1987年短短的几年内先后从美国、加拿大等国引进了七条太阳电池生产线,使我国太阳电池的生产能力从1984年以前的年产200千瓦跃到1988年的4.5兆瓦。目前太阳电池主要应用于通信系统和边远无电县、无电乡村、无电岛屿等边远偏辟无电地区,年销售约1.1兆瓦,成效显著。
(1)建成了40多座县、乡级小型光伏电站,光伏电池总装机容量约600kw,其中西藏最多,达450多kw;1998年10月建成我国最大的西藏那曲安多县光伏电站的光伏电池装机容量高达100kw。
(2)家用光伏电源在青海、内蒙古、新疆、甘肃、宁夏、西藏以及辽宁、吉林、河北、海南、四川等地广泛应用。据不完全统计,至今全国已累计推广家用光伏电源约15万台,光伏电池总功率约达2.9MW。
(3)在22所农村学校建立了光伏电站,光伏电池组件的总装机容量为57kw。
(4)1998年中国通信史上建成难度最大的兰一西一拉光缆干线工程,有26个光缆通信站采用光伏电池作电源,其海拔高度多在4500m以上,光伏电池组件的总功率达100kw。
(5)1996年建成了塔中4--轮南输油输气管道阴极保护先伏电源系统,总功率为 40kw。该系统横贯环境恶劣复杂的塔克拉玛干大沙漠,总长达300Km。
(6)1995年,63个国家重点援藏项目一西藏广播电视发射接收工程采用光伏电池供电,共建成216套卫视接收站和* 套调频发射站光伏电池供电系统,总功率为300多kw。
二、西部太阳能应用概况
2.1自然资源
我国西部地区是世界上最大、地势较高的自然地理单元。也是世界上最丰富的太阳能资源地区之一,尤其是西藏地区,空气稀薄,透明度高,年日照时间长达1600一3400小时之间,每天日照6小时以上年平均天数在275--330天之间,辐射强度大,年均辐射总量7000兆焦耳/平方米,地域呈东向西递增分布,年变化呈峰型,资源优势得天独厚,应用前景十分广阔。
2.2能源状况
西部大部分地区能源极其匾乏,多年来坚持积极稳妥开发地热,努力推进太阳能利用,有计划、有步骤地更替油电,适当发展风力发电;因地制宜,多能互补,大中小结合,以中小型为主;电网建设与电源建设同步,建设与管理并重,开发与节能并举的方针,但人均装机容量和年发电量仍落后于全国平均水平。尤其是西藏地区,是全国发电量和人均用电量最小的省份。无电人口仍以酥油灯、柴油灯和蜡烛照明,有些家庭酥油灯已无力承担,学生在烧牛粪炉时的昏暗光线下做作业,极个别乡沿用老柴油发电机解决短时间照明。鉴此,既无资源建设水电站,火电又恐难发展,要依靠电网延伸把"光明"送到横亘遥远、居住稀疏的农牧民家中,其输变线成本令人咋舌。光明、能源成为老百姓多年翘首以待的夙愿,突出的电力瓶颈,成为西藏经济发展和社会进步的桎格,阻碍了人民生活水平的提高,影响了群众摆脱贫困,消除愚昧,治穷致富的步伐,是贫困落后的主要根源,勿庸置疑,利用太阳能光伏发电是解决这一问题重要而有效的途径。
2.3太阳能应用
处处阳光处处电。西部地区利用太阳能光伏发电在解决通信、广播、电视电源和无电人口用电等方面已经开始取得显著成效,曾成功地实施了"科学之光"、"阳光计划"、"阿里光电计划"等太阳能专项计划,成为全国第一个也是规模最大的实施太阳能专项计划的地区。以西藏地区为例:
2.3.1光伏电站
截止1999年,建成县级独立光伏电站7座,消灭了6个无电县,总装机容量450KWp,居全国第一,安多 100KWp光伏电站全国最大,双湖海拔 5100米跟踪式光电站世界最高。
2.3.2通讯电源
提供微波中继站光伏电源约达200KW以上;电话乡乡通电源100多千瓦;在兰西拉光缆通信工程西藏段附近600公里的工程中,应用光伏电源近100KW,光伏电池电源增量迅速。
2.3.3广播电视电源
在狮泉河、改则、门士煤矿等地建起约20余座以光伏发电作电源的卫星电视收转站和电视差转台,总装机容量约20KW左右。还有100多套广播电视用光伏电源系统100多千瓦。
2.3.4光伏水泵
西藏无水草场面积巨大,光伏水泵的潜在市场需求数量可观,很应用前景广阔,狮泉河、日土、改则、尼玛、扎囊等地建成6座光伏水泵系统,总装机容量2个多千瓦,除解决草场灌溉外,还解决了本地区的人畜饮水问题,结束了依靠人力背水的历史,极大的解放了劳动力。
2.3.5户用光伏电源系统
推广户用光伏电源l0-300W系统3万多套,总容量达60千瓦左右,既可供家庭独立固定使用,又能供游牧家庭使用,便携简便,安全可靠,性能优越,深受欢迎;山南昌珠多桑德庆村每户安装光伏电源40Wp,25户农牧民解决了照明、看电视、收听广播录音机的供电问题,被称为太阳村。
2.3.6学校光伏电站
近10所学校建成太阳能光伏电站,墨竹工卡唐家乡小学2KW光伏电站是国内最大的非晶硅光伏示范电站。西藏至今有600多所乡级学校尚未通电,均为寄宿学校,尽早解决学校供电问题和电化教学等,对提高西藏青少年一代的科学文化素质至关重要,是今后光伏发电应用的重要方面。
2.3.7边防哨所光伏电源系统
西藏多数边防哨所无电,有20多个边防哨所安装光伏电源系统,解决照明、看电视、听收录机及通信的供电问题,每座功率为1~2KW,极大地改善了边防官兵的工作生活条件。
目前,西藏已在7个县建成10-100KW规模较大的县级太阳能光电站,全区各类太阳能光电设施容量超过2MW,推广太阳能热水器8.5万多平方米,太阳灶9.l万台,太阳能采暖房、温室、牛羊暖圈等18万平方米,是全国太阳能应用率最高、应用面和规模最大、用途最广泛的省份。
3 存在的主要问题
我国有9亿多人生活在农村,l.2亿人口没用上电15-8%的人口未解决清洁饮水;约4000万人生活在贫困线以下。由于农村燃料等能源短缺,利用水平低,造成森林过度樵采,植被破坏,生态环境恶化,严重阻碍农村经济和社会的发展。面对压力,太阳能应用速度慢,力度小,还存在一定问题:
3.1对开发太阳能资源的战略意义认识不够
一是没有把发展太阳能完全纳入政府的议事日程;二是长期以来,太阳能项目没有常规能源建设项目那样的固定资金渠道或已有的资金渠道不畅。从观念看,是对开发推广太阳能可以减少或替代常规能源和实施可持续发展战略的意义认识不足。
3.2缺乏完整的激励政策
政府支持是发展太阳能的关键,也是太阳能产业发展的初始动力。目前缺少有利于太阳能产业发展和刺激广大居民应用光伏电源装置等新能源设备的激励政策。
3.3投人力度不够
长远规划,缺少资金支持,对太阳能进入市场的全面影响是难以预测的。部分省市自治区对扶持推广太阳能实行专项补贴,使太阳能得到有效推广。但由于投入过少,分散,尤其是光伏电池等关键原器件,大部分遗稿进口,造成太阳能成本高,群众购买力有限,太阳能的成熟技术很难尽快大规模推广应用到无电群众中去。
4 太阳能推广对策
目前我国开发应用的各类新能源和可再生能源年提供相当于3亿多吨标准煤,对促进国民经济发展和满足广大农村和边远地区人民生活的能源需求起到了重要作用。特殊的地缘,西藏的广大农牧民视光伏电源系统是他们多年企盼的"点灯不用油、娱乐有节目"的法宝,太阳能光伏系统确实有潜力为农村和边远地区提供非联网电力,其成本低于外地运燃料或延伸输电线路的成本。因地制宜,大力开发利用太阳能等新能源,把它们转化为高品位的电能,提供照明、广播电视、通讯、水泵等动力能源,对促进脱贫致富,经济和生态环境协调发展,实现小康具有重大意义。为进一步搞好太阳能光伏电源系统的推广应用,建议采取如下一些措施:
4.1提高太阳能应用地位
西部地区要加强太阳能应用推广工作,切实加强领导,把太阳能推广应用工作纳人政府重要的议事日程,把太阳能推广应用作为重要的一项能源政策,纳入国民经济建设总体规划之中,列入政府的财政预算。
4.2加大投人,加快太阳能应用步伐
太阳能在西部的推广应用,具有重大的政治和社会效应,太阳能的发展仍处初期,产业未形成规模且获益能力低,尚不具备市场竞争的能力,国家应对太阳能应用加大投入,保证资金,组织安排多个不同模式的、连片的光伏电源系统的应用示范及光电站建设。
4.3制定优惠政策,促进产业发展
建议政府和地方制定有关减免税收、价格补贴和奖励相结合的优惠政策,通过给用户以一定比例补贴的办法,鼓励广大无电农牧民采用户用光伏电源系统解决自己的生活用电问题,逐步引导老百姓转变观念,克服等靠要思想,提高自我发展意识,加快解决无电户的步伐,最终促进产品进入市场,逐渐形成地方优势产业。
4.4扩大交流,开展国际合作
多渠道、多形式地开展国际合作,争取更多的国外资金和设备用于推广太阳能,充分利用当今国际开发太阳能的热点,切实抓住西部大开发的良好机遇,主动出击,创造条件,进一步拓宽合作领域,加强联合,促进国内外社团、企业家和个人在西部投资,创办新能源实体。在有条件的地区,本着可持续发展的战略思想,建设兆瓦级太阳能光电站。
4.5制定长远规划,综合开发利用
建议政府制定太阳能推广长远规划,尽快实施太阳能屋顶计划,结合西部地区实际,采取风光互补、小水电与太阳能互补,户用光伏电源系统、太阳能路灯、太阳能与建筑结合等多种形式,独立系统与并网双通,综合开发应用太阳能。在继续抓好国家光明工程、乘风计划、邮电和广播电视村村通计划实施的同时,加快西部区域的科学之光、阿里光电计划的实施。
草场不忘阳光提水的福音,人民渴望光伏发电的思惠。大力推广应用太阳能,提高新能源在能源结构中的比重,是西部地区新世纪和可持续发展的必然选择。逐步改变农牧民由于没有电,日出而作,日落而息,科技文化落后,经济不发达,远离现代物质文明,过着近乎与世隔绝的生活状况,尽快使他们脱离"黑暗",用上电灯,看上电视、听到广播,有利于西部地区的社会稳定、民族团结、经济发展和社会进步,早日缩短与现代社会的距离,步入新时代。
欧洲各国都在开辟通向持久能源的道路,影响他们决策的主要因素是环境保护、创造就业机会和能源供应的安全可靠。可再生能源技术在这些方面都有较大优势。它对环境的影响最小,可替代部分常规能源,增加能源供应的安全性和可靠性;它要求较大的设备投资,创造了更多的就业机会,有助于经济增长。</P>
<P>在欧洲大部分地区,环保的考虑推动着替代能源技术的开发。太阳能被公认为是一种极好的替代能源,它的利用有助于降低二氧化碳的排放和环境保护。很多国家,如丹麦、芬兰、德国和瑞士都认为气候变暖是推动太阳能研究、开发、展示和销售活动的主要因素。</P>
<P>在很多国家中,一个值得注意的倾向是资助转向光伏(PV)技术的开发和商品化。这反映一种较为普遍的观点,即从长期角度来看,光伏投资的回收率将高于主动和被动太阳能热利用技术,比利时就是一个明显的例证。</P>
<P>在很多欧洲国家中,研究开发重点转向太阳能工业和大学,政府特别资助那些本国工业感兴趣和有专长的领域,使其有助于创造就业机会,培育经济增长点。</P>
<P>在很多国家,由于实行小政府政策,太阳能技术的政府鼓励计划就很难实行了。可是有些国家仍然利用鼓励办法来促进太阳能技术发展。在奥地利,联邦、省和某些地方对太阳能装置提供直接的财政资助和鼓励;在芬兰,公司可以申请政府给予新太阳能装置高达总成本35%的补助,而家庭可申请20%的补助。</P>
<P>丹麦政府对安装太阳热水器的补助按照在标准状况下节能的多少来计算。目前补助金按每年节能每千瓦时3克朗(0?52美元)计算,它相当于总安装成本的10-30%。太阳热水器在丹麦相当普及,预计2000年后将不再需要补助了。</P>
<P>其它还有一些补助的方式,如比利时对公共建筑改造的资助,德国和其它国家的减税和折旧补贴等。</P>
<P>尽管受到常规能源低价的影响,在欧洲很多国家中,太阳能装置市场仍然持续增长。虽然太阳能公司的数量减少了,但保留下来的公司却趋向于更强大,更能抵御市场的波动。在某些国家实行的电力公司私有化可能提高他们把太阳能装置推向市场的兴趣。在奥地利等国,自己动手建造集热器的活动促进了主动太阳能装置的发展。</P>
<P>在丹麦有十几家公司生产主动太阳能加热装置,其中两家占有市场的大部分份额。其中Marstal太阳能供热厂(目前世界最大的平板太阳能加热装置生产厂)为Aeroe岛上的Marstal镇1250户5000居民提供区域供热,8000平方米太阳集热器阵列与2100立方米的储热水箱相联,6、7、8月间可100%由太阳能供热,全年能供给全区热需求的12?5%。现在正在计划扩大Marstal供热厂,以便能供应该镇全年大部分热需求。自1987年以来,丹麦每年安装的太阳能加热装置一直在增加。在80年代后期,每年安装的太阳能加热装置只有2300套,1996年已增加到4000套,约40000平方米集热器。丹麦生产的太阳集热器,除少量出口到德国和瑞典外,大部分都在国内销售。</P>
<P>挪威已安装70000多套小型光伏装置,每年安装约5000套。大多数装置是为偏远小镇、山区和沿海地带度假旅社供电用的。典型的装置一般为50-60峰瓦。</P>
<P>芬兰人每年也购买几千套小型(40-100瓦)光伏装置,用于消夏小屋。国家石油公司Neste对进一步开发太阳能发电有着强烈的兴趣,重点为建筑物薄膜光伏组件、蓄电池和成套装置。</P>
<P>此外,有些国家在高性能窗、太阳热水器、储能装置、透明隔热材料、日光照明和与建筑物结合的光伏装置等产品的商业化方面进行努力。</P>
<P>欧洲国家继续看好被动太阳能技术。一些国家集中力量开发利用先进透明装置的节能窗。法国和意大利在开发电致调光的透明装置。法国的研究人员估计,这种技术每年可为南部地区节约高达45%的能源需求。</P>
<P>法国的太阳能设计师们正在用绿色设计原则代替太阳能设计原则,就是要统筹考虑能源性能、安全材料的应用、日光照明、居住者的舒适和健康等因素。这种新的设计方法将被用来设计在Angers 的法国环境保护和能源管理署办公大楼。</P>
<P>人们对和建筑物相结合的太阳能装置和光伏装置兴趣越来越大。丹麦Toftlund的Brundtland中心是一座2000平方米的办公和展览大楼,它有一套先进的日光照明系统,其中包括装在外窗上的改变光线方向的百叶窗,反光天花板,中央阁楼朝南的透光窗,还装有光伏组件。</P>
<P>意大利正在开展使建筑物日光照明最佳化的研究,如改进控制系统,调节自然和人工光源,改进窗和遮光装置的特性和效率,改进人工光源的色效等。</P>
<P>在很多国家中,消费者对太阳热水器的兴趣正在增长,而且在技术和降低成本方面也有较大进展。</P>
<P>德国正在继续其1993年开始的太阳-2000计划,该计划的目的是促进大型建筑物使用的太阳能辅助中央供热系统。按照这个计划将在公共建筑物上安装多达100套大型太阳能辅助中央供热系统,并对它们进行监测。第一套这类系统已快建成。</P>
<P>德国计划开展一项建筑竞赛活动,用来促进与建筑物结合的光伏组件的革新。另一项工作是对2200套安装在住宅屋顶的光伏系统进行监测。</P>
<P>按照欧洲联盟的JOULE计划,法国、西班牙和德国合作正在巴塞罗纳附近建造一座新的Mataro图书馆试验建筑,该建筑将装上与建筑物结合的光伏-热组件
荷兰国家能源中心 (ECN) 开发了硼前发射极n 型双面晶硅太阳电池的产业化技术,采用硼磷共扩散工序制备了双面晶硅太阳电池。近年来,高效电池的研究层出不穷,并且基本上都利用了双面制备工艺[11-15]。全球生产n 型双面晶硅太阳电池的企业主要有日本的日立、韩国的LG 及中国的英利集团;近年来,苏州中来光伏新材股份有限公司( 下文简称“中来股份”)、上海航天汽车机电股份有限公司、天合光能股份有限公司等众多光伏企业都相继展开了n 型双面晶硅太阳电池的研发与产业化。日本学者曾对HIT 太阳电池的双面发电能力进行过系统的研究,但目前光伏市场上主推的n 型双面晶硅光伏组件,尚缺乏不同场景下n 型双面单晶硅光伏组件的户外实证发电性能和衰减研究,以及其较单面单晶硅光伏组件发电量增益的数据证明。
本文针对p型PERC单面单晶硅光伏组件( 下文简称“单面组件”) 和n 型双面单晶硅光伏组件( 下文简称“双面组件”),利用中国科学院上海微系统与信息技术研究所新能源技术中心( 下文简称“新能源技术中心”) 搭建的光伏组件的户外实证测试系统,测试了从2016 年12 月15日~2018 年7 月20 日期间,放置于上海市嘉定区某屋顶上的单面组件和双面组件的等效发电时长,以及不同地面背景时双面组件较单面组件的发电量增益情况;计算了光伏发电系统的PR 值;分析了阴天和晴天时影响光伏组件最大输出功率的因素;并对单面组件和双面组件运行13 个月后的衰减情况进行了对比。
1 测试条件
1.1 单面和双面组件的信息
本次研究所用的组件主要是由中来股份生产的双面组件( 透明背板) 和单面组件。测试组件共3 组,其中,双面组件2 组,单面组件1组;每组为3 块组件,将3 块组件串联成1 个组串,形成3 个组串用于测试。2 种组件均安装在上海市嘉定区某屋顶(121.27°E,31.38°N) 上,安装时的最下沿离地高度均为30 cm、倾角均为28°、朝向均为朝南。利用新能源技术中心搭建的光伏组件户外实证测试系统对2 种组件进行发电量测试。
1.2 新能源技术中心搭建的光伏组件户外实证测试系统介绍
本光伏组件户外实证测试系统是根据IEC61215[16] 等标准建立的,主要用于测试光伏组件长期在户外的工作情况,可以通过不同环境下组件相应的电学参数来判断组件真实的发电能力与衰减状况。该测试系统的结构图和实物图如图1所示。
本测试系统可用于光伏阵列的测试,共有24 个通道,每个通道容许的电压范围为100 ~400 V;通道内的组件采用串联的方式连接成组串,每个组串连接1 个转换接线盒;每6 个转换接线盒连接1 个集线器,用于收集直流端电流;每个集线器连接1 台组串式逆变器,将直流电转换为交流电,共有4 台逆变器;I-V 数据采集器用于收集直流端数据,除此之外,其一端还连接气象站( 包括倾斜辐照计、水平辐照计、风速监控仪、温湿度监控仪、雨量监测仪、气压计)。
本测试系统的技术特点为:光伏阵列可通过阵列选择器在组串式逆变器与I-V 数据采集器间切换测试,既能模拟真实的并网环境,又能准确测试组件的实际发电性能;组串式逆变器的使用可以解决不同阵列共同并网的问题,并提高组件在切换过程中恢复到正常工作状态时的时间;I-V 数据采集器为阻性,可测试大功率光伏阵列,1台I-V 数据采集器可拓展测试48 个通道的I-V 数据。
2 测试过程
2.1 组件安装方式
2016 年12 月15 日~2018 年7 月20 日的测试周期可分为3 个测试阶段。其中,第1 个测试阶段为2016 年12 月15 日~2017 年4 月11 日,第2 个测试阶段为2017 年4 月13 日~2017 年8月8 日,第3 个测试阶段为2017 年8 月10 日~2018 年7 月20 日。在每个测试阶段内,通道U01C03、U01C04 和U01C05 中的组件类型分别为双面组件、单面组件和双面组件,但地面背景、组件安装方式和支架类型有所不同
该技术可增加有效发电面积,充分利用组件面积相同的面积下,可以比常规组件多放置6%以上的电池片。
叠瓦技术优化了组件结构,大大减少了组件的内部损耗,大幅度提高了组件的输出功率。保证了组件封装过程中功率损失最小,有效降低了反向电流和组件产生热斑效应的影响,并具有良好的可靠性。
此外,叠瓦技术可融合多种电池片新技术如PERC、黑硅、HIT、N型等等,能够将高效光伏电池的性能发挥到极致。
叠瓦:一点不留片间距!
金教授
传统晶硅组件技术基本都采用传统金属焊带连接电池片,有其自身的缺陷。电池片间隙和栅线、焊带遮挡占用组件的受光面积,栅线及焊带的线损、受温度而热胀冷缩均对组件的转换效率和性能稳定性有较大的影响。
“日食”高效叠瓦技术是将电池片切片后,再用专用的导电胶把电池片连成串。并采用叠片的连接方式,这样做到了前后两片电池无间隙,充分利用了组件上有限的受光面积,输出更高功率,再加上叠瓦技术有效降低了组件内部损耗。最终,明显提升了叠瓦组件的转换效率。
在可靠性上,叠片的连接方式可分解电池片所受应力,比传统组件更好地承受机械载荷,且隐裂更少。此外,叠瓦组件抵抗阴影遮挡的能力更强、工作温度更低等。这些优势都保证了其可靠性。
“日食”高效叠瓦技术比传统组件产品功率高10%+,并不断刷新着最高功率纪录。
华为针对光伏逆变器提出了三个发展理念:
华为通过技术创新和坚持数字化、简单化和全球自动化运维的发展理念,打造了全球满意度最高的“智能、高效、安全、可靠”的智能光伏电站整体解决方案。
华为进入光伏行业后给整个行业带来了三点重要贡献:
近期,Wood Mackenzie Power&Renewables发布了2018年逆变器销量的统计数据,数据显示华为以22%的市场份额位居第一,同时根据IHS之前数据显示华为已经连续三年位居全球市场份额第一宝座。
华为光伏逆变器在过去的几十年的发展中,推动了数据与运维、智能光伏、电站全生命周期管理等发展新方向。华为通过 探索 、实践和整合,率先推出FusionSolar智能光伏系统以及一站式解决方案,并与其他行业厂商共同努力,让电站业主认可了逆变器在光伏电站体系中的核心地位。
从销量排名中我们不难发现,除了华为以外,中国的阳光电源、上能电气和固德威等企业也榜上有名,可喜可贺。
进入2019年,华为光伏逆变器继续砥砺前行。
4月2日,济南第十四届太阳能展上,华为推出了首款AI加持的分布式光伏逆变器SUN2000(5KTL-M0、6KTL-M0、8KTL-M0、10KTL-M0、12KTL-M0)系列。
根据华为官网的介绍,SUN2000系列的光伏逆变器得到了AI技术的助力,大数据功能可以主动分析低效器件,降低了运维的成本;智能IV诊断技术使电站维护走向自动化,无论是巡检还是全检,都将迎来革命性的转变。 此外,基于AI技术的智能拉弧检测AFCI功能,能够检测并判断电弧的产生,并有效切断并网开关,消除电弧,主动消除由光伏系统引发的火灾隐患,防患于未燃。而机器学习的人工智能技术引入,使逆变器不断累积检测出电弧的特征参数,从而优化和提高识别电弧的能力,更精准,可靠的检测出真实电弧,给你的电站加上一道安全的防护锁。
在大工程项目中,华为也与世界各地的行业巨头积极合作,推动新能源的开发。
近日,由印度最大的独立可再生能源生产商ReNew Power投资开发,位于印度Pavagada Solar Park的300MW光伏电站顺利并网。 该项目选用华为全系列的1500V智能光伏解决方案,是目前印度首个使用高效单晶PERC光伏组件+跟踪支架+智能组串逆变器的大型地面电站。项目最大的特点是,实现了智能与高效的完美融合,LCOE降低6%以上,助力印度率先实现平价上网。
除此之外,欧洲能源巨头、全球领先的电站开发与服务供应商BayWa r.e.在西班牙南部 Don Rodrigo 落地总容量为175MW的无补贴电站项目,全面采用华为1500V智能光伏解决方案。 2月22日沙特能源标杆企业ACWA POWER管理层随同沙特王储访华,并中沙投资合作论坛上与华为签署全球合作备忘录。双方将深入合作开发全球光伏市场,将人工智能、大数据、云计算等最新最尖端的技术应用到光伏电站项目中,以 科技 创新引领行业进步。 3月26日华为与泰国最具影响力的光伏电站运营商和投资商TSE签署全面合作协议,双方将在整个亚太地区智能光伏电站的建设展开深度合作,加速新能源行业智能化进程。
虽然,华为的逆变器产品得到了全球客户的肯定和信任,但是一些不可抗拒的因素一直在困扰这华为整个公司的产品。
继华为5G被某些国家禁用后,已经有官员呼吁禁用华为的光伏产品,他们表示,一旦大型光伏电站或者企业使用了华为的光伏产品,都很容易遭受到网络的攻击。根据报道,华为的光伏产品遍及美国目前大多数住宅和商用逆变器,有约超过80%的住宅逆变器和超过50%的商用逆变器是从中国进口,其中包含着不少来自华为的光伏逆变器。有分析指出,华为光伏逆变器凭借可靠性高、成本较低和效益较好的优点,迅速占领了美国市场,目前已达到20%的市场占有率。
不得不说,近年来的贸易保护主义和带有政治目的的打压都将会影响华为产品的销售,甚至彻底退出某个特定市场。不过,从华为的发展轨迹可以看出,这家公司仍然值得我们以及全球合作伙伴的信任,这场"禁售"表面上是困境,长远看来是一种可遇不可求的机遇。如果华为能够继续推出具有竞争力产品,这些禁售都将形同虚设,所谓的谣言也会不攻自破。