建材秒知道
登录
建材号 > 硫酸 > 正文

糖胺多糖类的化学性质是什么

生动的唇彩
顺利的鸭子
2023-01-27 08:33:44

糖胺多糖类的化学性质是什么?

最佳答案
害怕的芝麻
漂亮的小懒虫
2026-01-28 14:20:19

多糖是由多个单糖分子缩合、失水而成,是一类分子机构复杂且庞大的糖类物质。多糖 polysaccharide 凡符合高分子化合物概念的碳水化合物及其衍生物均称为多糖。有由一种类型的单糖组成的葡萄糖、甘露聚糖、半乳聚糖等(通常在英语的单糖词干上加上an这个词尾),由二种以上的单糖组成的杂多糖(hetero polysaccharide),含有氨基糖的葡糖胺葡聚糖等,在化学结构上实属多种多样。就分子量而论,有从0.5万个分子组成的到超过106个的多糖。由糖苷键结合的糖链,至少要超过10个以上的单糖组成的聚合糖才称为多糖。比10个少的短链的称为寡糖。不过,就糖链而论即使是寡糖,在寡糖上结合了蛋白质和脂类的,就整个分子而论,如果是属于高分子,则从广义上来看也属于多糖,因此特称为复合多糖(conjugated polysaccharide,complex poly-saccharide)或复合糖质(glycoconjugate)(糖蛋白、糖脂类、蛋白多糖)。多糖的生物学功能,通常具有贮藏生物能〔如:淀粉、糖原、菊粉(inulin)〕和支持结构〔如:纤维素、几丁质(chitin)、粘多糖〕的作用。但是,细胞膜和细胞壁的多糖成份不仅是支持物质,而且还直接参与细胞的分裂过程,在许多情况下成为细胞和细胞,细胞和病毒,细胞和抗体等相互识别结构的活性部位。生物合成通常是由结合在细胞膜质(高尔基体、原生质膜、粗面内质网等)上的转糖基酶进行。利用各种糖苷作为前体。在细菌细胞壁和聚多糖的生物合成中,多萜醇衍生物(特别是称为细菌萜醇的)作为中间体参与反应,关于动、植物某些多糖的合成也有类似的中间体的报道。另一方面,在分解过程中,有对糖链的糖排列次序和键的性质有特异性的多种糖苷酶参与。动物细胞中则多以溶酶体系统的酶存在。此外,常能看到因缺损这些酶中的某种所导致的遗传病。这是显示多糖代谢重要性的典型例子。

一、 均一性多糖

自然界中最丰富的均一性多糖是淀粉和糖原、纤维素。它们都是由葡萄糖组成。淀粉和糖原分别是植物和动物中葡萄糖的贮存形式,纤维素是植物细胞主要的结构组分。

1、 淀粉

植物营养物质的一种贮存形式,也是植物性食物中重要的营养成分。

① 直链淀粉

许多α-葡萄糖以α(1-4)糖苷键依次相连成长而不分开的葡萄糖多聚物。典型情况下由数千个葡萄糖线基组成,分子量从150000到600000。

结构:长而紧密的螺旋管形。这种紧实的结构是与其贮藏功能相适应的。遇碘显兰色

② 支链淀粉

在直链的基础上每隔20-25个葡萄糖残基就形成一个�8�4-(1-6)支链。不能形成螺旋管,遇碘显紫色。

淀粉酶:内切淀粉酶(α-淀粉酶)水解α-1.4键,外切淀粉酶(β-淀粉酶)α-1.4,脱支酶α-1.6

2、 糖元

与支链淀粉类似,只是分支程度更高,分支更,每隔4个葡萄糖残基便有一个分支。结构更紧密,更适应其贮藏功能,这是动物将其作为能量贮藏形式的一个重要原因,另一个原因是它含有大量的非原性端,可以被迅速动员水解。

糖元遇碘显红褐色。

3、 纤维素

结构:许多β-D-葡萄糖分子以β-(1-4)糖苷键相连而成直链。纤维素是植物细胞壁的主要结构成份,占植物体总重量的1/3左右,也是自然界最丰富的有机物,地球上每年约生产1011吨纤维素,经济价值:木材、纸张、纤维、棉花、亚麻。

完整的细胞壁是以纤维素为主,并粘连有半纤维素、果胶和木质素。约40条纤维素链相互间以氢键相连成纤维细丝,无数纤维细丝构成细胞壁完整的纤维骨架。

降解纤维素的纤维素主要存在于微生物中,一些反刍动物可以利用其消化道内的微生物消化纤维素,产生的葡萄糖供自身和微生物共同利用。虽大多数的动物(包括人)不能消化纤维素,但是含有纤维素的食物对于健康是必需的和有益的.

 4、 几丁质(壳多糖):

N-乙酰-�8�5-D-葡萄糖胺以�8�5(1,4)糖苷链相连成的直链。

5、 菊 糖 inulin

多聚果糖,存在于菊科植物根部。

6、 琼 脂 Ager

多聚半乳糖,是某些海藻所含的多糖,人和微生物不能消化琼脂。

几种均一多糖的结构、性质比较。

二、 不均一性多糖

不均一性多糖种类繁多。

有一些不均一性多糖由含糖胺的重复双糖系列组成,称为糖胺聚糖(glyeosaminoglycans,GAGs),又称粘多糖。(mucopoly saceharides)、氨基多糖等。

糖胺聚糖是蛋白聚糖的主要组分,按重复双糖单位的不同,糖胺聚糖有五类:

1、透明质酸

2、硫酸软骨素

3、硫酸皮肤素

4、硫酸用层酸

5、肝素

6、硫酸乙酰肝素

化学性质

多糖无甜味,在水中不能形成真溶液,只能形成胶体,无还原性,无变旋性,但有旋光性。

分类

均一多糖:由一种单糖分子缩合而成的多糖,叫做均一多糖。常见的有:淀粉、糖原、纤维素等。

不均一多糖:有不同的单糖分子缩合而成的多糖,叫做不均一多糖。常见的有:透明质酸、硫酸软骨素等。

生物学功能

某些多糖,如纤维素和几丁质,可构成植物或动物骨架。淀粉和糖原等多糖可作为生物体储存能量的物质。不均一多糖通过共价键与蛋白质构成蛋白聚糖发挥生物学功能,如作为机体润滑剂、识别外来组织的细胞、血型物质的基本成分等。

多糖类化合物广泛存在于动物细胞膜和植物、微生物的细胞壁中,是由醛基和酮基通过苷键连接的高分子聚合物,也是构成生命的四大基本物质之一。

20世纪50年代发现真菌多糖具有抗癌作用,后来又发现地衣、花粉及许多植物均含有多糖类化合物,并进行分离提纯,确定了其化学结构、物理化学性质、药理作用,尤其对多糖类化合物的抗肿瘤和免疫增强作用进行深入研究。

最新回答
简单的超短裙
聪慧的帆布鞋
2026-01-28 14:20:19

1、放在丙处。

2、说明的是鲨鱼有强大生命力的原因。是从三方面进行说明:一、鲨鱼有巨大的肝脏。二、鲨鱼体内有鲨烯,能抗癌。三、鲨鱼软骨中有一种抑制癌细胞生长的抑制血管生长因子。

3、鲨鱼软骨中有一种抑制血管生长因子,能阻止血管向癌细胞供血,从而阻止癌细胞分裂、生长和转移,所以鲨鱼不得癌症。

4、通过对鲨鱼生命力强大原因的研究,专家用鲨鱼软骨给癌症病人治病,科学家设想从鲨鱼软骨中提取“抑制血管生长因子”作为人类治癌良药。

5、科学家把鲨鱼放养在充满致癌物质——黄曲霉素的海水中,数年之久都不会使其体细胞发生癌变。有人将致病菌和癌细胞接种于鲨鱼体内,也出乎寻常地发现鲨鱼照样不患癌症。

6、“它”指鲨烯这种物质。

7、举例说明。

感动的路灯
标致的花卷
2026-01-28 14:20:19
(一)发病原因

肾结石的形成过程是某些因素造成尿中晶体物质浓度升高或溶解度降低,呈过饱和状态,析出结晶并在局部生长,聚集,最终形成结石,在这一过程中,尿晶体物质过饱和状态的形成和尿中结晶形成抑制物含量减少是最重要的两个因素,

①过饱和状态的形成见于尿量过少,尿中某些物质的绝对排泄量过多,如钙,草酸,尿酸,胱氨酸和磷酸盐等尿pH变化:尿pH下降(<5.5)时,尿酸溶解度下降尿pH升高时,磷酸钙,磷酸氨镁和尿酸钠溶解度下降尿pH变化对草酸钙饱和度影响不大,有时过饱和状态是短暂的,可由短时间内尿量减少或餐后某些物质尿排量一过性增多所致,故测定24h尿量及某些物质尿排量不能帮助判断是否存在短暂的过饱和状态,

②尿中结晶形成的抑制物减少正常尿液中含有某些物质能抑制结晶的形成和生长,如焦磷酸盐抑制磷酸钙结晶形成黏蛋白和枸橼酸则抑制草酸钙结晶形成,尿中这类物质减少时就会形成结石,

③成核作用同质成核指一种晶体的结晶形成,以草酸钙为例,当出现过饱和状态时这两种离子形成结晶,离子浓度越高,结晶越多越大,较小结晶体外表的离子不断脱落,研究提示只有当含100个以上离子的结晶才有足够的亲和力使结晶体外表离子不脱落,结晶得以不断增长,此时所需离子浓度低于结晶刚形成时,异质成核指如两种结晶体形状相似,则一种结晶能作为核心促进另一种结晶在其表面聚集,如尿酸钠结晶能促进草酸钙结晶形成和增长,尿中结晶形成后如停留在局部增长则有利于发展为结石,很多结晶和小结石可被尿液冲流而排出体外,当某些因素如局部狭窄,梗阻等导致尿流被阻断或缓慢时,有利于结石形成。

1.影响结石形成的因素包括:

(1)尿液晶体物质排泄量增高

①高钙尿:正常人每天摄入25mmol钙和100mmol钠时,每天尿钙排量<7.5mmol(或0.1mmol/kg)每天摄入10mmol时,尿钙排量<5mmol,持续高钙尿是肾结石患者最常见的独立异常因素,所引起的结石多为草酸钙结石,纠正高钙尿能有效防止肾结石复发,因此高钙尿在肾结石发病中起非常重要的作用,按其发病机制可分为下列四种类型。

A.吸收性高钙尿:最常见,见于20%~40%的肾结石患者,其病因多为一些肠道疾病(如空肠)引起肠道钙吸收增多,血钙升高,抑制甲状旁腺激素(PTH)分泌,由于血钙升高导致肾小球滤过钙增多,PTH减少导致肾小管重吸收钙减少,造成尿钙增多,使血钙恢复正常,钙摄入增多,VitD中毒和结节病引起的VitD增多,也可导致吸收性高钙尿,此类患者由于代偿性钙排泄增多,血钙浓度常在正常范围。

B.肾性高钙尿:系特发性高钙尿的一种,约占肾结石患者的1%~3%,由于肾小管尤其是近端小管功能异常,导致重吸收钙减少,此类患者常发生继发性甲状旁腺功能亢进,PTH分泌增多而1,25(OH)2VitD3合成也增多,从而骨钙动员和肠钙吸收均增加,患者血钙常可正常。

C.骨吸收性高钙尿:主要见于原发性甲状旁腺功能亢进,约占肾结石患者的3%~5%而原发性甲旁亢患者10%~30%并发肾结石,另外尚见于甲状腺功能亢进,转移性骨肿瘤,长期卧床所致的骨质吸收和库欣氏综合征。

D.不伴PTH升高的饥饿性高钙尿:约见于5%~25%的肾结石患者,某些因素如肾磷排泄增多引起低磷血症而导致1,25(OH)2VitD3合成增多,后者抑制PTH分泌,从而增加尿钙排泄。

②高草酸尿:正常人每天尿草酸排量为15~60mg,草酸是除钙以外肾结石的第二重要组成成分,但大多数草酸钙肾结石患者并没有草酸代谢异常,高草酸尿多见于肠道草酸吸收异常,或称肠源性高草酸尿,占肾结石患者的2%,正常人肠腔内钙与草酸结合可阻止草酸吸收,回肠疾病(如回肠切除,空-回肠旁路形成术后,感染性小肠疾病,慢性胰腺和胆道疾病时)由于脂肪吸收减少,肠腔内脂肪与钙结合,因而没有足够的钙与草酸结合,导致结肠吸收草酸增多而未吸收的脂肪酸和胆盐本身还可损害结肠黏膜,导致结肠吸收草酸增多,另外在吸收性高钙尿时,由于肠吸收钙增多,也可引起草酸吸收增多,高草酸尿偶见于草酸摄入过多,VitB缺乏,VitC摄入过多和原发性高草酸尿,后者分Ⅰ型和Ⅱ型,Ⅰ型是由于肝脏内的丙氨酸-乙醛酸转氨酶(AGT)有缺陷引起的Ⅱ型则是肝脏D-甘油酸脱氢酶和乙醛酸还原酶不足导致尿草酸和甘油酸排泄增多,任何原因引起的高草酸尿可致肾小管及间质损害,导致肾结石。

③高尿酸尿:正常人一般每天尿酸排量≤4.5mmol,高尿酸尿是10%~20%草酸钙结石患者的唯一生化异常,有人称之为“高尿酸性草酸钙结石”,并作为一个独立的肾结石类型,另外40%高尿酸尿患者同时存在高钙尿症和低枸橼酸尿症,高尿酸尿症的病因有原发性及骨髓增生性疾病,恶性肿瘤尤其是化疗后,糖原累积症和Lesch-Nyhan综合征,慢性腹泻如溃疡性结肠炎,局灶性肠炎和空-回肠旁路成形术后等因素,一方面肠道碱丢失引起尿pH下降,另一方面使尿量减少,从而促使形成尿酸结石。

④高胱氨酸尿:系近端小管和空肠对胱氨酸,赖氨酸等转运障碍所致的遗传性疾病,由于肾小管转运障碍,大量胱氨酸从尿中排泄,尿中胱氨酸饱和度与pH有关,当尿pH为5时,饱和度为300mg/L尿pH7.5时,则饱和度为500mg/L。

⑤黄嘌呤尿:是一种罕见的代谢性疾病,因缺乏黄嘌呤氧化酶,次黄嘌呤向黄嘌呤及黄嘌呤向尿酸的转化受阻,导致尿黄嘌呤升高(>13mmol/24h),而尿尿酸减少,在应用别嘌呤醇治疗时,因黄嘌呤氧化酶活性受抑制而尿黄嘌呤增高,但在没有机体原有黄嘌呤代谢障碍基础的情况下,一般不致发生黄嘌呤结石。

(2)尿液中其他成分对结石形成的影响

①尿pH:尿pH改变对肾结石的形成有重要影响,尿pH降低有利于尿酸结石和胱氨酸结石形成而pH升高有利于磷酸钙结石(pH>6.6)和磷酸铵镁结石(pH>7.2)形成。

②尿量:尿量过少则尿中晶体物质浓度升高,有利于形成过饱和状态,约见于26%肾结石患者,且有10%患者除每日尿量少于1L外无任何其他异常。

③镁离子:镁离子能抑制肠道草酸的吸收以及抑制草酸钙和磷酸钙在尿中形成结晶。

④枸橼酸:能显著增加草酸钙的溶解度。

⑤低枸橼酸尿:枸橼酸与钙离子结合而降低尿中钙盐的饱和度,抑制钙盐发生结晶,尿中枸橼酸减少,有利于含钙结石尤其是草酸钙结石形成,低枸橼酸尿见于任何酸化状态如肾小管酸中毒,慢性腹泻,胃切除术后,噻嗪类利尿药引起低钾血症(细胞内酸中毒),摄入过多动物蛋白以及尿路感染(细菌分解枸橼酸),另有一些低枸橼酸尿病因不清楚,低枸橼酸尿可作为肾结石患者的唯一生化异常(10%)或与其他异常同时存在(50%)。

(3)尿路感染:持续或反复尿路感染可引起感染性结石,含尿素分解酶的细菌如变形杆菌,某些克雷白杆菌,沙雷菌,产气肠杆菌和大肠杆菌,能分解尿中尿素生成氨,使尿pH升高,促使磷酸铵镁和碳酸磷石处于过饱和状态,另外,感染时的脓块和坏死组织等也促使结晶聚集在其表面形成结石,在一些肾脏结构异常的疾病如异位肾,多囊肾,马蹄肾等,可由于反复感染及尿流不畅而发生肾结石,感染尚作为其他类型肾结石的并发症,而且互为因果。

(4)饮食与药物:饮用硬化水营养不良,缺乏VitA可造成尿路上皮脱落,形成结石核心服用氨苯蝶啶(作为结石基质)和醋唑磺胺(乙酰唑胺),另外约5%肾结石患者不存在任何生化异常,其结石成因不清楚。

2.肾石很少由单纯一种晶体组成,大多有两种或两种以上,而以其中一种为主体,90%肾石含钙质,如草酸钙,磷酸碳酸钙和磷酸铵镁,不含钙的结石由尿酸和胱氨酸形成的核心,在X线片上绝大多数含钙肾石能显影,结石在X线上的密度以及其表面光滑或不规则程度,对判定结石成分有帮助。

(1)草酸钙肾石:最为常见,占71%~84%,尿中单水草酸钙结晶常与红细胞相似,亦可呈哑铃状,形状和大小具双折光性,而二水草酸钙结晶呈双锥体状,弱双折光性,结石呈球形,椭圆形,菱形或桑葚状,深褐色,质甚坚硬,表面粗糙,故易损伤组织引起血尿,多见于碱性尿,有时可形成小球形而边缘光滑的结石,可见球状分层,极易合并输尿管梗阻,结石也可呈树状排列或单独存在,X线特征为肾石中有较深的斑纹,边缘不规则,有时呈肾盂或肾盏外形。

(2)磷酸钙和碳酸钙肾石:磷酸钙结晶无定形,且因太小不能确定其折光性,结石颗粒状,灰白色,在碱性尿液中可迅速增大,但单纯的罕见,多与草酸钙或磷酸铵镁混合成石,X线显影清晰,层状纹较明显,有时充填整个肾盂肾盏的腔隙,呈鹿角形。

(3)尿酸结石:占5%~10%,无水尿酸结晶很小,无定形,二水尿酸结晶呈“泪滴”状或方片状,具双折光性,结石呈圆形或椭圆形,表面光滑,橘红色,质坚硬,切面呈放射状排列,在酸性尿液中易发生,由于多数由单一尿酸组成,X线下显影较淡或不显影。

(4)胱氨酸肾石:约占1%,其结晶呈六角形状,结石淡黄色,表面光滑,质柔软,因含硫而在X线片上易显影。

(5)磷酸铵镁结石:增大较快,结石大多呈“鹿角”状,X线显影清晰,结石密度不均,尿内结晶呈长方体。

(二)发病机制

1.肾结石结石形成的有关学说

(1)肾钙斑学说:有学者曾多次报道在肾乳头发现钙化斑块,在1154个受检肾脏中占19.6%,65例结石在钙化斑上生长,因此推测钙化斑是结石发生的基础,从目前认识看,肾内钙化和微结石的成因可以是全身结石盐过饱和的一种表现(异位钙化),也可以是肾组织受各种因素作用导致坏死而钙化的原因,不论异位钙化还是肾损害,都与结石形成密切相关,但有这种病理损害者不一定都形成结石,而结石形成也并非必须以钙化灶为基础。

(2)尿过饱和结晶学说:该学说认为,结石是在尿液析出结晶成分基础上形成的,有人单用过饱和溶液进行试验,其中不附加任何基质类物质,或用纤维薄膜除去尿中大分子物质也能形成人造结石,说明过饱和溶液可能为结石形成的机制之一。

(3)抑制因素缺乏学说:尿中抑制因素的概念最早来源于胶体化学,目前学者们对草酸钙,磷酸钙两种体系以及对同质成核,异质成核,生长,聚集各环节起抑制作用的低分子和大分子物质都做了比较系统的研究,尿抑制物活性测定的可重复性和可比性均明显提高,在此基础上有人还研究了人工合成抑制结石形成的药物。

(4)游离颗粒和固定颗粒学说:游离颗粒形成结石学说的看法之一是尿中结石成分饱和度提高,析出晶体后继续长大成为结石,游离颗粒在流经肾小管时不可能长大到足以阻塞集合管的程度,因此,必须有固定的颗粒才能长大成石,晶体在一定条件下可以大量聚集生长,也可以迅速聚集变为大的团块,借助黏蛋白黏附在细胞壁上,此外,肾小管损害也有利于晶体附着,颗粒在尿路中滞留是结石长大的重要因素。

(5)取向附生学说:大部分结石为混合性的,草酸钙结石常含羟磷灰石(或以此为核心),草酸钙结石以尿酸为核心的也不少见,另外在临床上不少患草酸钙结石的病人尿中尿酸也升高,用别嘌醇治疗可减少结石复发,取向附生学说认为,结石的各种晶体面的晶格排列相互间常有明显相似之处,两种晶体面如有较高的吻合性即可取向附生,取向附生的结果是在体外比较简单的液体实验中取得的,在复杂的尿液中,这种机制的重要性尚待证实。

(6)免疫抑制学说:该学说认为,结石的形成存在免疫和免疫抑制问题,感染或环境因素的作用可缩短或延长结石形成的潜伏期,一旦免疫系统受到激惹,淋巴细胞即产生抗体,由α-球蛋白转运并侵犯肾脏上皮细胞引起肾结石,这种学说亦有待证实。

(7)多因素学说:尿中存在各种分子和离子,互相吸引或相互排斥,由于尿液中的理化环境极为复杂,企图用一种学说或一种简单现象来说明结石的形成原理是困难的,至今,许多基础和临床的研究结果都更支持多因素学说,目前对结石形成的综合性研究已日趋深入,Robertson提出,结石形成的6个危险因素是:①尿pH值降低或升高均可能导致结石形成②尿草酸增高③尿钙增高④尿尿酸增加⑤尿中促进结石形成的物质增加,包括尿结晶增多,TH蛋白,细胞分解产物,磷脂,细胞及其碎片等⑥尿中抑制结石形成物质减少,包括焦磷酸盐,枸橼酸,镁离子,二磷酸盐等,最近,巨噬细胞和细胞生长因子在结石形成中的作用也受到关注。

2.结石形成的物理化学过程及影响因素从物理化学观点看,结石形成至少与3个因素密切相关:①尿液中结石盐过饱和②抑制物减少或促进物过多③尿路通畅性和黏膜表面性状异常。

(1)尿液晶体过饱和:尿液过饱和是结石形成的“能量”来源,尿液中结石盐的过饱和程度可以用结石盐离子活度积(activityproduct,AP)与溶度积(solubilityproduct,SP)之比来表示,它与形成固相的自由能(△G)有如下关系,即:△G=RT/n(AP/SP),式中R为热力学常数,T为绝对温度,当活度积低于溶度积时,尿液处于未饱和状态当活度积高于溶度积时,尿液处于过饱和状态,尿液中也常见到各种结石盐结晶,提示这些结石盐虽在尿液中呈过饱和,但不一定形成结石,说明尿液过饱和仅是结石形成的前提因素,因此,研究结石形成的动力学过程及影响这些过程的因素(如抑制物,促进物)较热力学过程更为重要。

(2)结石形成的动力学过程:尿液是一个十分复杂的物理化学体系,其中数种结石盐都可呈过饱和状态,究竟由尿液中析出何种晶体,则由热力学和动力学两方面来决定,结石形成的化学动力学过程主要包括:①成核,即指从过饱和溶液中形成固相的过程②生长,晶核成长包含两个基本过程,即溶质的运送(由溶液向晶体附近)和溶质结合到晶格中,即运送过程和表面作用过程,晶体生长的方式有多种类型,其中主要方式为螺旋生长和多核生长③聚集,固体粒子变大,不一定仅是晶体的生长,有时也由小颗粒的絮凝而构成较大团块④固相转化,尿液中有各种不同的固相物质,但其化学组成不同,或化学组成相同而水合程度不同,一般在动力学上有利而热力学上不利的条件下所形成的固相物质是不稳定的,结合的前身团块将依次转化形成稳定相,这种转化不仅是单纯的晶格转变,还包含其他一系列改变,如钙,磷比值和水合程度等化学反应。

在结石形成过程中,一旦大晶体形成,附着于尿路壁面,成核和聚集可能是一种快动力学过程,在过饱和尿环境中生成结石则可能是慢动力学过程,在结石中矿物质与基质共存,其成长过程中还会发生一系列脱水及态相转变过程,使结石结构趋于致密和坚硬。

(3)结石形成的促进物和抑制物:尿液的某种结石盐呈过饱和状态,但为什么结石仅发生于少数人的原因未明,结石病人尿液中可能存在抑制物缺乏或促进物过多,除此之外,还有天然及人工合成抑制物如某些中草药,人工半合成酸性黏多糖等。

3.结石基质与结石形成肾结石结石由结晶成分和有机物质(基质)构成,但基质对结石形成意义未明,大多数学者认为,基质决定结石结构,是形成结石的必需物质。

(1)糖胺聚糖对结石形成的影响:

①糖胺聚糖的构成:糖胺聚糖(glycosaminoglycans,GAG)又称为酸性黏多糖,GAG的分子量约为2~30kD,是细胞表面和结缔组织的重要成分,在调节细胞外液容量,电解质移动,钙在组织中的平衡和沉积(骨化或钙化等)和组织纤维化等方面起着重要作用,根据组成二糖单位的单糖不同可分为7种类型:透明质酸硫酸软骨素A硫酸软骨素B硫酸软骨素C硫酸类肝素肝素硫酸角质。

GAG的酸性羟基和己糖胺硫酸基带有负电荷,除透明质酸外,其他GAG均具有硫酸基,易与带有正电荷的钙结合,且与带有负电荷的草酸有拮抗作用,肝素和硫酸类肝素有多种不同的结构形式和不同功能,被硫酸化的GAG具有与蛋白结合的重要作用,参与水的分布调节,1个GAG可与数百个水分子结合,最近报道,尿中一部分GAG是以蛋白多糖的形式排泄,在结晶和结石形成过程中,GAG可能以蛋白多糖的形式参与反应。

②尿GAG的排泄:成人1天可产生250mgGAG,其中约10%从尿中排泄,正常成人血清中GAG约为2~3mg/L,其中主要成分为硫酸软骨素,尿中的GAG多为蛋白多糖分解酶的产物,经肾小球滤过或由肾小管分泌到尿中,其中一部分为蛋白多糖,60%左右的尿GAG为硫酸软骨素A,18%为硫酸角质,15%为硫酸类肝素,4%为透明质酸,2%为硫酸软骨素B,但无肝素。

③结石基质中的GAG:1956年,Boyce用EDTA将结石脱钙,从基质中提取GAG(主要以黏蛋白的形式存在),基质中碳水化合物成分约占1/3,蛋白质占2/3,1968年,在基质中发现己糖胺,从而确立了GAG的存在。

目前认为,不同种类结石的基质GAG种类不同,如-水草酸钙和尿酸结石基质中的主要成分是硫酸类肝素,二水草酸钙结石基质中的主要成分是硫酸类肝素和透明质酸,而磷酸钙结石则以透明质酸为主要成分。

④GAG对结石形成的影响:实验证明,硫酸软骨素A能抑制草酸结晶凝集,而硫酸类肝素和透明质酸对草酸钙结晶的凝集无抑制甚至有促进作用,硫酸类肝素和透明质酸浓度的增高对草酸钙结晶凝集的促进作用增大,硫酸类肝素对草酸钙结晶凝集的促进作用略大于透明质酸,而两者混合则有极强促进结晶凝集的活性。

(2)基质大分子物质对结石形成的作用:

①Tamm-Horsfall蛋白(THprotein,THP):THP是尿中存在的主要黏蛋白,由肾脏髓襻粗升支上皮细胞内高尔基体合成,可与钙结合,多数学者认为,TH蛋白既可抑制也可促进结石形成。

②肾钙素(nephrocalcin):多天门冬氨酸和多谷氨酸能抑制一水草酸钙结晶的生长,应用色谱层析技术可从人尿中分离提取出来,Nakagawa和Coe等经10余年的研究阐明了这一物质的本质,并命名为肾钙素(14kD酸性糖蛋白),其氨基酸组成的特点是富含天门冬氨酸和谷氨酸,而赖氨酸,精氨酸,酪氨酸,苯丙氨酸,色氨酸的含量极少,应用免疫组化将其定位于近端肾小管和髓襻上行支。

③晶体基质蛋白(crystalmatrixprotein,CMP):1991年,Ryall等从草酸钙结晶中提取了对草酸钙结晶具有强烈抑制作用的蛋白,并命名为CMP(31kD),其N端与人凝血酶原相同,C端为活性肽(类似于人凝血酶原活性肽),CMP对草酸钙结晶的生长凝集有强烈抑制作用,免疫组化发现,除肾小球外,肾单位的其他部分均存在CMP,免疫扫描电镜可见结晶表面也存在CMP,由于肾组织和尿中存在有CMP,所以其不仅来源于血液,也可能来源于肾脏的分泌。

④血清蛋白:Dussol等发现,血清蛋白与草酸钙结晶结合可进入结石基质,此外基质中尚含有α-球蛋白,偶含γ-球蛋白。

⑤骨桥素(osteopontine,OPN):OPN为一种糖蛋白,可将成骨细胞和羟基磷灰石连接,免疫组化发现,正常肾脏远端肾小管有散在的OPN,给大鼠服用乙醛酸制作肾结石模型时发现,随乙醛酸量增大,OPN含量增加,并使肾小管细胞肥大,空泡变性,继之钙盐沉积,形成结石核心,动物实验表明,PTH使肾组织中OPN的表达增加,肾积水,尿路感染时也可使OPN在肾组织中表达增加,雌激素可下调OPN的表达。

⑥钙防素(calprotection):肾脏钙防素可能主要由巨噬细胞分泌,存在于远端肾小管及其周围部位,肾脏形成结石时,局部的钙防素明显增多。

4.草酸代谢与结石形成在肾结石结石中,以草酸钙结石最为多见(约占80%),因此研究草酸钙结石的原因及其形成过程更具有实际意义。

(1)草酸的性质:草酸(HOOC-COOH)为简单的二羟基酸,草酸是很多植物,动物和微生物的一种代谢终产物,草酸在动物或植物体内以盐的形成存在,在自然界中最普通的形式是草酸钙,草酸钙构成植物的骨架或真菌的菌丝,但在动物(特别是人)体内往往是结石的生成因素。

(2)尿草酸的来源:约10%的尿草酸来源于日常饮食,其余来源于体内代谢,虽然饮食中的草酸仅占尿草酸的10%,但却是结石形成的重要原因,例如,阿拉伯人的饮食中草酸含量较多,钙含量少,因此尿中钙含量可以维持在一个较低的水平,由于尿草酸增加,所以结石的发病率显著增加,此外,在低钙饮食或空腹时,肠道对草酸的吸收显著增加一般进食后可见尿草酸增加由于季节变化,尿中草酸水平出现波动,即蔬菜上市较多的季节,尿中草酸水平增高。

肠源性高草酸尿症病人尿中的草酸主要来源于饮食,回肠切除或行空肠-回肠吻合术(肠间短路)后,脂肪吸收不良,肠道内脂肪酸增加,此时,肠道内的钙与脂肪酸结合形成粪石,与草酸结合的钙减少,可被吸收的游离草酸增多,因此服用钙剂可降低尿中草酸含量,然而,口服钙不应超过3.0g/d,否则尿钙可轻度升高,大量饮用矿泉水后,由于钙摄入增多,所以尿钙增多,而尿草酸却减少。

(3)尿草酸排泄的影响因素:

①钙的摄取:由于1,25-(OH)2D3和PTH的调节,所以即使增加钙的摄取量,肠道吸收的钙也不会过分增多,草酸在肠道的吸收缺乏这种反馈调节机制,若饮食中的草酸含量增多,肠道可吸收的游离草酸也增多,饮食中的草酸量可直接决定肠道吸收的草酸量,如果摄取的钙增多,草酸的吸收反而降低,一般认为,草酸从肾小球滤过,在近端肾小管分泌或重吸收,内源性草酸和由肠道吸收的草酸几乎均由肾脏排泄,同时服用乳酸钙和枸橼酸制剂可减少尿中草酸的排泄,因此,平时多进含钙饮食,对降低我国的结石发病率可能有重要意义。

②高蛋白饮食:近年来,尿路结石发生率急剧增加的原因主要与高蛋白饮食(尤其是动物蛋白的过量摄取)有关,所以,过量摄取蛋白质使尿中草酸增加,促进结石形成,高蛋白饮食促进结石形成的原因可能是:进食高蛋白饮食后,使尿中尿酸增多,尿液pH值下降,易导致草酸钙结石形成尿中尿酸增多使尿酸结晶形成增多,产生附生作用有助于形成尿酸与草酸钙的混合结石。

③高脂肪饮食:伊藤晴夫采用多变量分析摄入的营养物质与尿草酸的关系,结果发现,钙可减少尿草酸,而脂肪可提高尿草酸水平,由于摄入的脂肪未被完全吸收,肠道中残留的脂肪酸与钙结合,所以本应与草酸结合的钙减少,导致游离草酸增多而被肠道吸收,使尿草酸增多。

④肠道内草酸分解菌:从肠道内分离出可分解草酸的细菌(乳酸菌属的培菲康(bifidobacteriumbifidum-sine)和丙酸菌属的propionibacterium等),利用这些肠道细菌可探讨预防肾结石形成的新途径。

(4)草酸钙结石:肾结石结石的绝大多数为草酸钙结石,研究表明,草酸钙结石与以下因素有密切关系:①结石形成部位的高草酸环境②钙结合蛋白参与草酸钙结晶核心的形成③巨噬细胞和细胞因子的作用参与草酸钙结石形成④结石基质和尿中存在的草酸钙结石抑制物。

草酸钙结石形成的大致过程如下:在结石的致病因素条件(如高草酸尿,感染和肾积水)下,在远曲肾小管腔内或肾小管细胞内形成结晶,肾组织局部草酸浓度亦增高,前者使结晶继续生长,凝集,黏附,滞留在肾小管腔内上皮细胞并形成结石颗粒,后者诱发巨噬细胞聚集,吞噬草酸和草酸钙结晶,同时释放骨桥素和钙防素,在细胞因子的参与下,形成结石核心,并向管腔脱落,形成结石。

等待的黑猫
年轻的野狼
2026-01-28 14:20:19
第十九章 糖蛋白、蛋白聚糖和细胞外基质 大多数真核细胞都能合成一定类型的糖蛋白和蛋白聚糖,它们分布于细胞表面、细胞内分泌颗粒和细胞核内,也可被分泌出细胞,构成细胞外基质成分。糖蛋白和蛋白聚糖都由共价键相连接的蛋白质和糖两部分组成。糖蛋白分子中的蛋白质重量百分比大于糖,而蛋白聚糖中多糖链所占重量在一半以上,甚至高达95%,两者的糖链结构也不同。因此糖蛋白和蛋白聚糖在合成途径和功能上存在显著差异。 第一节 糖蛋白一、糖蛋白的结构组成糖蛋白分子中糖的单糖有7种:葡萄糖、半乳糖、甘露糖、N一乙酰半乳糖胺、N一乙酰葡糖胺、岩藻糖和N一乙酰神经氨酸。由这些单糖构成各种各样的寡糖可经两种方式与蛋白部分连接即N-连接寡糖和 O一连接寡糖,因此糖蛋白也相应分成N-连接糖蛋白和O-连接糖蛋白(-)N-连接糖蛋白1.糖基化位点:寡糖中的N-乙酰葡糖胺与多肽链中天冬酰胺残基的酰胺氮连接,形成N-连接糖蛋白。但是并非糖蛋白分子中所有天冬酰胺残基都可连接寡糖。只有特定的氨基酸序列,即Asn-X-Ser/Thr(其中x可以是脯氨酸以外的任何氨基酸)3个氨基酸残基组成的序列子才有可能,这一序列于被称为糖基化位点。l个糖蛋白子可存在若干个Asn-X-Ser/Thr序列子,这些序列子只能视为潜在糖基化位点。能否连接上寡糖还取决于周围的立体结构。2 .N-连接寡糖结构N-连接寡糖可分为三型;①高甘露糖型②复杂型 ③杂合型:这三型N-连接寡糖都有一个五糖核心,高甘露糖型在核心五糖上连接了2-9个甘露糖,复杂型在核心五糖上可连接入3、4或5个分支糖链,宛如天线状,天线末端常连有N-乙酰神经氨酸。杂合型则共有二者的结构。(二)O-连接糖蛋白 1. O-连接寡糖结构:寡糖中的N-乙酰半乳糖胺与多肽键的丝氨酸或苏氨酸残基的羟基连接形成O一连接糖蛋白。它的糖基化位点的确切序列子还不清楚,但通常存在于糖蛋白分子表面丝氨酸和苏氨酸比较集中且周围常有脯氨酸的序列中。O-连接寡糖常由N-乙酰半乳糖胺与半乳糖构成核心二糖,核心二糖可重复延长及分支,再连接上岩藻糖、N-乙酰葡萄糖胺等单糖。二、糖蛋白寡糖链的功能 许多执行不同功能的蛋白质都是糖蛋白,糖蛋白中的寡糖链不但能影响蛋白部分的构象、聚合、溶解及降解还参与糖蛋白的相互识别和结合等,这些作用是蛋白质和核酸不能取代的。(-)寡糖链对新生肽链的影响1.不少糖蛋白的N-连接寡糖链参与新生肽链的折叠并维持蛋白质正确的空间构象。如用核酸点突变的方法,去除某一病毒G蛋白的2个糖基化位点后,此G蛋白就不能形成正确的链内二硫键而错配成链间二硫键,空间构象也发生改变。运铁蛋白受体有3个N-连接寡糖链,分别位于Asn251, Asn317和Ans727。已发现Ans727连接有高甘露糖型寡糖链,与肽键的折叠和运输密切相关,Asn251连接有三天线复杂型寡糖链,此寡糖链对于形成正常二聚体起重要作用。可见寡糖链能影响亚基聚合。2.很多糖蛋白的寡糖链可影响糖蛋白在细胞内的分拣和投送。溶酶体酶合成后被运输至溶酶体内就是一个典型的例子。溶酶体酶在内质网合成后,其寡糖链末端的甘露糖在高尔基体内被磷酸化成6-磷酸甘露糖,然后与存在于溶酶体膜上的6-磷酸甘露糖受体识别并结合,定向转移至溶酶体内。若寡糖链末端甘露糖不被磷酸化,那么溶酶体酶只能分泌至血浆,而溶酶体内几乎没有酶,导致疾病产生。(二)寡糖链对糖蛋白生物活性的影响一般来说,去除寡糖链的糖蛋白,容易受蛋白酶水解,说明寡糖链可保护肽链,延长半衰期。不少酶属于糖蛋白,若去除寡糖链,并不影响酶的活性,但也有些酶的活性依赖其寡糖链,如β-羟β-甲戊二酰辅酶A还原酶去糖链后其活性降低90%以上,脂蛋白脂酶N-连接寡糖的核心五糖为酶活性所必需。 免疫球蛋白G也是N-连接糖蛋白,其糖链主要存在于Fc段,IgG的寡糖链与IgG结合于单核细胞或巨噬细胞上的Fc受体,对补体C1q的结合和激活以及诱导细胞毒等过程有关。若IgG去除糖链,其绞链区的空间构象进到破坏,上述与Fc受体和补作的结合功能就丢失。 (三)寡糖链的分子识别作用 寡糖链中单糖间的连接方式有l 2,1 3,1 4,l 6几种,又有α和β之分,这种结构的多样性是寡糖链起到分子识别作用的基础。如猪卵细胞透明带中分子量为5.5万的ZP-3蛋白,含有O-连接寡糖能识别精子并与之结合。受体与配体识别和结合也需寡糖链的参与。红细胞的血型物质含糖达80%-90%。ABO系统中血型物质A和B均是在血型物质O的糖链非还原端各加GalNAC或Gal仅一个糖基之差,使红细胞能分别识别不同的抗体,产生不同的血型可见糖链功能之奇妙。细菌表面存在各种凝集素样蛋白,可识别人体细胞表面的寡糖链结构,而侵袭细胞。第二节 蛋白聚糖 蛋白聚糖是一类非常复杂的大分子糖复合物。主要由糖胺聚糖共价连接于核心蛋白所组成。一种蛋白聚糖可含有一种或多种糖胺聚糖。糖胺聚糖是因为其中必含有糖胺而得名,可以是葡萄糖胺或半乳糖胺。糖胺聚糖是由二糖单位重复连接而成,不分支。二糖单位中除了一个是糖胺外,另1个是糖醛酸可以是葡萄糖醛酸或艾杜糖醛酸。除糖胺聚糖外,蛋白聚糖还含有一些N-或O-连接寡糖链。一、重要的糖胺聚糖体内重要的糖胺聚糖有6种;硫酸软骨素类、硫酸皮肤素、硫酸角质素、透明质酸、肝素和硫酸类肝素。除透明质酸外其他的糖胺聚糖都带有硫酸。硫酸软骨素的二糖单位由N-乙酰半乳糖胺和葡糖醛酸组成。硫酸角质素的二糖单位由半乳糖和N-乙酰葡糖胺组成。它所形成的蛋白聚糖可分布于角膜中,也可与硫酸软骨素共同组成蛋白聚糖聚合物分布于软骨和结缔组织。硫酸皮肤素分布广泛,其二糖单位与硫酸软骨素很相似,仅一部分萄糖醛酸为艾杜醛酸所取代,所以硫酸皮肤素含有两种葡糖醛酸。葡糖醛酸转变为艾杜糖醛酸是在糖链合成后进行,由差问异构酶催化。肝素的二糖单位为葡糖胺和艾杜糖醛酸,。肝素所连的核心蛋白几乎仅由丝氨酸和甘氨酸组成。肝素分布于肥大细胞内,有抗凝作用。硫酸类肝素是细胞膜成分,突出于细胞外。透明质酸的二糖单位为葡糖醛酸和N-乙酰萄糖胺。1个透明质酸分子可由50000个二糖单位组成,但它所连的蛋白部分很小。透明质酸分布于关节滑液、眼的玻璃体及疏松的结缔组织中。二、核心蛋白 与糖胺聚糖链共价结合的蛋白质称为核心蛋白。核心蛋白均含有相应的糖胺聚糖取代结构域,一些蛋白聚糖通过核心蛋白特殊结构域锚定在细胞表面或细胞外基质的大分子中。核心蛋白最小的蛋白聚糖称为丝甘蛋白聚糖,含有肝素,主要存在于造血细胞和肥大细胞的贮存颗粒中,是一种典型的细胞内蛋白聚糖。在溶液内蛋白聚糖象瓶刷:中心是核心蛋白,由于糖胺聚糖上羧基或硫酸根均带有负电荷,彼此相斥,糖胺聚糖链呈直线状,如鬃毛共价连接到核心蛋白的多肽链上。蛋白聚糖聚合物是细胞外基质的重要成分之一,由透明质酸长糖链两侧经连接蛋白而结合许多蛋白聚糖而成。三、蛋白聚糖的功能 1.蛋白聚糖最主要的功能是构成细胞间的基质 ,在基质中蛋白聚糖与弹性蛋白和胶原蛋白以特殊的方式相连而赋予基质以特殊的结构。基质中含有大量透明质酸,可与细胞表面的透明质酸受体结合,影响细胞与细胞的粘附、细胞迁移、增殖和分化等。2.由于蛋白聚糖中的糖胺聚糖是多阴离子化合物,结合Na+、K+,从而吸收水分子,糖的羟基也是亲水的,所以基质内的蛋白聚糖可以吸引、保留水而形成凝胶,①容许小分子化合物自由扩散而阻止细菌通过,起保护作用。②在结缔组织中能起机械性保护作用对于维持组织正常形态及抗局部压力也起着重要作用。3.硫酸肝素蛋白聚糖主要分布在细胞膜表面,也是细胞膜的成分,在细胞与细胞,细胞与环境识别中起重要作用。4.有些细胞还存在丝甘蛋白聚糖,它的主要功能是与带正电荷的蛋白酶、羧肽酶及组胺等相互作用,参与这些生物活性分子的贮存和释放。5. 蛋白聚糖的特殊作用:肝素是重要的抗凝剂,能使凝血酶原失活,抑制血小板聚集而起抗凝作用。肝素能促进毛细血管壁的脂蛋白脂肪酶释放人血,后者能水解血浆脂蛋白中的脂肪,促进血浆脂质的清除。在软骨中硫酸软骨素含量丰富,维持软骨的机械性能。角膜的胶原纤维间充满硫酸角质素和硫酸皮肤素,使角膜透明。 http://210.34.96.28/jpkc/sh/jianggao/jg_19.htm