建材秒知道
登录
建材号 > 硫酸 > 正文

亚硫酸氢盐处理过的DNA稳定吗

任性的水壶
坦率的水池
2023-01-27 06:22:37

亚硫酸氢盐处理过的DNA稳定吗

最佳答案
纯真的冰淇淋
含蓄的雪糕
2026-01-29 09:11:16

亚硫酸氢盐处理过的DNA稳定

普通的测序不能找到甲基化位点。 这里有几种常用的找甲基化位点的测序方法: 第一种是重亚硫酸盐测序。重亚硫酸盐使DNA中未发生甲基化的胞嘧啶脱氨基转变成尿嘧啶,而甲基化的胞嘧啶保持不变,行PCR扩增(引物设计时尽量避免有CpG,以免受甲基化因素的影响)所需片段,则尿嘧啶全部转化成胸腺嘧啶。最后,对PCR产物进行测序,并且与未经处理的序列比较,判断是否CpG位点发生甲基化。

最新回答
美丽的火车
冷静的故事
2026-01-29 09:11:16

基甲基化检测主要几种:

甲基化特异性PCR(Methylation-specific PCRMSP)

用亚硫酸氢盐处理基组DNA所未发甲基化胞嘧啶转化尿嘧啶甲基化胞嘧啶变;随设计针甲基化非甲基化序列引物进行PCR通电泳检测MSP扩增产物用针处理甲基化DNA链引物能扩增片段则说明该位点存甲基化;反说明检测位点存甲基化

2、亚硫酸氢盐测序(Bisulfite sequencing PCRBSP)

用亚硫酸氢盐处理基组DNA则未发甲基化胞嘧啶转化尿嘧啶甲基化胞嘧啶变随设计BSP引物进行PCR扩增程尿嘧啶全部转化胸腺嘧啶PCR产物进行测序判断CpG位点否发甲基化称BSP-直接测序PCR产物克隆至载体进行测序提高测序功率种称BSP-克隆测序

3、甲基化敏扩增态性

(Methylation-Sensitive Amplified Polymorphism,MSAP)

MSAP利用DNA甲基化敏两种同裂酶Hpa IIMsp I基组DNA进行酶切连接由于两种酶能够识别相同限制性酶切位点即CCGG位点DNA序列CCGG位点现同程度甲基化状态别两种酶识别产物式体现

4、焦磷酸测序(Pyrosequencing)

通准确定量单连续CpG 位点甲基化频率焦磷酸测序能检测并定量甲基化水平细微改变序列延伸程根据CT掺入量定量确定单位点C-T比例同位点甲基化变异能准确检测由于焦磷酸测序提供真实序列数据甲基化状态序列形式呈现

直率的百褶裙
独特的羽毛
2026-01-29 09:11:16

BGM=Back Ground Music,英文中意为背景音乐,指在动漫、游戏、电影、电视剧等多媒体产品中,作为背景衬托的音乐,通常是无人声的。真正意义上的 BGM起源于欧洲的戏曲,自电影有声化之后BGM得以迅速发展。以BGM指代此义,多出现在动画行业。动画界普遍认为,BGM是动画中不可或缺的一个重要组成元素,它不仅需要配合画面的情节发展,还必须有着自己独特的风格,是动画的润滑剂与推进器。

BGS为Bachelor of General Studies的缩写,译为基础学科学士学位,以工商管理专业为主。不同的领域有不同的解释。BGS是北京空港地面服务有限公司的简称,主要就是从事首都机场的地面服务,客运与货运,VIP和其他得特服工作。

ME的中文翻译是:

pron. 我(宾格)

n. 自我;极端自私的人;自我的一部分

Se是一个多义词,可以指一种化学元素,硒 元素周期表中位置:第34号元素,第4周期 第VI主族

也可以指系统架构师、SE = Solid Edge(三维计算机辅助设计软件)、SE = Searching Engine(搜索引擎)、SE = Software Engineering (软件工程)、SE =Sony Ericsson(索尼爱立信)等等

还有中文翻译的“色”。

拓展资料

网络语言是指产生并运用于网络的语言。网络语言是从网络中产生或应用于网络交流的一种语言,包括中英文字母、标点、符号、拼音、图标(图片)和文字等多种组合。这种组合,往往在特定的网络媒介传播中表达特殊的意义。20世纪90年代诞生初,网虫们为了提高网上聊天的效率或诙谐、逗乐等特定需要而采取的方式,久而久之就形成特定语言了。进入21世纪的10年来,随着互联网技术的革新,这种语言形式在互联网媒介的传播中有了极快的发展。目前,网络语言越来越成为人们网络生活中必不可少的一部分。但是要注意的是,部分网络语言并不符合我们现代汉语的语法规定,因此并不具备教学意义,不能引进教学领域。

丰富的香菇
高挑的保温杯
2026-01-29 09:11:16
http://www.ebiotrade.com/emgzf/genenews200404/gene5.htm您自己看吧!好多图片粘贴不过来,还不如你自己看。

一种全新的DNA甲基化研究方法——Pyrosequencing技术

DNA甲基化是一种表观遗传修饰,它是由DNA甲基转移酶(DNA methyl-transferase, Dnmt)催化S-腺苷甲硫氨酸作为甲基供体,将胞嘧啶转变为5-甲基胞嘧啶(mC)的一种反应,在真核生物DNA中,5-甲基胞嘧啶是唯一存在的化学性修饰碱基。CG二核苷酸是最主要的甲基化位点,它在基因组中呈不均匀分布,存在高甲基化、低甲基化和非甲基化的区域,在哺乳动物中mC约占C总量的2-7%。一般说来,DNA的甲基化会抑制基因的表达。DNA的甲基化对维持染色体的结构、X染色体的失活、基因印记和肿瘤的发生发展都起重要的作用。

CpG双核苷酸在人类基因组中的分布很不均一,而在基因组的某些区段,CpG保持或高于正常概率,这些区段被称作CpG岛。CpG岛主要位于基因的启动子和第一外显子区域,约有60%以上基因的启动子含有CpG岛。 CpG甲基化的研究在肿瘤的研究中有着非常主要的地位。通过基因启动子区及附近区域CpG岛胞嘧啶的甲基化可以在转录水平调节基因的表达,从而引起相应基因沉默,去甲基化又可恢复其表达。DNA甲基化在生理情况下就参与了控制基因的时空表达,在肿瘤发生时,肿瘤细胞全基因组低甲基化是一个重要特征。肿瘤细胞基因组甲基化的程度与正常细胞相比仅为20-60% , 同时伴有局部区域基因的高甲基化,包括肿瘤抑制基因、抑制肿瘤转移和浸润的基因、细胞周期调节基因、DNA修复基因、血管形成抑制基因等。但是目前研究手段的局限,限制了DNA甲基化的广泛研究。

近年来,研究者不断探索定性及定量检测单个或多个甲基化位点的方法,但由于甲基化多态性区域存在的密度很高,所以对于延伸反应其引物的位置很难设计。Pyrosequencing技术作为一种新的序列分析技术,能够快速地检测甲基化的频率,对样品中的甲基化位点进行定性及定量检测,为甲基化研究提供了新的途径。

从原理上来看,Pyrosequencing是一种通过合成方法进行序列分析的方法,它通过核苷酸和模板结合后释放的焦磷酸引发酶级联反应,促使荧光素发光并进行检测。这项技术曾经被用作单核苷酸多态性(SNP)的基因型和单倍型的检测,以及细菌和病毒的鉴定和分型研究。这项技术的一个主要特点是在Pyrogarm™软件上显示的峰值高度来自于序列分析的原始数据,通过峰值的高度可以精确的检测混合DNA模板中等位基因的频率。

目前甲基化研究方面,很多甲基化定量分析的报道采用亚硫酸氢盐处理甲基化样本,并用混合的PCR产物

作为校正。其主要原理是:亚硫酸氢盐可以将没有甲基化的胞嘧啶转化为尿嘧啶,而在适当的实验条件下甲基化的胞嘧啶保持不变。因而,用它处理样本后,再进行PCR扩增,甲基化的位点可以被当作一个C/T的SNP来处理,它的基因频率为0-100%。在此,我们给大家介绍一个研究人员使用Pyrosequencing技术分析并精确定量DNA甲基化水平的例子。

研究者在一个Pyrosequencing反应中同时检测了6个甲基化位点。这种方法同样可以用于石蜡包埋的组织,并且具有较高的重复性和精确性。实验选择谷胱甘肽-S-转移酶π(GSTP1)转录启动位点的CpG岛进行检测。这些位点在正常前列腺组织中是非甲基化的,而在肿瘤样本中高甲基化。通过PCR扩增一个包含17个甲基化多态位点140bp的片段,并用4个测序引物研究其中15个位点(Table 1)。使用在线的SNP测序引物设计软件(Pyrosequencing AB)设计测序引物,其中一些甲基化多态性位点用最可能的碱基所代替,以减少计算的数量。再通过人工检测测序引物可能存在的错配。此外,同时在PSQ 96MA DNA分析仪上运行空白对照,扣除由测序引物、生物素标记的引物或是模板引起的背景。

PCR引物设计完全与模板相匹配,不覆盖任何甲基化多态性区域。使用10ng亚硫酸氢盐转化的DNA样本或是10 fmol纯化的PCR产物,10 pmol 正向(5’-GTGATTTAGTATTGG-3’)和反向(5’-biotin-AACTCTAAACCCCATC-3’)引物扩增GSTP1转录启动位点的基因片段,扩增片段长度为144bp。反应体系为60 mM Tris-SO4, pH 8.9, 18 mM (NH4)2SO4, 1 mM MgSO4, 200 μM dNTPs,以及3 U Platinum Taq DNA高保真聚合酶,终体积为50μL。PCR循环设置:首先在95℃下变性4分钟,然后在95℃ 30S,50℃ 45S以及72℃ 20S条件下重复50个循环,最后一步延伸步骤在72℃下4分钟,中止反应。PCR反应在Eppendorf的Mastercycler 96

哺乳动物基因组中,DNA甲基化是指CpG二核苷酸中的胞嘧啶第5位碳原子被甲基化. DNA甲基化是一种基因外修饰,不改变DNA的一级结构他在细胞正常发育、基因表达模式以及基因组稳定性中起着至关重要的作用. 全基因组低甲基化,维持甲基化模式酶的调节失控和正常非甲基化CpG岛的高甲基化是人类肿瘤中普遍存在的现象. DNA高甲基化是导致抑癌基因失活的又一个机制.

http://www.wjgnet.com/1009-3079/abstract_cn.asp?f=1420&v=11

美好的小鸭子
傻傻的眼神
2026-01-29 09:11:16

DNA甲基化分析是NGS技术中越来越广泛的一项应用。原因很简单:DNA甲基化是表观遗传修饰的主要机制之一,对基因表达和细胞活性有根本的影响。这是研究细胞发育、转录沉默和发现新的生物标志物的一个有趣的方面。

基于NGS的DNA甲基化分析的目的是研究基因组DNA,发现基因组中单个胞嘧啶或整个区域是否甲基化,因为启动子或gene body甲基化会影响基因表达。典型地,在哺乳动物中,DNA甲基化只出现在CpG二核苷酸上,其甲基化率为70 - 85%,而CpG岛则主要是未甲基化的C以保持活性。顺便提一下:在人类中,大约70%的启动子含有一个CpG岛。

目前有几种研究DNA甲基化的方法,但很少能像亚硫酸氢盐测序(也称为Bisulfite-Seq,BS-Seq或Methyl-Seq)一样提供更好的甲基化状态分辨率。这种方法的关键idea是 将高通量DNA测序的能力与亚硫酸氢钠处理DNA相结合 。当暴露于亚硫酸氢盐中,未甲基化的胞嘧啶(C)转化为尿嘧啶(U),而甲基化的胞嘧啶(包括甲基化的和羟甲基化的)保持不变(图1)。bisulfite处理的DNA测序后,获得的测序reads可以使用专门的比对软件将其比对到原始参考基因组上(图2)(将未甲基化的胞核嘧啶进行转化)。然后,这种比对可以用类似于从NGS数据中检测DNA变异的方式在单核苷酸水平上识别甲基化状态。因此,重要的是要记住 亚硫酸氢盐测序不能区分5-甲基胞嘧啶(5mC)和5-羟甲基胞嘧啶(5hmC) ,即使它们的功能已经被发现是不同的。

最简单的方法是做全基因组亚硫酸氢盐测序(WGBS)。但是,你需要足够的read深度来准确的判断甲基化状态。当你要进行的测序是基于一个大基因组(小鼠或人)时,这可能导致测序的成本过高。

作为一种可选方法,你可以把检测DNA甲基化的重点放在基因组的一个特定子集上,从而减少实验的数据量和随后的成本。

一种流行的方法是Reduced Representation Bisulfite Sequencing (RRBS)。 RRBS的基本思想是获得基因组的“简化表示(reduced representation)” ,重点放在CpG岛上。这包括在裂解阶段添加限制性内切酶来消化DNA。通常, 使用的MspI酶是甲基化不敏感的 。它在5 ' -C^CGG-3 '位点剪切,由于基因组除启动子/CpG岛外,CpGs大量缺失,“简化表示”主要是只捕获这些启动子区域以供进一步分析。消化反应对两端都有CpG的DNA片段和大小不一的片段进行富集。然后填充片段末端并连接adapters。之后选择片段的大小,进行亚硫酸氢盐转换,并进行测序。

与切割同一位点的限制性内切酶有关。上面提到了,对于RRBS,你的序列总是从MspI限制性酶切位点开始,那么当你从那里对片段进行测序时,会得到重复的序列,因为它们总是由那些剪切位点开始的。如果你做了去重,你会把大量有用的reads都删掉了。但是,如果你做的是WGBS(全基因组甲基化测序),你的基因组是在随机的地方被剪切的,那么你就不会得到所有的reads都是相同的开头,除非他们是PCR duplicates。

参考:

1. https://www.ecseq.com/support/epigenetics/how-does-bisulfite-sequencing-wgbs-rrbs-work

2. https://github.com/RobertsLab/resources/issues/669

3. http://www.bioinformatics.babraham.ac.uk/training/Methylation_Course/BS-Seq%20theory%20and%20QC%20lecture.pdf