PA塑料流动性与粘度关系
塑料的成型加工大多是利用塑料在粘流状态下的变形与流动实现的。塑料的流动性是衡量塑料成型加工难易的一项指标。流动性好,塑料熔体容易充模,能获得大型薄壁和复杂的塑件。但流动性太好,又会出现溢料、塑料物理力学性能差的现象。
尼龙粘度和流动性的关系是尼龙的粘度越大流动性越差。分子量一般越高,尼龙粘度是溶解在浓硫酸或甲酸中测量的,加纤、阻燃加纤建议选择中低粘尼龙,做超韧尼龙,可以高低粘结合使用,尼龙一般是加纤改性使用的,有时候高粘这些微弱优势不能弥补其在成型加工和产品外观上的劣势。
粘度对尼龙的影响
粘度,是塑料加工性重要的基本概念之一,是对流动性的定量表示,这个也直接影响到吹塑尼龙的使用,因为低粘度尼龙或者常规尼龙流动性太好,不具备吹塑加工的条件。
影响粘度的因素主要有温度、压力、剪切速率以及相对分子质量,首先我们来看一下温度对粘度的影响,吹塑尼龙的粘度是剪切速率的函数,但是粘度也同时受到了温度的影响,只有剪切速率恒定的情况下,才可以真正研究温度对其的影响。
随着温度的提升,尼龙熔体的粘度呈指数函数方式下落,因为随着温度的提高,使得分子间的运动加快,分子链间的缠绕降低,分子之间的距离变大,粘度降低。易成型,制品收缩率大买回引发分解,温度太低,熔体粘度大,流动困难,成形性差,并且弹性大,也会使制品形状稳定性变差。
提高熔体温度。温度高,分子链活动性强,流动性自然提高。
降低材料分子量。分子量越大,分子链的活动性越差,流动性不好。降低分子量,可以提高分子链的活动性,提高流动性。
添加低熔点组分(根据制品需要,可以和本体材料相同的品种,也可以和本体材料不同的品种),与之共混。一般共混物的最佳加工温度会介于两种组分的温度之间,这样在相同的温度下可以提高流动性。
与之相对应的是剪切变厚的现象。但是常见的塑料熔体都呈现的是剪切变稀,也就是随着剪切速率的增加,熔体的粘度要降低,粘度降低有助于塑料熔体在模具型腔中的流动和填充。
注塑过程中塑料要通过料筒加热,然后经过注塑机的喷嘴,进入模具的主流道,流道以及模具的浇口,最后进入型腔。熔体经过各个部分的剪切速率和粘度关系如图5所示,该图表明,塑料熔体在料筒中粘度较高,流动速度也小,到达浇口后,由于浇口的收缩作用,使得熔体流动速度增加,增大了剪切速率,降低了熔体的粘度,有利于熔体的充模。宽MWD树脂比窄分布树脂剪切变稀程度大。
影响粘度的几个因素
粘度是塑料加工性最重要的基本概念之一,是对流动性的定量表示,影响粘度的因素有熔体温度、压力、剪切速率以及相对分子质量等,下面分别叙述。
(1)温度的影响 由前面的分析已经知道,塑料的粘度是剪切速率的函数,但是,塑料的粘度同时也受到温度的影响。所以,只有剪切速率恒定时,研究温度对粘度的影响才有实际意义。一般说,塑料熔体粘度的敏感性要比对剪切作用敏感强。研究表明,随着温度的升高,塑料熔体的粘度呈指数函数方式下降。这是因为,温度升高,必然使得分子间,分子链间的运动加快,从而使得塑料分子链之间的缠绕降低,分子之间的距离增大,从而导致粘度降低。易于成型,但制品收缩率大,还会引起分解,温度太低,熔体粘度大,流动困难,成型性差,并且弹性大,也会使制品的形状稳定性差。
但是不同的塑料粘度对于温度的程度不同。聚甲醛对温度的变化最不敏感,其次是聚乙烯、聚丙烯、聚苯乙烯,最敏感的要数乙酸纤维素,表1中列出了一些常用塑料对于温度的敏感程度。非常敏感的塑料,温控十分重要,否则粘度较大变化,使操作不稳定,影响产品质量。
表1 一些塑料粘度受温度的影响程度
塑料
CA
PS
PP
PE
POM
对温度敏感度
最高
较高
高
一般
差
在实用中,对于温度敏感性好的熔体,可以考虑在成型过程中提高塑料的成型温度来改善塑料的流动性能,如PMMA、PC、CA、PA。但是对于敏感性差的塑料,提高温度对于改善流动性能并不明显,所以一般不采用提高温度的办法来改进其流动特性。如POM和PE、PP等非极性塑料,即使温度升幅度很大,粘度却降低很小。还有,提高温度必须受到一定条件的限制,就是成型温度必须在塑料允许的成型温度范围之内,否则,塑料就会发生降解。成型设备损耗大,工作条件恶化,得不偿失。利用活化能的大小来表达物料的粘度和温度的关系,有定量意义。表2 为一些塑料在低剪切速率下的活化能。
表2 一些塑料的活化能 kJ/mol
塑料
HDPE
PP
LDPE
PS
ABS
PC
活化能
26.5~29.4
37.8~40
49.1
105
88.2~109.2
109.2~126
(2)压力的影响 塑料熔体内部的分子之间、分子链之间具有微小的空间,即所谓的自由体积。因此塑料是可以压缩的。注射过程中,塑料受到的外部压力最大可以达到几十甚至几百MPa 。在此压力作用下,大分子之间的距离减小,链段活动范围减小,分子间距离缩小,分子间的作用力增加,致使链间的错动则更为困难,表现为整体粘度增大。
但是不同塑料在同样的压力下,粘度的增大程度并不相同。聚苯乙烯(PS)对于压力的敏感程度最高,即增加压力时,粘度增加得很快。高密度聚乙烯与低密度聚乙烯相比,压力对粘度的影响较小,聚丙烯受压力的影响相当于中等程度的聚乙烯。
增加压力引起粘度增加这一事实表明,单纯通过增加压力去提高塑料熔体的流量是不恰当的。过高的压力不仅不能明显地改善流体的填充,而且由于粘度的增加,填充性能有时还会有下降的可能,不仅造成过多的功率损耗和过大的设备磨损,还会引起溢料和增加制品内应力等弊病。此外,压力过高,还会出现制品变形等注塑缺陷,导致功率的过度消耗。但压力过低则会造成缺料。
结合温度对于粘度的影响可以发现,在塑料的正常加工参数范围内,增加压力对塑料熔体粘度的影响和降低温度对于塑料粘度的影响效果相似。例如对于很多塑料,当压力增加到100 MPa时,其粘度的变化相当于降低温度30~50℃的作用。
几种塑料对于压力的敏感程度如表3所示。
表3 压力对塑料熔体粘度的影响
序号
名称
熔体温度/℃
压力变化范围/MPa
粘度增大倍数
1
PS
196
0~126.6
134
2
PS
180
14~175.9
100
3
PE
149
0~126.6
14
4
HDPE
14~175.8
4.1
5
LDPE
14~175.8
5.6
6
MDPE
14~175.8
6.8
7
PP
14~175.8
7.3
(3)剪切速率的影响 随着剪切速率的加大,塑料的粘度一般降低。但在剪切速率很低和很高的情况下,粘度几乎不随剪切速率变化而变化。
在温度和压力一定前提下,不同塑料粘度降低程度不相同。或者说,尽管大多数塑料熔体的粘度是随着剪切速率的增加而下降的,但是不同的塑料对剪切速率(切应力)的敏感程度是不一样的。
几种常用塑料的粘度对于剪切速率的敏感性如表4所示。
表4 塑料熔体粘度对剪切速率的敏感度
序号
塑料
敏感度
1
ABS(最敏感)
对剪切的敏感度依次降低
2
PC
3
PMMA
4
PVC
5
PA
6
PP
7
PS
8
LDPE(最不敏感)
这一点对使用的启示是:在一定的剪切速率范围内,提高剪切速率会显著降低塑料的粘度,改善其流动性能。尽管如此,宁可选择在熔体粘度对剪切速率不太敏感的范围进行工艺调整,否则因为剪切速率的波动,会造成加工不稳定和塑料制品质量上的缺陷。
(4)塑料结构的影响 对于塑料,在给定温度下,随着相对平均分子质量的增大,塑料的粘度增大。相对分子质量越大,分子间作用力越强,于是粘度也高。
塑料的相对分子质量越小,粘度对于剪切速率的依赖程度越小;分子量越大,粘度对于剪切速率的依赖程度越大。分子量分布宽的树脂和双峯分子量分布树脂熔体粘度低和加工性优良。因为低分子量链部分有利于提高树脂熔体流动性。
(5)低分子量添加剂的影响 低分子可降低大分子链间的作用力,起“润滑”作用因而使熔体粘度减少,同时降低了粘流化温度。如加入增塑剂和溶剂,使树脂易于充模成型。
表5 常用塑料改进流动性能的方法
塑料
改进方法
塑料
改进方法
PE
提高螺杆速度
PS
选非结晶型牌号
PP
提高螺杆速度
ABS
提高温度
PA
提高温度
PVC
提高温度
POM
提高螺杆速度
PMMA
提高温度
PC
提高温度
总之,聚合物熔体粘度的大小直接影响注射成型过程的难易。如控制某塑料成型温度在其分解温度以下,剪切速率为103秒-1时,熔体粘度为50~500帕-秒,注射成型较容易。但如果粘度过大,就要求有较高的注射压力,制品的大小受到限制,而且制品还容易出现缺陷;如果粘度过小,溢模现象严重,产品质量也不容易保证,在这种情况下要求喷嘴有自锁装置
熔融指数是表示塑胶材料加工时的流动性的数值。它是美国量测标准协会(ASTM)根据美国杜邦公司(DuPont)惯用的鉴定塑料特性的方法制定而成。其在塑料成型工艺中的意义:表示挤出的各段试样的平均重量折算为10分钟的挤出量。
也即熔体每10 min通过标准口模毛细管的质量,用MFR表示,单位为g/10 min。熔体流动速率可表征热塑性塑料在熔融状态下的粘流特性,对保证热塑性塑料及其制品的质量,对调整生产工艺,都有重要的指导意义。
从体积的角度出发,对表征热塑性塑料在熔融状态下的粘流特性,对调整生产工艺,又提供了一个科学的指导参数。对于原先的熔体流动速率,则明确地称其为熔体质量流动速率,仍记为MFR。
扩展资料
国产各种型号的熔融指数测定仪虽有一些区别,但都是由主体和加热控制系统两部分组成。加热控制系统可自动将主体料筒内的温度控制在所设定的温度范围内,要求温度波动维持在0.8℃以内。
其料筒的加热器由两组加热元件组成,一组加热元件用来供给料筒处于没定温度所需90%的热量,电流供给是连续式的;另一组加热元件用来供给维持桶内温度处于波定温度波动范围内所需的热量。
砝码的质量负荷通过活塞杆作用在料筒中聚合物熔融试样上,并将聚合物熔体从毛细管压出。测试时每隔一定间隔用切刀切取从毛细管流出的聚合物熔体样条.并称量其质量,就可求得高聚物的熔融指数。
用测定法精确测定粘度函数是十分昂贵的,因而,对于大多数聚合物仅有熔体流动指数(MFI)可作为表征流动行为的指导数值,所以概略叙述已知熔流指数和软化温度对求取近似粘度函数的方法。然而,这种方法仅有助于估计,无论如何不能排除对许多待加工的聚合物尽可能进行准确的流变学测定的必要。
参考资料来源:百度百科-熔融指数