乙酸干与硝酸制混酸
用醋酸酐和发烟硝酸可以将羟基硝酸酯化。
主要试剂:苯胺,盐酸,三氯甲烷,浓硫酸,氯气(自制),乙酸酐,发烟硝酸,冰乙酸,氢氧化钠,四氯化碳,均为分析纯。
主要仪器:自动元素分析仪240B(美国PE公司),富里哀变换红外仪170SX(美国NICALET公司),X4型显微熔点测定仪常用玻璃容器。
1.2.2 N-硝基-2,4,6-三氯苯胺的合成
搅拌下将发烟硝酸缓慢滴入乙酸酐中(温度不高于18e),即生成乙酰硝酸(CH3COO-NO2)。然后将一定量2,4,6-氯苯胺用适量冰乙酸溶解,同时加入少量乙酸酐作催化剂。2,4,6-三氯苯胺、乙酸酐、发烟硝酸按1.0:1.7:1.5(摩尔比)投料,搅拌下慢慢滴加乙酰硝酸(控温8~10e),滴加完毕,在室温下继续搅拌0.5h,停止反应,将反应混合物倾入冰水中充分搅拌,抽滤。将滤饼溶于5%NaOH溶液中,抽滤除去不溶物,滤液用2mol/L盐酸中和至溶液呈酸性,此
时析出乳白色沉淀,减压抽滤,将沉淀水洗至中性,烘干。四氯化碳重结晶得纯品,产率85%。
三氯苯胺的元素分析为:分子式C6H4Cl3NW(C)理论值=36.64%(实测值36.59%)W(H)理论值=2.04%(实测值2.03%)W(N)理论值=71.2%(实测值7.09%)。从元素分析结果可知,实测值与理论值相符,推测产物分子式
应为C6H4Cl3N。用富里哀变换红外仪170SX(KBr压片)测得产品的IR谱如图1。3350cm-1为N-H伸缩振动,1615cm-1、1470cm-1为苯环骨架动,1075cm-1为伯胺C-N伸缩振动,858cm-1为四取代苯环弯曲振动特征吸收。产物熔点为79.5~78.5℃,与文献值(7815e)一致。
N-硝基-2,4,6-三氯苯胺的元素分析为:分子式C6H3O2N2Cl3W(C)理论值=29.81%(实测值29.80%)W(H)理论值=1.24%(实测值1.22%)W(N)理论值=1.159%(实测1.158%)。元素分析实测值与理论值相符。其IR光谱如图2。解析为:3212cm-1为N-H伸缩动,16.7cm-1、14.5cm-1为苯环骨架振动,1552cm-1为N-NO2反对称伸缩振动,1232cm-1为N-NO2对称伸缩振动,1319cm-1为仲胺C-N伸缩振动,884cm-1为四取代苯环弯曲振动特征吸收,821cm-1为N-O伸缩振动。产物熔点13810~13815e,与文献值3815e一致。说明目标化合物应是N-硝基-2,4,6-三氯苯胺。
2.2 反应条件对产率的影响
在2,4,6-三氯苯胺的合成过程中,干燥HCl和Cl2的量直接影响产率,故要提高产率,HCl和Cl2的量必须充足。其具体影响未作定量研究。在合成N-硝基-2,4,6-三氯苯胺的过程中,考察了2,4,6-三氯苯胺、乙酸酐、发烟硝酸的不同配比对产率的影响,最后确定三者按摩尔比1.0:1.7:1.5投料产物收率最高。且在生成乙酰硝酸的过程中,温度不能高于18e,温度过高会加快发烟硝酸中有效成分的挥发,影响硝化剂的生成,从而降低产率。一定量的三氯苯胺以冰乙酸溶解后,应加少量乙酸酐作催化剂,以吸收系统中可能存在的水分,避免硝化剂乙酰硝酸的分解。
乙酸酐中添加高锰酸钾的作用是消毒蔬果和餐具。消毒器具,可采用1∶1000的高锰酸钾粉浸泡15分钟,再用流水冲洗干净即可。瓜果蔬菜被细 菌污染后,用此浓度的溶液浸泡5分钟即可杀菌,而不改变果菜的色泽和味道。
但是甲烷不能直接被硝化,所以个人认为机理是硝化再脱羧,再硝化,下列过程供参考.
CH3COOCOCH3+3HNO3→C(NO2)3COOCOCH3+3H2O
C(NO2)3COOCOCH3+H2O→C(NO2)3COOH+CH3COOH
C(NO2)3COOH→CH(NO2)3+CO2↑
CH(NO2)3+HNO3=C(NO2)4+H2O
但是由于要确保无水氛围,醋酐过量,所以不建议写产生水,生成的水合醋酐反应产生醋酸,
【4(CH3CO)2O+4HNO3→C(NO2)4+7CH3COOH+CO2↑】
概念酸或碱脱水后生成的氧化物或羧酸的分子间和分子内缩水产生的有机化合物。无机含氧酸脱水后的二元氧化物称为酸酐,如SO3、N2O5、P4O10各为H2SO4、HNO3、H3PO4的酸酐。有的酸酐与水结合可以生成几种酸,如磷酸酐P4O10加不同数目的水分子,可以生成偏磷酸HPO3、三聚磷酸H5P3O10、焦磷酸H4P2O7、正磷酸H3PO4等。碱脱水后的二元氧化物称为碱酐,如CaO为Ca(OH)2的碱酐。有机羧酸间缩水可以得到有机酸酐。酐不是一种物质!
外观与性状:无色透明液体,有刺激气味,其蒸气为催泪毒气。
熔点(℃):-73.1
相对密度(水=1):1.08
沸点(℃):138.6
相对蒸气密度(空气=1):3.52
分子式:C4H6O3
分子量:102.09
饱和蒸气压(kPa):1.33(36℃)
燃烧热(kJ/mol):1804.5
临界温度(℃):326
临界压力(MPa):4.36
闪点(℃):49
爆炸上限%(V/V):10.3
引燃温度(℃):316
爆炸下限%(V/V):2.0
溶解性:溶于乙醇、乙醚、苯。 易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与强氧化剂接触可发生化学反应。 能使醇、酚、氨和胺等分别形成乙酸酯和乙酰胺类化合物。在路易斯酸存在下,乙酐还可使芳烃或烯径发生乙酰化反应。在乙酸钠存在下,乙酐与苯甲醛发生缩合反应,生成肉桂酸。缓慢溶于水变成乙酸。与醇类作用生成乙酸酯。
2CH3COOH
+
Na2CO3
=2CH3COONa
+
CO2
↑+
H2O
2CH3COOH
+
Cu(OH)2=Cu(CH3COO)2
+
2H2O
CH3COOH
+
C6H5ONa
=C6H5OH
(苯酚)+
CH3COONa
2)自己:乙酸的晶体结构显示,分子间通过氢键结合为二聚体
3)对于许多金属,乙酸是有腐蚀性的,例如铁、镁和锌,反应生成氢气和金属乙酸盐。因为铝在空气中表面会形成氧化铝保护层,所以铝制容器能用来运输乙酸。金属的乙酸盐也可以用乙酸和相应的碱性物质反应,比如最著名的例子:小苏打与醋的反应。除了醋酸铬(II),几乎所有的醋酸盐能溶于水。
Mg(s)+
2
CH3COOH(aq)→
(CH3COO)2Mg(aq)
+
H2(g)NaHCO3(s)+
CH3COOH(aq)
→CH3COONa(aq)
+
CO2(g)
+
H2O(l)
4)乙酸能发生普通羧酸的典型化学反应,特别注意的是,可以还原生成乙醇,通过亲核取代机理生成乙酰氯,也可以双分子脱水生成酸酐。
乙酸可以与乙醇在浓硫酸存在并加热的条件下生成乙酸乙酯(本反应为可逆反应,反应类型属于取代反应中的酯化反应)。
5)其他普通化学反应:
乙酸与碳酸钠:2CH3COOH+Na2CO3==2CH3COONa+CO2↑+H2O
乙酸与碳酸钙:2CH3COOH+CaCO3→(CH3COO)2Ca+CO2↑+H2O
乙酸与碳酸氢钠:NaHCO3+CH3COOH→CH3COONa+H2O+CO2↑
乙酸与碱反应:CH3COOH+-OH-=CH3COO-
+H2O
乙酸与弱酸盐反应:2CH3COOH+CO32-=2CH3COO-
+H2O+CO2↑
乙酸与活泼金属单质反应:Fe+2CH3COOH→(CH3COO)2Fe+H2↑
乙酸与氧化锌反应:2CH3COOH+ZnO→(CH3COO)2Zn+H2O
乙酸与醇反应(酯化反应):CH3COOH+C2H5OH→CH3COOC2H5+H2O(条件是加热,浓硫酸催化,可逆反应)
乙酸与锌反应:2CH3COOH
+Zn
→(CH3COO)2Zn
+H2↑
乙酸与钠反应:2CH3COOH+2Na→2CH3COONa+H2↑
求采纳。