草酸融于苯酚吗
不溶于苯,微溶于苯酚
无色单斜片状或棱柱体结晶或白色粉末、氧化法草酸无气味、合成法草酸有味。150~160℃升华。在高热干燥空气中能风化。1g溶于7ml水、2ml沸水、2.5ml乙醇、1.8ml沸乙醇、100ml乙醚、5.5ml甘油,不溶于苯、氯仿和石油醚。0.1mol/L溶液的pH值为1.3。相对密度(d18.54)1.653。熔点101~102℃(187℃,无水)。低毒,半数致死量(兔,经皮)2000mg/kg。
苯酚会与酸性高锰酸钾反应,两者结合,高锰酸钾溶液褪色。
苯酚在空气中很容易被氧化的,而酸性高猛酸钾是氧化性极强的物质,所以必然是会反应的,反应生成苯醌。
苯酚有腐蚀性,接触后会使局部蛋白质变性,其溶液沾到皮肤上可用酒精洗涤。小部分苯酚暴露在空气中被氧气氧化为醌而呈粉红色。遇三价铁离子变紫,通常用此方法来检验苯酚。
高猛酸钾与某些有机物或易氧化物接触,易发生爆炸,溶于水、碱液,微溶于甲醇、丙酮、硫酸。
扩展资料:
苯酚的制备
1、磺化法
以苯为原料,用硫酸进行磺化生成苯磺酸,用亚硫酸中和,再用烧碱进行碱熔,经磺化和减压蒸馏等步骤而制得。原料消耗定额:纯苯1004kg/t、硫酸(98%)1284kg/t、亚硫酸钠1622kg/t、烧碱(折100%)1200kg/t。
2、异丙苯法
丙烯与苯在三氯化铝催化剂作用下生成异丙苯,异丙苯经氧化生成过氧化异丙苯,再用硫酸或树脂分解。同时得到苯酚和丙酮。每吨苯酚约联产丙酮0.6t。原料消耗定额:苯1150kg/t、丙烯600kg/t,产率百分之七八十。
3、氯苯水解法
氯苯在高温高压371摄氏度下与苛性钠水溶液进行催化水解,生成苯钠,再用酸中和得到苯酚。
4、粗酚精制法
由煤焦油粗酚精制而得。
5、苯氧化法
苯在固体钼催化剂存在下,高温下进行氯氧化反应,生成氯苯和水,氯苯进行催化水解,得到苯酚和氯化氢,氯化氢循环使用。
参考资料来源:百度百科-苯酚
参考资料来源:百度百科-高锰酸钾
第二 通入托伦试剂 甲酸反应 加入FECL3或者溴水 苯酚反应 加入ZNCL2+HCL 醇反应 剩下来的就是苯甲酸
第三 加热 放出气体的是草酸 或者与KMNO4反应 使KMNO4褪色 丙二酸与尿素反应生成沉淀
,所以可以由强酸制得弱酸,H2C2O4+2NaHCO3=Na2C2O4+2H2O+2CO2
苯酚弱酸性,盐酸是强酸,从酸碱中和的角度是不会反应的。
苯酚易被氧化,但是HCl不具氧化性,从氧化还原的角度也不会。
因此,不存在这个反应。
1、苯酚的硝化反应
C₆H₅O⁻+CO₂+H₂O = C₆H₅OH+HCO₃⁻
2、苯酚与甲醛的反应,本质为缩聚反应,生产中用于制酚醛树脂。
C₆H₅OH + HCHO → C₆H₃OHCH₂ + H₂O
3、苯酚与溴的反应,生成三溴苯酚。
3Br₂+C₆H₅OH → (C₆H₅OH ) Br₃+3HBr
4、苯酚与氢氧化钠发生反应,生成苯酚钠和水。
C₆H₅OH +NaOH→C₆H₅ONa+ H₂O
苯酚的物理性质:苯酚在室温下微溶于水,能溶于苯及碱性溶液,易溶于乙醇、乙醚、氯仿、甘油等有机溶剂中,难溶于石油醚。
扩展资料
苯酚的使用:
1、苯酚常用于测定硝酸盐、亚硝酸盐及作有机合成原料等。 苯酚工业生产以异丙苯法为主,该法具有产品纯度高、原料和能源消耗低等优点,但其发展受联产物丙酮的制约。
2、苯酚是重要的有机化工原料,用它可制取酚醛树脂、己内酰胺、双酚A、水杨酸、苦味酸、五氯酚、己二酸、酚酞n-乙酰乙氧基苯胺等化工产品及中间体,在化工原料、烷基酚、合成纤维、塑料、合成橡胶、医药、农药、香料、染料、涂料和炼油等工业中有着重要用途。
3、苯酚还可用作溶剂、实验试剂和消毒剂,苯酚的水溶液可以使植物细胞内染色体上蛋白质与DNA分离,便于对DNA进行染色。
参考资料来源:百度百科-苯酚
强酸可以制弱酸,而弱酸在没有生成沉淀等的情况不能制强酸。
则就有:H2CO3可以制C65HOH,C6H5OH可以制HCO3-。而HCO3-不能制C6H5OH,C6H5OH也不能制H2CO3。
所以:C6H5ONa
+
H2O
+
CO2
----->
C6H5OH
+
NaHCO3(不可能是Na2CO3)
C6H5OH
+
Na2CO3
---->
C6H5ONa
+
NaHCO3(不可能是H2CO3)
若用离子方程式会更清楚地表明了以上规律:
C6H5O-
+
H2O
+
CO2
----->
C6H5OH
+
HCO3-
C6H5OH
+
CO32-
---->
C6H5O-
+
HCO3-
强酸制弱酸。
一、二元羧酸对硅酸盐单矿物的溶解作用
低分子量有机酸易溶于水,在水中可电离为羧酸阴离子。
实验是在高压聚乙烯塑料瓶中进行的。实验样品选用纯净石英和正长石颗粒,分别加入0.1mol/L草酸和0.1mol/L草酸钠溶液,模拟酸性和中性条件,在恒温水浴锅内,于80℃(±1℃)加热240小时。
实验结束后,取出固体颗粒。固体颗粒溶蚀前后称重,计算溶蚀量。溶蚀后颗粒作电子扫描显微镜观察,并与未溶蚀颗粒对照。溶液用等离子发射光谱分析硅、铝及主要阳离子含量(表9-1)。
表9-1 二元羧酸对单矿物溶解作用实验结果
注:元素分析由武汉工业大学测试中心完成。
实验表明,石英和正长石在纯水中是稳定的,较难发生溶蚀。但在草酸及其中性钠盐中,都能发生不同程度溶解。其中,2号石英样品在中性草酸钠溶液中比1号石英样品在酸性条件下的溶解度大,溶液中SiO2浓度从纯水→草酸溶液→中性钠盐溶液增高。
在酸性条件下,3号正长石发生了更为强烈的溶蚀,在长石向高岭石转化过程中,释放出游离硅酸,可以与羧酸阴离子形成水溶性配位化合物,又促进了长石的溶解。
轮南地区三叠系暗黑色泥岩热成熟过程中产生了丰富的有机酸。长石类矿物受到了来自暗黑色泥岩有机酸的更为强烈的溶蚀。
矿物表面发生的溶解除产生次生孔隙、增大总孔隙度外,对孔隙喉道的影响尤为重要。溶蚀作用可能使通道孔径加大,但是由于粘土的生成也可能阻塞通道。
二、有机酸对多矿物体系的溶解作用
用不同有机酸,包括氨基酸,对不同矿物组合进行了溶解实验,结果如下。
选用的氨基酸为常见D,L-α-丙氨酸。矿物组合比例为:石英:微斜长石:方解石=7∶2∶1(质量比),这一比例与塔里木盆地储层砂岩的矿物组成相接近。各种酸浓度均为0.05mol/L,用NaOH调节pH值至7。实验分为70℃和120℃两组,加热时间为240h,溶解后水溶液常量元素含量分析结果见表9-2。
表9-2 有机酸对多矿物溶解作用实验结果
①矿物:C—方解石;F—长石;Q—石英(下同)。②元素分析由湖北省水文地质工程地质实验室完成(下同)。
有机酸对混合矿物的溶解结果可以说明以下几点。
(1)实验过程中所有样品矿物颗粒都发生了不同程度溶解,表现为颗粒失重,溶液中SiO2和金属离子含量增加。
(2)比较方解石、长石与石英的失重量以及元素分析数据,可知多元组合矿物在有机酸作用下,最先发生溶解的是方解石,其次是硅酸盐矿物。
(3)假定以溶液中SiO2含量代表硅酸盐类的溶解程度,以Ca2+含量代表方解石的溶解程度,则在不同的温度下两类不同矿物的溶解度变化不同。硅酸盐在水中溶解度随温度升高而增加,碳酸盐岩的溶解度随温度升高略下降。
(4)不同有机酸对两类矿物溶解程度也有所差异。对石英和长石的溶解速度序列为:氨基酸>柠檬酸>草酸>乙酸>苯酚。对方解石,不同有机酸的溶解速率序列为:柠檬酸>氨基酸>苯酚>乙酸>草酸。这一序列与硅酸盐的溶解序列有所不同,原因是草酸不能与钙形成配位化合物,而是形成难溶的沉淀物,阻碍了方解石的继续溶解。不仅如此,来自长石溶解的Ca2+还可能沉淀在方解石颗粒表面,结果导致了实验中2号样品方解石颗粒相对质量的增加(表9-2)。
三、矿化度和CO2分压对矿物溶解的影响
用不同浓度NaCl溶液模拟不同矿化度,对石英和正长石进行了溶解实验,进行了不同CO2分压下不同有机酸对矿物的溶解实验。
实验一 用不同浓度NaCl溶液模拟不同矿化度卤水与石英和正长石的作用,温度为120℃,时间240h。实验后,对溶液中SiO2等元素的含量进行分析,结果列于表9-3中。
表中,对于石英样品,溶液中SiO2质量浓度随NaCl质量浓度上升而降低。加入了0.05mol/L乙酸,通常被认为能与SiO2形成配位化合物而促进矿物溶解,但由于NaCl的存在,NaCl-乙酸溶液中SiO2的质量浓度甚至低于纯水中的质量浓度。
长石在水中的溶解情况与石英不同。大体上,各元素含量(除Fe外)还是随NaCl的增加而下降,说明长石在溶解过程中,高质量浓度NaCl阻碍长石中金属离子向水中迁移是主要控制因素。在高质量浓度NaCl溶液中,Al3+受到Si—O—Al四面体晶格约束,因此Al3+质量浓度随NaCl质量浓度增加逐渐下降(表9-3)。
总而言之,如果不考虑有机质影响,由实验可知,高矿化度的卤水对硅酸盐矿物的溶解是不利的。
实验二 在100mL聚乙烯塑料瓶中,分别加入不同有机酸和矿物颗粒,并在两个塑料瓶中加入水和矿物颗粒作对照。实验结果见表9-4。
表9-3 模拟卤水NaCl浓度对矿物溶解影响
表9-4 CO2分压下矿物溶解实验
由实验可知,在低的CO2分压下(实验中瓶口与大气相通),方解石强烈溶解,使溶液中Ca2+浓度明显上升(33号样品,由于草酸钙难溶沉淀的生成,阻碍了方解石的进一步溶解,Ca2+降低),实验结束后,方解石颗粒几乎溶蚀殆尽。表中,SiO2以及Al3+等金属离子浓度有所增加,表明低的CO2分压也使硅酸盐出现部分溶蚀。这个现象与Surdam等(1984)总结的分解反应途径是一致的。在低的CO2分压下,碳酸盐岩发生溶解。当羧酸浓度大于碳酸根浓度时,无残留碳酸盐矿物,铝硅酸盐矿物出现溶蚀结构。
四、关于稠油砂岩松散化的模拟实验
根据塔里木盆地两种稠油储层的地质产状和岩石学及地球化学特征,我们设计并进行了两种模拟实验,以探讨在风化油藏条件下发生的两类原油生物降解作用及其对储层次生孔隙形成过程的影响。
(一)原油生物降解作用与砂岩溶蚀孔隙的形成
1.实验材料和方法
1)实验材料
油样 塔里木盆地轮南地区LN203井三叠系第Ⅰ油组(4746~4760m)褐色中质原油。
砂岩 塔里木盆地轮南地区LN2井三叠系灰色粉细砂岩。
合成水样 在1000mL蒸馏水中,加入NaNO31.0g,KH2PO40.4g,NA2SO40.2g。所用试剂均为分析纯,调节水样pH值至8.0左右。
含菌水样 取塔里木油污土壤(人工制备)5.0g,用100mL合成水样搅拌破碎混匀,静止沉淀。取出上清液经合成水样稀释10倍后作为含菌水样。用细菌测试瓶法测得该样中腐生菌数为106个/L。
2)实验方法
在250mL塑料瓶中加入油样12.0g,合成水样145mL,含菌水样5mL,砂岩样品1块(悬吊置于油水交界处),塞上棉塞,在HYA-Ⅱ型恒温摇床中进行恒温(30℃)充氧(转速为160r/min)培养,使原油发生生物降解。经14天培养后进行下列分析:①微生物作用前后油样的族组成分析及饱和烃气相色谱(GC)分析;②微生物作用后水样的pH值及铝、硅浓度测定;③微生物作用前后砂岩样品的扫描电镜(SEM)观察。
2.实验结果与讨论
(1)试验前后原油的族组成发生了明显变化:饱和烃含量明显降低,沥青质和非烃含量增加,芳烃含量相对增加。这与自然界原油遭受生物降解作用所发生的族组分变化相一致。微生物作用后,异构烷烃显著降低,正构烷烃大大增加,Pr/nC18则由0.55增加到1.68,增值达二倍多。由此可见,易遭受生物降解的正烷烃含量明显降低,而抗生物降解的异构烷烃和环烷烃含量则相对增加。
(2)原油的生物降解作用引起水溶液pH值明显下降,这是原油生物降解过程中产生有机酸等酸性物质所致。原油生物降解过程就是原油烃类的生物氧化过程。在充氧条件下微生物能彻底氧化原油烃类,最终生成二氧化碳和水。
(3)扫描电镜分析表明:原油降解后,砂岩溶蚀孔隙发育成浑圆状,这与原样(经合成水样浸泡14天)形成明显差别;通过原油生物降解作用产生的有机酸对砂岩中碳酸盐胶结物的溶蚀导致孔隙加大和遭清洗现象;此外,长石颗粒也有较轻微溶蚀现象,这与水溶液中铝、硅浓度增加相对应。
3.结论
在风化油藏环境中,靠近风化壳上部或断裂带,原油喜氧降解的作用最为强烈,持续的地质时间长,水动力条件较好,微生物代谢成因的有机酸充分溶解砂岩胶结物的矿物颗粒,进入水溶液的Ca、Mg、Al等金属离子和SiO2不断地被新注入的淡水稀释并向低能位运移。碳酸盐胶结物的大部分或全部溶解,最终导致储层砂岩的松散化。因此,稠油砂岩松散化是风化油藏中与微生物活动紧密相关的有机-无机相互作用的结果。
(二)细菌硫酸盐还原作用(BSR)与重晶石溶蚀孔隙的形成
塔里木盆地阿克苏地区肖尔布拉克下寒武统底部含磷岩系中存在含沥青(重油)的重晶石结核层,结核为椭球形,直径70~250mm不等,多为中心放射状集合体,沥青充填于解理、微裂隙和溶蚀孔隙中。针对溶蚀孔隙与高硫沥青、元素硫和黄铁矿之间有无成因关系的问题,设计了硫酸盐还原菌对重晶石的生物还原作用的模拟实验。
1.实验方法
1)实验材料
原油取自塔里木盆地LN2井中的TⅠ层(4740~4759m);重晶石切片用上述含沥青重晶石制得,置于油水界面处;实验所用水样在室内制备;硫酸盐还原菌(SRB)菌种从江汉油田回注水中分离得到。
2)实验步骤
实验设实验组和对照组。对照组除水样中不含SRB以外,其余与实验组相同。整个实验在封闭的广口试剂瓶中进行,试剂瓶置于恒温生化培养箱中。
2.实验结果及讨论
SRB在模拟油藏条件下与重晶石作用45天后,分别测定了作用前、后实验组和对照组水样中Ba2+的含量,测定结果见表9-5。
表9-5 Ba2+测定结果
注:由湖北省地质实验所检测。
实验结果表明,经硫酸盐还原菌(SRB)作用45天以后,含有重晶石光片的油水溶液中Ba2+浓度比对照组高5倍,说明在厌氧条件下,硫酸盐还原菌能利用水中的 离子,从而加速重晶石BaSO4在水中的溶解,最终导致重晶石溶蚀而产生次生孔隙。这与岩矿观察地球化学分析结果相一致。
苯酚与浓硫酸的反应是可逆的,且正逆反应都易进行(相较于苯)。高浓度硫酸促进正反应,而大量的水促进逆反应。
原因主要是中间体碳正离子向正逆反应的活化能很接近,离去H和离去SO3都很容易发生。
就单纯的将苯酚与浓硫酸混合,由于浓硫酸的强氧化性,苯酚被氧化生成苯醌等产物,颜色也变成橙至深红色。如果加热的反应更加复杂,除了上述生成物外,热浓硫酸的脱水吸水性使得苯酚分子间也会脱去一个水分子,生成二苯醚之类的,还有就是生成一些酚酯的物质。