歧化反应的原理是什么?
判断是否能发生岐化
对某一元素,其不同氧化数的稳定性主要取决于相邻电对的标准电极电势值。若相邻电对的Eθ值符合E右θ>E左θ,则处于中间的个体必定是不稳定态,可发生歧化反应,其产物是两相邻的物质。
这是很明显的, 如将两相邻电对组成电池, 则中间物种到右边物种的电对的还原半反应为电池正极反应,而到左边物种的反应则为负极反应。电池的电动势为Eθ=E右θ-E左θ,若E右θ>E左θ,Eθ>0,表示电池反应可自发进行,即中间物种可发生歧化反应。
若相反,E左θ>E右θ,则两边的个体不稳定,可发生逆歧化反应,两头的个体是反应物,产物是中间的那个个体。
求未知电对的电极电势
利用Gibbs函数变化的加合性,可以从几个相邻电对的已知电极电势求算任一未知的电对的电极电势。
典型例子如下图所示:
扩展资料
烯烃及烷基芳烃的歧化反应均为可逆反应,反应热很小,故温度对平衡组成影响不大,其平衡转化率一般为35%~50%(摩尔),通常工业上歧化反应可进行到接近平衡转化率。反应温度300~530℃、压力1~5MPa。
烷基芳烃歧化过程由于催化剂极易结焦,故常在加压及氢气存在下进行反应,称临氢歧化。也有在没有氢气存在下进行的常压歧化过程,催化剂需频繁再生。
由于芳烃歧化催化剂也能催化烷基转移反应,故甲苯歧化时,若原料甲苯中加入一定量碳九芳烃(主要是三甲苯),则通过歧化反应和烷基转移反应,可使产物中二甲苯与苯摩尔比在0.7~10的范围内变化,以提高生产的灵活性。
歧化反应的特点是副产物极少,且产物易分离,故产品纯度很高。
歧化反应多采用绝热式固定床反应器,当催化剂颗粒较小时,为了降低床层阻力和减少二次反应,也可采用径向固定床反应器。对于没有氢存在的常压歧化过程因催化剂需频繁再生,可使用移动床反应器。
参考资料来源:百度百科-元素电势图
参考资料来源:百度百科-歧化
歧化反应
定义:在反应中,若氧化作用和还原作用发生在同一分子内部处于同一氧化态的元素上,使该元
超氧化物歧化酶(SOD)
素的原子(或离子)一部分被氧化,另一部分被还原。这种自身的氧化还原反应称为歧化反应.
例如Cl2+H2O=HClO+HCl
此反应中Cl2原本是0价
反应后一个升为+1价,一个降为-1价
歧化反应是[1]化学反应的一种,反应中某个元素的化合价既有上升又有下降。与归中反应相对。
编辑本段
例子 1
氯气与氢氧化钠溶液在常温下反应,生成氯化钠、次氯酸钠和水。其离子方程式为:
Cl2 + 2OH− = Cl− + ClO− + H2O
氯气中氯的化合价为0。氯化钠中氯的化合价下降到-1;而次氯酸钠中氯的化合价则上升到+1。
而氯气和氢氧化钠溶液在高温下反应,生成氯酸钠、氯化钠和水。
这两个反应都是典型的歧化反应。
编辑本段
例子 2
在KClO3中,一部分氯(Ⅴ)被氧化为氯(Ⅶ)(ClO2);另一部分被还原为氯(I)(Cl)。发生歧化反应的原因是由于该元素具有高低不同的氧化态,可以在适宜的条件下同时向较高和较低的氧化态转化。
苯甲醛在氢氧化钾溶液中部分氧化为苯甲酸钾;部分还原为苯甲醇,也是歧化反应:
2C6H5CHO+KOH—→C6H5COOK+C6H5CH2OH
编辑本段
例子 3
甲苯在催化剂(一般采用硅铝催化剂)作用下,使一个甲苯分子中的甲基转移到另一个甲苯分子上而生成一个苯分子和一个二甲苯分子,这种反应称作歧化反应。一个甲苯与一个三甲苯也可发生歧化反应(亦称烷基转移反应)生成两个二甲苯分子。工业上用这个方法增产用途广泛的苯和二甲苯。
编辑本段
例子 4
再如过氧化钠吸收二氧化碳生成碳酸钠和氧气
2Na2O2+2CO2====2Na2CO3+O2
Na2O2的氧元素化合价为-1,而Na2CO3的氧元素为-2,O2中氧元素化合价为0
例子 5
没有α-氢原子的醛在强碱(浓)的作用下发生分子间氧化还原反应生成羧酸和醇,又叫康尼查罗反应
2HCHO + NaOH → CH3OH + HCOONa
2(CH3)3-CHO + NaOH → (CH3)3-CH2OH + (CH3)3-COONa
两种不同的无α-氢的醛发生交叉康尼查罗反应。一分子醛被氧化成羧酸,另一分子醛被还原成醇。理论上为4种产物。
归中反应
归中反应就是指同种元素的不同化合物发生氧化还原反应,那种元素的化合价向中间靠拢。
歧化反应刚好与归中反应相反,一种元素的化合价向两边散开,
不同价态的同种元素间发生氧化还原反应,其结果是两种价态只能相互靠近或最多达到相同的价态,而决不会出现高价态变低、低价态变高的交叉现象。——归中反应规律
价态归中是指,高价态的化合价降低,低价态的化合价升高,但不可能低的最后升的比原来高价态化合价还高。
归中现象:
1、氧化还原反应中的归中反应:
含有同一元素的不同价态的两种物质发生反应,生成只含有该元素中间价态的物质的反应叫做归中反应。发生归中反应的条件是要符合中间价态理论:含有同一元素的不同价态的两种物质,只有当这种元素有中间价态时,才有可能发生归中反应。而且高低价态变化的结果是生成该元素的中间价态。利用中间价态理论可以解释为什么二氧化硫可用浓硫酸干燥(因为不存在+5价的硫)。
C+CO2=2CO
SO2+2H2S=3S↓+2H2O
H2SO3+2H2S=3S↓+3H2O
H2S+3H2SO4(浓)=4SO2+4H2O
2Fe3++Fe=3Fe2+
6HCl+KClO3=KCl+3Cl2↑+3H2O
5NaBr+NaBrO3+3H2SO4=3Br2+3Na2SO4+3H2O
Ca(ClO)2+4HCl(浓)=2Cl2↑+CaCl2+2H2O
CuO+Cu=Cu2O
2Na+Na2O2=2Na2O
2.、复分解反应中的归中反应:
复分解反应的归中反应是指碱与多元酸反应,正盐与对应的酸式盐或酸反应,酸与对应的酸式盐反应,其中的氢原子数出现的归中现象,从而生成一种酸式盐的一类反应。其中反映的归中规律正是酸式盐的形成条件。
(1) 碱与多元酸反应:当多元酸过量时可形成酸式盐:
NaOH+H2S=NaHS+H2O;
H2SO4十NaOH=NaHSO4十H2O
(2) 多元酸与对应的正盐反应:
Na2S+H2S=2NaHS
CaCO3+H2O+CO2=Ca(HCO3)2
MgCO3+H2O+CO2=Mg(HCO3)2
Na2SO4+H2SO4=2NaHSO4
(NH4)2SO3+SO2+H2O=2NH4HSO3
Ca3(PO4)2+4H3PO4=3Ca(H2PO4)2
(3) 多元酸与对应的酸式盐
Na2HPO4+H3PO4=2NaH2PO4
(4) 正盐与对应的酸式盐:
NaH2PO4+Na3PO4=2Na2HPO4
如果把正盐和碱中所含的可电离的氢离子看成是零,那么,生成酸式盐的归中条件是:两种反应物组成上要相差两个或两个以上可电离的氢离子。如果两种反应物的组成相差两个以上可电离的氢离子(即三元酸与对应正盐或与碱反应),则生成物与反应物用量有关,但符合“显强性”原理,即生成物的组成接近于过量物的组成。
如 (注:n表示物质的量)
≤1,其反应为:H3PO4+NaOH=NaH2PO4+H2O
在1—2之间,其反应为:2H3PO4+3NaOH=NaH2PO4+Na2HPO4+3H2O
=2,其反应为:H3PO4+2NaOH=Na2HPO4+2H2O
在2—3之间,其反应为:2H3PO4+5NaOH=Na2HPO4+Na3PO4+5H2O
≥3,其反应为:H3PO4+3NaOH=Na3PO4+3H2O
又如
≥2,其反应为:2H3PO4+Na3PO4=3NaH2PO4
=1,其反应为:H3PO4+Na3PO4=NaH2PO4+Na2HPO4
≤ ,其反应为:H3PO4+2Na3PO4=3Na2HPO4
3.、双水解反应中的归中反应:
这类归中反应是指能形成两性化合物的元素所形成的两类盐溶液反应形成氢氧化物的一类反应。这是金属阳离子和该金属所生成的阴离子生成中性的氢氧化物沉淀的归中现象。如:
Al3++3 +6H2O=4Al(OH)3↓
Zn2++ +2H2O=2Zn(OH)2↓
“高价+低价→中间价”解释:
例:2H2S+SO2===3S+2H2O
此反应中,H2S中的S是-2价,SO2中的S是+4价,它们两者发生氧化还原反应后,生成0价的S和水
原则
归中反应中,若一种元素化合价有数种,任意价转换后不能超过(大于或小于)中间价,
如-2,0,+1,+2,+5,那么-2价的元素只能转换为0或+1,+5价的元素只能转换为+2或+1,0价的元素只能转换为+1,+2价的元素只能转换为+1,即
+1价在此反应中为中间价态,大于+1价的最多转化为+1价和原价之间的价,用区间表示为[+1,原价)
小于+1价的最多转化为+1价和原价之间的价,用区间表示为(原价,+1]
也就是任意价转换后不能超过(大于或小于)中间价
可以根据此原则判断电子转移
在浓碱如氢氧化钠作用下,发生 Cannizzaro 反应,生成苯甲醇和苯甲酸钠盐。这是歧化反应,一分子苯甲酸被还原,一分子甲醛被氧化。
机理是碱先于苯道甲醛的羰基发生亲核加成,然后碳上的氢带着一对电子以氢负内离子的方式转移给甲醛的羰基碳。所以在发生歧化反应后,苯甲醛被还原形成苯甲醇,而甲醛被氧化形成甲酸。
坎尼扎罗反应(Cannizzaro反应),是无α活泼氢的醛在强碱作用下发生分子间氧化还原反应,生成一分子羧酸和一分子醇的有机歧化反应。
意大利化学家斯坦尼斯劳·坎尼扎罗在1895年通过用草木灰处理苯甲醛,得到了苯甲酸和苯甲醇,首先发现了这个反应,由此而称坎尼扎罗反应。
不含α-氢原子的脂肪醛、芳醛或杂环醛类在浓碱作用下醛分子自身同时发生氧化与还原反应,生成相应的羧酸(在碱溶液中生成羧酸盐)和醇的有机歧化反应。
根据网上的资料,腾龙芳烃生产PX的原料是全馏分石脑油(96万吨/年)和减压馏分油(220万吨/年)。什么是全馏分石脑油?什么是减压馏分油?这要从石油的化学成分说起。
石油是一种主要由碳氢化合物(简称“烃”)组成的成分复杂的混合物。要想把石油用做化工原料,就必须把它“拆分”成一些组成成分相对比较简单的混合物。最简单、也是最常用的“拆分”方法,叫做分馏。它的原理很简单:石油的各个组分的沸点是不同的;把石油加热到一定温度,低沸点的组分就会先沸腾气化,而和母液分离,把这部分蒸气冷凝,就得到了一个低沸点的馏分;提高温度,较高沸点的组分又会接着沸腾气化,于是又可以分离出一个馏分……
现在在石油化工上,把常压沸点在60℃-220℃之间的馏分,统称为石脑油(英文为naphtha)。如果一个馏分正好将这个沸程内的全部组分都包括进去了,那就叫做“全馏分石脑油”。全馏分石脑油以直链烃类(即分子中的碳原子排成一条链而不是一个环)为主成分。
因为烃类分子中的碳原子数目越多,沸点越高,而且彼此越来越接近,所以对于石油中那些含碳更多的烃类,用常压分馏不易分开。但在减压的情况下,其沸点不仅大大降低,而且彼此的间隔拉大了,因而也就容易分开了。所谓“减压馏分油”,就是指的利用减压分馏得到的比石脑油更重的常温常压下呈液态的石油馏分,其主成分也是直链烃类。
直链烃类不能直接用于生产PX,因为PX是芳烃,分子中的碳原子排成环状而不是链状。所以,全馏分石脑油和减压馏分油都必须经过处理,才能用于生产PX,不过处理的方法不一样。对全馏分石脑油,采用的技术叫做“连续重整”,是用含铂的催化剂把直链烃类变成芳烃,得到的产品叫“重整生成油”。对减压馏分油,采用的技术叫做“加氢裂化”,是用加氢催化的方法,把其分子中较长的碳链打断成较短的两截或多截,生成小分子的烃类,得到的产品叫“裂化汽油”。所以,重整生成油和裂化汽油中芳烃的含量都大大提高了。
这两步工艺的主要副产物是氢、甲烷、乙烷和液化石油气,而这些都是重要的化工原料或燃料,所以化工厂是不会把它们白白浪费掉的。而且这些气体都是低毒的,否则,玩氢气球的小孩、生活在沼气池旁边的农民和使用液化石油气生火做饭的人可就都危险了!
2. 从重整生成油和裂化汽油到BTX
上文已述,重整生成油和裂化汽油中芳烃的含量都有所提高。得到这两样产品后,再经过一步分馏,专取其中含6个碳到8个碳(简作C6-C8,严格书写时,数字应写成下标的形式)的馏分,其中的主要成分基本就是苯、甲苯和二甲苯了。因为苯的英文是benzene,甲苯是toluene,二甲苯是xylene,所以三者合称BTX。再通过名为“抽提分离”的工艺,便可以把这三者分开。
这一步得到的主产物中,苯是著名的高毒性、高致癌性物质,甲苯和二甲苯的毒性都比较低,而且都没有证据表明它们是致癌物。副产物是C9以上的重油,则可以做为柴油使用。如果你不怕柴油味,那么你也不必怕这种副产的重油。
3. 从甲苯到苯和二甲苯
在BTX中,甲苯的需求量较少。为了得到更多的PX,需要把甲苯转化为二甲苯。这一步工艺叫做“甲苯歧化”,就是把两分子的甲苯变成一分子的苯和一分子的二甲苯。副产物是C9以上的芳烃,一般产量很少,分离出来之后如果不作为燃油添加剂,直接烧掉即可。
由此可知,腾龙芳烃生产的苯有两个来源,或者是从重整生成油和裂化汽油中直接分离得到,或者是通过甲苯歧化得到。腾龙芳烃规划的苯产量是22.8万吨/年。
4. 从二甲苯到PX
二甲苯是邻-二甲苯(英ortho-xylene,缩写为OX)、间-二甲苯(英meta-xylene,缩写为MX)和对-二甲苯(PX)三者的混合物。三者都是重要的化工原料,但PX的需求量最大,OX次之,MX很少。为了得到更多的PX,还要再通过名为“二甲苯异构化”的工艺,把MX和OX转化为PX。腾龙芳烃规划的PX产量是80万吨/年,OX产量是16万吨/年,不产MX。
MX和OX的毒性和PX相仿,都是低毒物质,没有致癌性,但有一定的致畸性。这一步的副产物有少量的苯、甲苯和C9以上的芳烃,其中苯、甲苯分离出来后可以直接导回“甲苯歧化”的反应塔中循环使用,C9以上的芳烃的处理则上文已述。
以上四步在生产上是连续进行的,前一步的产物马上就做为后一步的原料,所以完成这四步的化工装置是紧密连合成一体的,化工上叫“芳烃联合装置”,而不存在中间产物长途运输的问题。当然,还有一个重要的副产物需要提一下,这就是硫化氢。硫化氢不是在上述四步反应中生成的,而是全馏分石脑油和减压馏分油中的杂质硫形成的。硫化氢具有高毒性,并且是重要的大气污染物,所以芳烃联合装置产生的废气必须经过脱硫处理。
5. 从PX到PTA
从PX到PTA,需要两步。第一步是把PX氧化成粗对苯二甲酸,第二步是通过加氢精制,除掉其中的一种名为4-羧基苯甲醛的杂质,而得到PTA。第一步需要把PX溶解在乙酸中反应,还要使用溴化物作为反应的促进剂,反应中会生成副产物乙酸甲酯,因而排出的废气中会含有PX、乙酸、乙酸甲酯和溴的蒸气。这就是为什么居住在海沧区的居民有时可以闻到翔鹭化纤排出的气体有淡淡的酸味的原因。虽然据厦门市环保局的解释,乙酸的排放量虽然超过了人的嗅阈,但仍符合排放标准,不会对人体造成危害,但天天闻酸味总不是一件愉快的事。所以厦门市环保局在接受采访时,说他们正在敦促翔鹭化纤(以及准备和腾龙芳烃80万吨PX配套建设的翔鹭石化150万吨PTA工程)采用国际上最先进的废气处理方法,尽可能地减少有异味的乙酸、乙酸甲酯的排放。
把上面说的综合一下,就可以知道,整个PX和PTA的生产过程中,生成的高毒性或有高致癌性的物质,不过苯和硫化氢两种,此外还有乙酸、乙酸甲酯具有令人不快的异味。知道了这些,厦门民众就可以有针对性地要求和监督腾龙芳烃和翔鹭石化两家公司有效地减少这些物质的排放或泄漏,而不是在无知的情况下,没有凭据地幻想PX和PTA的生产过程中会有多少高毒、高致癌性的物质产生,并用这种空话作为维权的依据。两种情况下,孰者可以提高维权的效率,不是一目了然吗?
甲苯和各种甲基苯都不能和溴水反应
甲苯上的甲基上的氢原子比苯环上的氢更活泼,容易和氯气或者是液溴发生取代反应。苯的同系物都不能和溴水反应(苯乙烯之类的含CC双键的可以,但他们不是苯的同系物),但是都可以和液溴反应。
一般只要没有太多的支链,各种带烃基的苯都和KMNO4反应生成苯甲酸和各种羧酸.
扩展资料:
甲苯的作用与用途
甲苯大量用作溶剂和高辛烷值汽油添加剂,也是有机化工的重要原料,但与同时从煤和石油得到的苯和二甲苯相比,目前的产量相对过剩,因此相当数量的甲苯用于脱烷基制苯或岐化制二甲苯。甲苯衍生的一系列中间体,广泛用于染料;医药;农药;火炸药;助剂;香料等精细化学品的生产,也用于合成材料工业。
甲苯进行侧链氯化得到的一氯苄;二氯苄和三氯苄,包括它们的衍生物苯甲醇;苯甲醛和苯甲酰氯(一般也从苯甲酸光气化得到),在医药;农药;染料,特别是香料合成中应用广泛。甲苯的环氯化产物是农药;医药;染料的中间体。甲苯氧化得到苯甲酸,是重要的食品防腐剂(主要使用其钠盐),也用作有机合成的中间体。
甲苯及苯衍生物经磺化制得的中间体,包括对甲苯磺酸及其钠盐;CLT酸;甲苯-2,4-二磺酸;苯甲醛-2,4-二磺酸;甲苯磺酰氯等,用于洗涤剂添加剂,化肥防结块添加剂;有机颜料;医药;染料的生产。甲苯硝化制得大量的中间体。可衍生得到很多最终产品,其中在聚氨酯制品;染料和有机颜料;橡胶助剂;医药;炸药等方面最为重要。
参考资料:百度百科-甲苯
氯仿后,分层,下层深色,有机层
乙烯是气体不用管直接看出来
酒精后就互溶了,整个变成深色
苯酚后有白色沉淀(2,4,6-三溴苯酚)
纯碱后有气体(CO2)放出
在精炼过程的一个环节中,原油被加热,在不同的蒸发温度下,会将不同长度的烃链分离出来。每种长度不同的链都具有不同的性质,从而对应不同的用途。
1、石油气
用于加热、烹饪和制造塑料,小分子烷烃(1-4个碳原子),俗称的甲烷、乙烷、丙烷和丁烷,沸程=低于40℃,经常被加压液化为LPG(液化石油气)。
2、石脑油或轻石油
一种中间产物,将被进一步加工为汽油 ,含有5-9个碳原子的烷烃的混合物,沸程=60-100℃。
3、汽油
发动机燃料,液体,烷烃和环烷烃(5-12个碳原子)的混合物,沸程=40-205℃。
4、煤油
喷气发动机和拖拉机的燃料;制造其他产品的原材料,液体,烷烃(10-18个碳原子)和芳香烃的混合物,沸程=175-325℃。
5、柴油或分馏柴油
用作柴油机燃料或加热用油;制造其他产品的原材料,液体碳原子数大于等于12的烷烃,
沸程=250-350℃。
6、润滑油
用于发动机润滑油、润滑脂和其他润滑剂,液体,长链(20-50个碳原子)的烷烃、环烷烃和芳香烃,沸程=300-370℃。
7、重油或燃料油
用作工业燃料;制造其他产品的原材料,液体,长链(20-70个碳原子)的烷烃、环烷烃和芳香烃,沸程=370-600℃。
8、渣油
焦炭、沥青、焦油和蜡;制造其他产品的原材料,固体,碳原子数大于等于70的多环化合物,沸程=高于600℃。
扩展资料:
从原油到石油的基本途径一般为:
1、将原油先按不同产品的沸点要求,分割成不同的直馏馏分油,然后按照产品的质量标准要求,除去这些馏分油中的非理想组分;
2、通过化学反应转化,生成所需要的组分,进而得到一系列合格的石油产品。
3、石油炼化常用的工艺流程为常减压蒸馏、催化裂化、延迟焦化、加氢裂化、溶剂脱沥青、加氢精制、催化重整。
常减压蒸馏产品:石脑油、粗柴油(瓦斯油)、渣油、沥青、减一线。
催化裂化产品:汽油、柴油、油浆(重质馏分油)、液体丙烯、液化气;各自占比汽油占42%,柴油占21.5%,丙烯占5.8%,液化气占8%,油浆占12%。
延迟焦化主要产品:蜡油、柴油、焦碳、粗汽油和部分气体,各自比重分别是:蜡油占23-33%,柴油22-29%,焦碳15-25%,粗汽油8-16%,气体7-10%,外甩油1-3%。
加氢裂化产品:轻质油(汽油、煤油、柴油或催化裂化、裂解制烯烃的原料)
加氢精制产品:精制改质后的汽油、柴油、煤油、润滑油、石油蜡等产品。
参考资料来源:百度百科—原油
2、木条在氧气中燃烧 放出白光,放出热量
3、硫在氧气中燃烧
发出明亮的蓝紫色火焰,放出热量,生成一种有刺激性气味的气体
4、铁丝在氧气中燃烧
剧烈燃烧,火星四射,放出热量,生成黑色固体物质
5、加热试管中碳酸氢铵
有刺激性气味气体生成,试管口有液滴生成
6、氢气在氯气中燃烧
发出苍白色火焰,产生大量的热,有雾生成
7、在试管中用氢气还原氧化铜
黑色氧化铜变为红色物质,试管口有液滴生成
8、用木炭粉还原氧化铜粉末 黑色氧化铜变为有光泽的金属颗粒,石灰水变浑浊
9、一氧化碳在空气中燃烧
发出蓝色的火焰,放出热量
10、向盛有少量碳酸钾固体的试管中滴加盐酸
有气体生成
11、加热试管中硫酸铜晶体
蓝色晶体逐渐变为白色粉末,试管口有液滴生成
12、钠在氯气中燃烧
剧烈燃烧,生成白色固体
13、点燃纯净的氢气,用干冷烧杯罩在火焰上
发出淡蓝色火焰,烧杯内壁有液滴生成
14、向含有Cl-的溶液中滴加硝酸酸化的硝银溶液
有白色沉淀生成
15、向含有SO42-的溶液中滴加用硝酸酸化的氯化钡溶液
有白色沉淀生成
16、一带锈铁钉投入盛稀硫酸的试管中并加热
铁锈逐渐溶解,溶液呈浅黄色,并有气体生成
17、在硫酸铜溶液中滴加氢氧化钠溶液
有蓝色絮状沉淀生成
18、在三氯化铁溶液中滴加氢氧化钠溶液
有红褐色沉淀生成
19、在生石灰上加少量水
反应剧烈,发出大量热
20、将一洁净铁钉浸入硫酸铜溶液中
铁钉表面有红色物质附着,溶液颜色逐渐变浅
21、将铜片插入硝酸汞溶液中
铜片表面有银白色物质附
22、向盛有石灰的的试管里,注入浓的碳酸钠溶液
有白色沉淀生成
23、细铜丝在氯气中燃烧后入水
有棕色的烟生成,加水后生成绿色的溶液
24、强光照射氢气、氯气的混和氯和气体
迅速反就肆生爆炸,有雾生成
25、红磷在氯气中燃烧
有白色烟雾生成
26、氯气遇到湿的有色条
有色布条的颜色褪去
27、加热浓盐酸与二氧化锰的混和物
有黄绿色刺激性气味气体生成
28、给氯化钠定(固)与硫酸(浓)的和混合物加强热
有雾生成有刺少许性的气味
29、在溴化钠溶液中滴加硝酸银溶液后再加硝酸
有浅黄色沉淀生成
30、在碘化钾溶液中滴加硝酸银溶液后再加稀硝酸
有黄色沉淀生成
31、.细铜丝在硫蒸气中燃烧
细铜丝发红后生成黑色物质
32、铁粉与硫粉混和后加热到红热
反应继续进行,放出大量的热,生成黑色物质
33、硫化氢气体不完全燃烧(在火焰上罩上蒸发皿)
火焰呈淡蓝色(蒸发四底部有黄色的粉末)
34、硫化氢气体完全燃烧(在火焰上罩上干冷烧杯)
火焰呈淡蓝色,生成有刺激性气味的气体(烧杯内壁有液滴生成)
35、在集气瓶中混和硫化氢和二氧化硫
瓶内壁有黄色粉末生成
36、二氧化硫气体通入品红溶液后再加热
红色褪去,加热后又恢复原来颜色
37、过量的铜投入盛有浓硫酸的试管,并加热,反应毕,待浓液冷却后加水
有刺激性气味的气体生成,加水后溶液呈蓝色
38、加热盛有浓硫酸和木炭的试管
有气体生成,且气体有刺激性的气味
39、钠在空气中燃烧
火焰呈黄色
40、钠投入水中
反应激烈,钠浮于水面,放出大量的热使钠溶成小球在水面上游动,有嗤嗤声
41、把水滴入盛有过氧化钠固体的试管,将带火星木条伸入试管口
木条复燃
42、加热碳酸氢钠固体,使生成气体通入澄清石灰水
澄清的石灰水变浑浊
43、氨气与氯化氢相遇
有大量的白烟产生
44、加热氯化铵与氢氧化钙的混和物
有刺激性气味的气体产生
45、铜与浓硝酸反应
反应激烈,有红棕色气体产生
48、铜与稀硝酸反应(反应在试管中进行)
试管下端产生无生气体,气体上升,逐渐变为红棕色
49、在硅酸钠溶液中加入稀盐酸
有白色胶状沉淀产生
50、在氢氧化铁胶体中加硫酸镁溶液
胶体变浑浊
51、加热氢氧化铁胶体
胶体变浑浊
52、将点燃的镁条伸入盛有二氧化碳的 气瓶中
剧烈燃烧,有黑色物质附着于集气瓶内壁
53、向硫酸铝溶液中滴加氨水
生成蓬松的白色絮物质
54、向硫酸亚铁溶液中滴加氢氧化钠溶液
有白色絮状沉淀产生,立即转变为灰绿色,一会儿又转为红褐色沉淀
55、向含Fe3+的溶液中滴入KSCN溶液
溶液呈血红色
56、向硫化钠水溶液中滴加氯水
溶液变浑浊S2-+Cl2=S+2Cl-
57、向天然水中加入少量皂液
泡沫逐渐减少,且有沉淀产生
58、在空气中点燃甲烷,并在火焰上罩上干冷烧杯
火焰呈淡蓝色,烧杯内壁有液滴产生
59、光照甲烷与氯气的混和气体
黄绿色逐渐变浅(时间较长,容器内壁有液滴生成)
60、加热(170。C)乙醇与浓硫酸的混和物,并使产生的气全通入溴水
通入酸性高锰酸钾溶液
有气体产生
溴水褪色
紫色逐渐变浅
61、在空气中点燃乙烯
火焰明亮,有黑烟产生,放出热量
62、在空气中点燃乙炔
火焰明亮,有浓烟产生,放出热量
63、笨在空气中燃烧
火焰明亮,并带有黑烟
64、将乙炔通入溴水
溴水颜色褪去
65、将乙炔通入酸性高锰酸钾溶液
紫色逐渐变浅,直至褪去
66、苯与液溴、铁粉反应
有白雾产生,生成物油状且带有褐色
67、将少量甲苯倒入少量酸性高锰酸钾溶液中,并振荡
紫色褪去
68、将金属钠投入盛有乙醇的试管中
有气体放出
69、在盛有少量苯酚的试管中滴入过量的浓溴水
有白色沉淀生成
70、在盛有苯酚的试管中滴入几滴FeCl3溶液,并振荡
溶液显紫色
71、乙醛与银氨溶液在试管中反应
洁净的试管内壁附着一层光亮如银的物质
72、在加热至沸的情况下乙醛与新制氢氧化铜反应
有红色沉淀产生
73、在适宜条件下乙醇和乙酸反应
有透明的带香味的油状液体生成
一. 物质与氧气的反应:
(1)单质与氧气的反应:
1. 镁在空气中燃烧:2Mg + O2 点燃 2MgO
2. 铁在氧气中燃烧:3Fe + 2O2 点燃 Fe3O4
3. 铜在空气中受热:2Cu + O2 加热 2CuO
4. 铝在空气中燃烧:4Al + 3O2 点燃 2Al2O3
5. 氢气中空气中燃烧:2H2 + O2 点燃 2H2O
6. 红磷在空气中燃烧:4P + 5O2 点燃 2P2O5
7. 硫粉在空气中燃烧: S + O2 点燃 SO2
8. 碳在氧气中充分燃烧:C + O2 点燃 CO2
9. 碳在氧气中不充分燃烧:2C + O2 点燃 2CO
(2)化合物与氧气的反应:
10. 一氧化碳在氧气中燃烧:2CO + O2 点燃 2CO2
11. 甲烷在空气中燃烧:CH4 + 2O2 点燃 CO2 + 2H2O
12. 酒精在空气中燃烧:C2H4OH + 3O2 点燃 2CO2 + 3H2O
二.几个分解反应:
13. 水在直流电的作用下分解:2H2O 通电 2H2↑+ O2 ↑
14. 加热碱式碳酸铜:Cu2(OH)2CO3 加热 2CuO + H2O + CO2↑
15. 加热氯酸钾(有少量的二氧化锰):2KClO3 ==== 2KCl + 3O2 ↑
16. 加热高锰酸钾:2KMnO4 加热 K2MnO4 + MnO2 + O2↑
17. 碳酸不稳定而分解:H2CO3 === H2O + CO2↑
18. 高温煅烧石灰石:CaCO3 高温 CaO + CO2↑
三.几个氧化还原反应:
19. 氢气还原氧化铜:H2 + CuO 加热 Cu + H2O
20. 木炭还原氧化铜:C+ 2CuO 高温 2Cu + CO2↑
21. 焦炭还原氧化铁:3C+ 2Fe2O3 高温 4Fe + 3CO2↑
22. 焦炭还原四氧化三铁:2C+ Fe3O4 高温 3Fe + 2CO2↑
23. 一氧化碳还原氧化铜:CO+ CuO 加热 Cu + CO2
24. 一氧化碳还原氧化铁:3CO+ Fe2O3 高温 2Fe + 3CO2
25. 一氧化碳还原四氧化三铁:4CO+ Fe3O4 高温 3Fe + 4CO2
四.单质、氧化物、酸、碱、盐的相互关系
(1)金属单质 + 酸 -------- 盐 + 氢气 (置换反应)
26. 锌和稀硫酸Zn + H2SO4 = ZnSO4 + H2↑
27. 铁和稀硫酸Fe + H2SO4 = FeSO4 + H2↑
28. 镁和稀硫酸Mg + H2SO4 = MgSO4 + H2↑
29. 铝和稀硫酸2Al +3H2SO4 = Al2(SO4)3 +3H2↑
30. 锌和稀盐酸Zn + 2HCl === ZnCl2 + H2↑
31. 铁和稀盐酸Fe + 2HCl === FeCl2 + H2↑
32. 镁和稀盐酸Mg+ 2HCl === MgCl2 + H2↑
33. 铝和稀盐酸2Al + 6HCl == 2AlCl3 + 3H2↑
(2)金属单质 + 盐(溶液) ------- 另一种金属 + 另一种盐
34. 铁和硫酸铜溶液反应:Fe + CuSO4 === FeSO4 + Cu
35. 锌和硫酸铜溶液反应:Zn + CuSO4 === ZnSO4 + Cu
(3)碱性氧化物 +酸 -------- 盐 + 水
37. 氧化铁和稀盐酸反应:Fe2O3 + 6HCl === 2FeCl3 + 3H2O
38. 氧化铁和稀硫酸反应:Fe2O3 + 3H2SO4 === Fe2(SO4) 3 + 3H2O
39. 氧化铜和稀盐酸反应:CuO + 2HCl ==== CuCl2 + H2O
40. 氧化铜和稀硫酸反应:CuO + H2SO4 ==== CuSO4 + H2O
41. 氧化镁和稀硫酸反应:MgO + H2SO4 ==== MgSO4 + H2O
42. 氧化钙和稀盐酸反应:CaO + 2HCl ==== CaCl2 + H2O
(4)酸性氧化物 +碱 -------- 盐 + 水
43.苛性钠暴露在空气中变质:2NaOH + CO2 ==== Na2CO3 + H2O
44.苛性钠吸收二氧化硫气体:2NaOH + SO2 ==== Na2SO3 + H2O
45.苛性钠吸收三氧化硫气体:2NaOH + SO3 ==== Na2SO4 + H2O
46.消石灰放在空气中变质:Ca(OH)2 + CO2 ==== CaCO3 ↓+ H2O
47. 消石灰吸收二氧化硫:Ca(OH)2 + SO2 ==== CaSO3 ↓+ H2O
(5)酸 + 碱 -------- 盐 + 水
48.盐酸和烧碱起反应:HCl + NaOH ==== NaCl +H2O
49. 盐酸和氢氧化钾反应:HCl + KOH ==== KCl +H2O
50.盐酸和氢氧化铜反应:2HCl + Cu(OH)2 ==== CuCl2 + 2H2O
51. 盐酸和氢氧化钙反应:2HCl + Ca(OH)2 ==== CaCl2 + 2H2O
52. 盐酸和氢氧化铁反应:3HCl + Fe(OH) 3 ==== FeCl3 + 3H2O
53.氢氧化铝药物治疗胃酸过多:3HCl + Al(OH) 3 ==== AlCl3 + 3H2O
54.硫酸和烧碱反应:H2SO4 + 2NaOH ==== Na2SO4 + 2H2O
55.硫酸和氢氧化钾反应:H2SO4 + 2KOH ==== K2SO4 + 2H2O
56.硫酸和氢氧化铜反应:H2SO4 + Cu(OH)2 ==== CuSO4 + 2H2O
57. 硫酸和氢氧化铁反应:3H2SO4 + 2Fe(OH)3==== Fe2(SO4)3 + 6H2O
58. 硝酸和烧碱反应:HNO3+ NaOH ==== NaNO3 +H2O
(6)酸 + 盐 -------- 另一种酸 + 另一种盐
59.大理石与稀盐酸反应:CaCO3 + 2HCl === CaCl2 + H2O + CO2↑
60.碳酸钠与稀盐酸反应: Na2CO3 + 2HCl === 2NaCl + H2O + CO2↑
61.碳酸镁与稀盐酸反应: MgCO3 + 2HCl === MgCl2 + H2O + CO2↑
62.盐酸和硝酸银溶液反应:HCl + AgNO3 === AgCl↓ + HNO3
63.硫酸和碳酸钠反应:Na2CO3 + H2SO4 === Na2SO4 + H2O + CO2↑
64.硫酸和氯化钡溶液反应:H2SO4 + BaCl2 ==== BaSO4 ↓+ 2HCl
(7)碱 + 盐 -------- 另一种碱 + 另一种盐
65.氢氧化钠与硫酸铜:2NaOH + CuSO4 ==== Cu(OH)2↓ + Na2SO4
66.氢氧化钠与氯化铁:3NaOH + FeCl3 ==== Fe(OH)3↓ + 3NaCl
67.氢氧化钠与氯化镁:2NaOH + MgCl2 ==== Mg(OH)2↓ + 2NaCl
68. 氢氧化钠与氯化铜:2NaOH + CuCl2 ==== Cu(OH)2↓ + 2NaCl
69. 氢氧化钙与碳酸钠:Ca(OH)2 + Na2CO4 === CaCO3↓+ 2NaOH
(8)盐 + 盐 ----- 两种新盐
70.氯化钠溶液和硝酸银溶液:NaCl + AgNO3 ==== AgCl↓ + NaNO3
71.硫酸钠和氯化钡:Na2SO4 + BaCl2 ==== BaSO4↓ + 2NaCl
五.其它反应:
72.二氧化碳溶解于水:CO2 + H2O === H2CO3
73.生石灰溶于水:CaO + H2O === Ca(OH)2
74.氧化钠溶于水:Na2O + H2O ==== 2NaOH
75.三氧化硫溶于水:SO3 + H2O ==== H2SO4
76.硫酸铜晶体受热分解:CuSO4·5H2O 加热 CuSO4 + 5H2O
77.无水硫酸铜作干燥剂:CuSO4 + 5H2O ==== CuSO4·5H2
化学方程式 反应现象 应用
CuSO4+2NaOH=Cu(OH)2↓+Na2SO4蓝色沉淀生成、上部为澄清溶液 质量守恒定律实验
CO2 + H2O = H2CO3 碳酸使石蕊变红 证明碳酸的酸性 ;H2CO3 ΔCO2↑+ H2O 石蕊红色褪去
Ca(OH)2+CO2= CaCO3↓+ H2O 澄清石灰水变浑浊应用CO2检验和石灰浆粉刷墙壁
Fe2O3+6HCl=2FeCl3+3H2O 铁锈溶解、溶液呈黄色 铁器除锈
Al(OH)3+3HCl=AlCl3+3H2O 白色固体溶解 胃舒平治疗胃酸过多
HCl+AgNO3= AgCl↓+HNO3生成白色沉淀、不溶解于稀硝酸 检验Cl—的原理
BaCl2+ H2SO4=BaSO4↓+2HCl 生成白色沉淀、不溶解于稀硝酸 检验SO42—的原理
2NaOH+SO2=Na2SO3+ H2O ;2NaOH+SO3=Na2SO4+ H2O 处理硫酸工厂的尾气(SO2)
FeCl3+3NaOH=Fe(OH)3↓+3NaCl 溶液黄色褪去、有红褐色沉淀生成
CuSO4+5H2O= CuSO4·H2O 蓝色晶体变为白色粉末
CuSO4·H2OΔ CuSO4+5H2O 白色粉末变为蓝色 检验物质中是否含有水
一.常用计算公式:
(2)设某化合物化学式为AmBn
①它的相对分子质量=A的相对原子质量×m+B的相对原子质量×n
②A元素与B元素的质量比=A的相对原子质量×m:B的相对原子质量×n
③A元素的质量分数ω=A的相对原子质量×m /AmBn的相对分子质量
(3)混合物中含某物质的质量分数(纯度)=纯物质的质量/混合物的总质量 × 100%
(4)标准状况下气体密度(g/L)=气体质量(g)/气体体积(L)
(5)纯度=纯物质的质量/混合物的总质量 × 100% =纯物质的质量/(纯物质的质量+杂质的质量) × 100%=
1- 杂质的质量分数
(6)溶质的质量分数=溶质质量/溶液质量 × 100% =溶质质量/(溶质质量+溶剂质量) × 100%
(7)溶液的稀释与浓缩
M浓 × a%浓=M稀 × b%稀=(M浓+增加的溶剂质量) × b%稀
(8)相对溶质不同质量分数的两种溶液混合
M浓 × a%浓+M稀 × b%稀=(M浓+M稀) × c%
(9)溶液中溶质的质量 =溶液的质量×溶液中溶质的质量分数 =溶液的体积×溶液的密度