建材秒知道
登录
建材号 > 盐酸 > 正文

盐酸羟胺溶液和三乙醇胺溶液在戊二醛含量测定中的作用

陶醉的柠檬
殷勤的音响
2023-01-26 13:17:07

盐酸羟胺溶液和三乙醇胺溶液在戊二醛含量测定中的作用

最佳答案
糟糕的书本
大方的猫咪
2026-02-02 09:12:51

有两种说法:第一种是,首先,盐酸羟胺与三乙醇胺中和成羟胺,然后,戊二醛与羟胺脱水缩合成肟,盐酸和水,这个反应是可逆的:>C= O + H2NOH•HCl—>C= NOH + HCl + H2O最后,硫酸滴定液回滴过量的羟胺或三乙醇胺,第二种说法是:戊二醛和三乙醇胺反应,盐酸羟胺中性溶液作指示剂,用硫酸滴定剩余的三乙醇胺。。。。。我不知道哪一种是对的

最新回答
腼腆的小伙
动人的心情
2026-02-02 09:12:51

我在做N-羟基丁二酰亚胺的合成工艺,盐酸羟胺是其中的原料之一啊,第一步反应首先是三乙胺与盐酸羟胺中和以制备游离羟胺,因盐酸羟胺容易吸潮,做了多次的结果是三乙胺严重过量,在萃取的时候,常常三乙胺的盐酸盐被乙酸乙酯提取出来了,产品很少。

简单的滑板
能干的红酒
2026-02-02 09:12:51

实训准备

岩石矿物分析

任务分析

一、硅酸盐中三氧化二铁测定方法简述

随环境及形成条件不同,铁在硅酸盐中呈现二价或三价状态。在许多情况下既需要测定试样中铁的总含量,又需要分别测定二价或三价铁的含量。三氧化二铁的测定方法有多种,如K2CrO7法、KMnO4法、EDTA配位滴定法、磺基水杨酸钠或邻二氮菲分光光度法、原子吸收分光光度法等。

二、重铬酸钾滴定法

重铬酸钾滴定法是测定硅酸盐岩石矿物中铁含量的经典方法,具有简便、快速、准确和稳定等优点,在实际工作中应用很广。在测定试样中的全铁、高价铁时,首先要将制备溶液中的高价铁还原为低价铁,然后再用重铬酸钾标准溶液滴定。根据所用的还原剂的不同,有不同的测定体系,其中常用的是SnCl2还原-重铬酸钾滴定法(又称汞盐-重铬酸钾法)、TiCl3还原-重铬酸钾滴定法、硼氢化钾还原-重铬酸钾滴定法等。

1.氯化亚锡还原-重铬酸钾滴定法

在热酸盐介质中,以SnCl2为还原剂,将溶液中的Fe3+还原为Fe2+,过量的SnCl2用HgCl2除去,在硫-磷混合酸的存在下,以二苯胺磺酸钠为指示剂,用K2Cr2O7标准溶液滴定Fe2+直到溶液呈现稳定的紫色为终点。

该方法应注意以下问题:

(1)在实际工作中,为了迅速地使Fe3+还原完全,常将制备溶液加热到小体积时,趁热滴加SnCl2溶液滴至黄色褪去。浓缩至小体积,一方面提高了酸度,可以防止SnCl2的水解;另一方面提高了反应物的浓度,有利于Fe3+的还原和还原完全时对颜色变化的观察。趁热滴加SnCl2溶液,是因为Sn2+还原Fe3+的反应在室温下进行得很慢,提高温度至近沸,可大大加快反应过程。

但是,在加入 HgCl2除去过量的 SnCl2时却必须在冷溶液中进行,并且要在加入HgCl2溶液后放置3~5min,然后再进行滴定。因为在热溶液中,HgCl2可以氧化Fe2+,使测定结果不准确;加入HgCl2溶液后不放置,或放置时间太短,反应不完全,Sn2+未被除尽,同样会与K2Cr2O7反应,使结果偏高;放置时间过长,已还原的Fe2+将被空气中的氧所氧化,使结果偏低。

(2)滴定前加入硫-磷混合酸的作用为:第一,加入硫酸可保证滴定时所需要的酸度;第二,H3PO4与Fe3+形成无色配离子[Fe(HPO4)2]-,即可消除FeCl3的黄色对终点颜色变化的影响,又可降低Fe3+/Fe2+电对的电位,使突跃范围变宽,便于指示剂的选择。但是,在H3PO4介质中,Fe2+的稳定性较差,必须注意在加入硫-磷混合酸后应尽快进行滴定。

(3)二苯胺磺酸钠与K2Cr2O7反应很慢,由于微量Fe2+的催化作用,使反应迅速进行,变色敏锐。由于指示剂被氧化时也将消耗K2Cr2O7,故应严格控制其用量。

(4)铜、钛、砷、锑、钨、钼、铀、铂、钒、 及大量的钴、镍、铬、硅酸等的存在,均可能产生干扰。铜、钛、砷、锑、钨、钼、铀和铂在测定铁的条件下,可被SnCl2还原至低价,而低价的离子又可被K2Cr2O7滴定,产生正干扰。钒的变价较多,若被SnCl2还原完全,则使结果偏高;若部分被还原,其剩余部分可能导致Fe2+被氧化,而使结果偏低。 的滴定均有影响。大量钴、镍、铬的存在,由于离子本身的颜色而影响终点的观察。较大量的硅酸呈胶体存在时,由于其吸附或包裹Fe3+,使Fe3+还原不完全,从而导致结果偏低。

当试样中钛含量小于铁含量时,可通过在SnCl2还原Fe3+之前加入适量的NH4F来消除钛离子的干扰;而当钛含量大于铁含量时,加入NH4F也无法消除钛对测定铁的干扰。由于砷、锑、钨、钼、钒、铬等的影响,可将试样用碱熔,再用水提取,使铁沉淀后,过滤分离。用碳酸钠小体积沉淀法,可分离铀、钼、钨、砷、钡等,当砷、锑的量大时,也可通过在硫酸溶液中加入氢溴酸,再加热冒烟,以使砷、锑呈溴化物而挥发除去。铜、铂、钴、镍可用氨水沉淀分离。 在一般试样中很少。在重量法测定SiO2的滤液中测定铁时,可不必考虑硅酸的影响。

2.无汞盐-重铬酸钾滴定法

由于汞盐剧毒,污染环境,因此又提出了改进还原方法,避免使用汞盐的重铬酸钾滴定法。其中,三氧化钛还原法应用较普遍。

在盐酸介质中,用SnCl2将大部分的Fe3+还原为Fe2+后,再用TiCl3溶液将剩余的Fe3+还原。或者,在盐酸介质中直接用TiCl3溶液还原。过量的TiCl3以铜盐为催化剂,让空气中的氧或用K2Cr2O7溶液将其氧化除去。然后加入硫-磷混合酸,以二苯胺磺酸钠为指示剂,用K2Cr2O7标准溶液滴定。

该方法应注意以下问题。

(1)用TiCl3还原,Fe3+被还原完全的终点指示剂,可用钨酸钠、酚藏红花、甲基橙、中性红、亚甲基蓝、硝基马钱子碱和硅钼酸等。其中,钨酸钠应用较多,当无色钨酸钠溶液转变为蓝色(钨蓝)时,表示Fe3+已定量还原。用K2Cr2O7溶液氧化过量的TiCl3至钨蓝消失,表示TiCl3已被氧化完全。

(2)本法允许试样中低于5mg的铜存在。当铜含量更高时,宜采用在硫酸介质中,以硼氢化钾为还原剂的硼氢化钾还原-重铬酸钾滴定法。在硼氢化钾还原法中,CuSO4既是Fe3+被还原的指示剂,又是它的催化剂,因此允许较大量的铜存在,适用于含铜试样中铁的测定。

(3)重铬酸钾滴定Fe(Ⅱ)的非线性效应和空白值。用K2Cr2O7标准滴定溶液滴定Fe2+时,存在不太明显的非线性效应,即K2Cr2O7对铁的滴定度随铁含量的增加而发生微弱的递增,当用同一滴定度计算时,铁的回收率将随铁含量的增加而偏低。为了校正非线性效应,可取不同量的铁标准滴定溶液按分析程序用K2Cr2O7标准滴定溶液滴定,将滴定值通过有线性回归程序的计算器处理,或者绘制滴定校正曲线以求出K2CrO7溶液对各段浓度范围的滴定度。

由于在无Fe2+存在的情况下,K2Cr2O7对二苯胺磺酸钠的氧化反应速率很慢。因此,在进行空白试验时,不易获得准确的空白值。为此,可在按分析手续预处理的介质中,分三次连续加入等量的Fe(Ⅱ)标准滴定溶液,并用K2Cr2O7标准滴定溶液做三次的相应的滴定,将第一次滴定值减去第二、第三次滴定值平均值的差值,即为包括指示剂二苯胺磺酸钠消耗K2Cr2O7在内的准确的空白值。

三、EDTA滴定法

在酸性介质中,Fe3+与EDTA能形成稳定的配合物。控制pH=1.8~2.5,以磺基水杨酸为指示剂,用EDTA标准滴定溶液直接滴定溶液中的三价铁。由于在该酸度下Fe2+不能与EDTA形成稳定的配合物因而不能被滴定,所以测定总铁时,应先将溶液中的Fe2+氧化成Fe3+。

该方法应注意以下问题:

(1)酸度的控制是本法的关键,既要考虑EDTA与Fe3+的配位反应,又要注意指示剂和干扰离子的影响。另外,滴定的温度控制也很重要。有关酸度和温度的实验条件选择参见本书中EDTA直接滴定法的实验指南。

(2)EDTA滴定法测定铁时的主要干扰是:凡是lg(KM-EDTA)>18的金属离子,依据滴定介质的pH的变化都会或多或少地产生正误差。钍产生定量的正干扰。钛、锆因其强烈水解而不与EDTA反应;当存在H2O2时,钛与H2O2和EDTA可形成稳定的三元配合物而产生干扰。氟离子的干扰情况与溶液中的铝含量有关,当试样中含有毫克量的铝时,约10mg氟不干扰。 的干扰与操作方法有关,滴定前若调节pH>4,则所形成的磷酸铁很难在pH=1.8~2.5的介质中复溶,因此,当试样中的含磷量较高时,铁的测定结果将偏低;若调节试液的pH<3,则高品位磷矿所含的 也不会影响铁的测定。

(3)在EDTA滴定法滴定铁之后的溶液还可以进一步用返滴定法测定铝和钛,以实现铁、铝、钛的连续测定。

四、磺基水杨酸光度法

在不同的pH条件下,Fe3+可以和磺基水杨酸形成不同组成和颜色的几种配合物。在pH=1.8~2.5的溶液中,形成红紫色的[Fe(Sal)]+;在pH=4~8 时,形成褐色的[Fe(Sal)2]-;在pH=8~11.5的氨性溶液中,形成黄色的[Fe(Sal)3]3-。光度法测定铁时,在pH=8~11.5的氨性溶液中形成黄色配合物,其最大吸收波长为420nm,线性关系良好。

该方法注意以下问题:在强氨性溶液中, 等均不干扰测定。铝、钙、镁、钍、稀土元素和铍与磺基水杨酸形成可溶性无色配合物,消耗显色剂,可增加磺基水杨酸的用量来消除其影响。铜、铀、钴、镍、铬和某些铂族元素在中性溶液或氨性溶液中与磺基水杨酸形成有色的配合物,导致结果偏高。铜、钴、镍可用氨水分离。大量钛产生的黄色可加过量的氨水消除。锰易被空气中的氧所氧化,形成棕红色沉淀,影响铁的测定。锰含量不高时,可在氨水中和前加入盐酸羟胺来还原消除。

五、邻菲罗啉光度法

某些试样量中氧化铁的含量较低,常采用邻菲罗啉光度法测定,而配位滴定法和氧化还原法则准确度不够。

Fe3+以盐酸羟胺或抗坏血酸还原为Fe2+,在pH=2~9的条件下,与邻菲罗啉(又称1,10-二氮杂菲)生成1∶3的橙红色螯合物,在500~510 nm处有一吸收峰,其摩尔吸光系数为9.6×103L/(mol·cm),在室温下约30min即可显色完全,并可稳定16h以上。该方法简捷,条件易控制,稳定性和重现性好。

该方法应注意以下问题。

(1)邻菲罗啉只与Fe2+起反应。在显色体系中加入抗坏血酸,可将试液中的Fe3+还原为Fe2+。因此,邻菲罗啉光度法不仅可以测定亚铁,而且可以连续测定试液中的亚铁和高铁,或测定它们的总量。

(2)盐酸羟胺及邻菲罗啉溶液要现配现用。

(3)溶液的pH对显色反应的速率影响较大。当pH较高时,Fe2+易水解;当pH较低时,显色反应速率慢。所以在实际工作中,常加入乙酸铵或酒石酸钾钠(柠檬酸钠)缓冲溶液,后者还可与许多共存金属离子形成配合物而抑制其水解沉淀。

(4)在50mL显色溶液中, 各50mg,F100mg,U、Th、V各1mg。Co、Ni、Mo、稀土元素各0.2mg不干扰;少于0.5mg Cu不干扰。

六、原子吸收分光光度法

原子吸收分光光度法测定铁,方法简便快速,灵敏度高,干扰少,因而应用广泛。

(1)原子吸收光度法测定铁的介质与酸度。一般选用盐酸或过氯酸,并控制其浓度在10% 以下。若浓度过大,或选用磷酸或硫酸介质,其浓度大于3% 时,都将引起铁的测定结果偏低。

(2)选择正确的仪器测定条件。由于铁是高熔点、低溅射的金属,应选用较高的灯电流,使铁的空心阴极灯具有适当的发射强度。但是,铁又是多谱线元素,在吸收线附近存在单色器不能分离的邻近线,使测定的灵敏度降低,工作曲线发生弯曲。因此宜采用较小的光谱通带。同时,因铁的化合物较稳定,在低温火焰中原子化效率低,需要采用温度较高的空气 - 乙炔、空气 - 氢气富燃火焰,以提高测定的灵敏度。选用 248.3 nm、344.1 nm、372.0 nm 锐线,以空气 - 乙炔激发,铁的灵敏度分别为 0.08μg、5.0μg、1.0μg。若采用笑气-乙炔火焰激发,则灵敏度比空气-乙炔火焰高2~3倍。

技能训练

配位滴定法检测三氧化二铁

(一)检测流程

岩石矿物分析

(二)试剂配制

(1)氨水溶液(1+1)。

(2)盐酸溶液(1+1)。

(3)NH3-NH4Cl缓冲溶液(pH=10):称取氯化铵27g,溶于少许水中,加浓氨水175mL,用水定容至500mL,混匀备用(可用pH试纸检查一下pH是否为10 )。

(4)磺基水杨酸钠指示剂溶液(100g/L):将10g磺基水杨酸钠溶于水中,加水稀释至100mL。

(5)酸性铬兰K-萘酚绿B指示剂:称取0.2g酸性铬蓝K,0.4g萘酚绿B于烧杯中,先滴数滴水用玻璃棒研磨,加100mL水使其完全溶解(试剂质量常有变化,可视具体情况选取最适宜的比例)。

(6)碳酸钙标准溶液(CCaCO3= 0.01500mol/L ):称取 0.3753g(精确至0.0001g)已于105~110℃烘过2h的碳酸钙,置于400mL烧杯中,加入约100mL水,盖上表面皿,沿杯口滴加5~10mL盐酸(1+1),搅拌至碳酸钙全部溶解,加热煮沸数分钟。将溶液冷至室温,移入250mL容量瓶中,用水稀释至标线,摇匀。

(7)EDTA标准滴定溶液(C(EDTA)=0.015mol/L):称取约5.6g EDTA(乙二胺四乙酸二钠盐)置于烧杯中,加约200mL水,加热溶解,用水稀释至1 L。

(三)操作步骤

1.EDTA标准溶液标定

吸取20.00mL碳酸钙标准溶液(0.01500mol/L)于250mL锥形瓶中,加水稀释至约100mL,加入缓冲溶液10mL,加入2~3 滴KB指示剂,用EDTA标准滴定溶液滴定至溶液由紫红色变为纯蓝色即为终点。

EDTA标准滴定溶液浓度按下式计算:

岩石矿物分析

式中:C(EDTA)为EDTA标准滴定溶液的浓度,mo1/L;V为滴定时消耗EDTA标准滴定溶液的体积,mL;m为配制碳酸钙标准溶液的碳酸钙的质量,g;100.09为CaCO3的摩尔质量,g/mol。

TEDTA/Fe2O3= C(EDTA)×79.84(mg/mL)。

2.硅酸盐中铁的测定

吸取25.00mL硅酸盐滤液放入250mL锥形瓶中,加水稀释至约100mL,用氨水(1+1)和盐酸(1+1)调节溶液pH在1.8~2.0之间(用精密pH试纸检验)。将溶液加热至70℃,加10滴磺基水杨酸钠指示剂溶液(100g/L),用EDTA标准滴定溶液滴室至溶液由紫红色转为亮黄色(终点时溶液温度应不低于60℃)即为终点。保留此溶液供测定氧化铝用。

3.结果计算

三氧化二铁的质量分数按下式计算:

岩石矿物分析

式中:w(Fe2O3)为Fe2O3的质量分数,%;T为EDTA标准滴定溶液对Fe2O3的滴定度,mg/mL;V为分取试样溶液消耗EDTA标准滴定溶液的体积,mL;m为称取试料的质量,g。

实验指南与安全提示

正确控制溶液的pH是本法的关键。如果pH<1,EDTA不能与Fe3+定量配位;同时,磺基水杨酸钠与Fe3+生成的配合物也很不稳定,致使滴定终点提前,滴定结果偏低。如果pH>2.5,Fe3+易水解,使Fe3+与EDTA的配位能力减弱甚至完全消失。而且,在实际样品分析中,还必须考虑共存的其他金属阳离子特别是Al3+、TiO2+的干扰。实验证明,pH>2时,Al3+的干扰增强,而TiO2+的含量一般不高,其干扰作用不显著。因此,对于单独Fe3+的滴定,当有Al3+共存时,溶液最佳的pH范围为1.8~2.0。

正确控制溶液的温度在60~70℃。在pH=1.8~2.0时,Fe3+与EDTA的配位反应速度较慢,因部分 Fe3+水解成羟基配合物,需要离解时间;同时,EDTA 也必须从H4Y、H3Y-等主要形式离解成Y4-后,才能同Fe3+配位。所以需将溶液加热,但也不是越高越好,因为溶液中共存的Al3+在温度过高时亦同EDTA配位,而使Fe2O3的结果偏高,Al2O3的结果偏低。一般在滴定时,溶液的起始温度以70℃为宜,高铝类样品一定不要超过70℃。在滴定结束时,溶液的温度不宜低于60℃。注意在滴定过程中测量溶液的温度,如低于60℃,可暂停滴定,将溶液加热后再继续滴定。

测定溶液的体积一般以80~100mL 为宜。体积过大,滴定终点不敏锐;体积过小,溶液中Al3+浓度相对增高,干扰增强,同时溶液的温度下降较快,对滴定不利。

滴定接近终点时,要加强搅拌,缓慢滴定,最后要半滴半滴地加入EDTA溶液,每滴加半滴,强烈搅拌数十秒,直至无残余红色为止。如滴定过快,Fe2O3的结果将偏高,接着测定Al2O3时,结果又将偏低。

一定要保证测定溶液中的铁全部以Fe3+存在,而不能有部分铁以Fe2+形式存在。因为在pH=1.8~2.0时,Fe2+不能与EDTA定量配位而使铁的测定结果偏低。所以在测定总铁时,应先将溶液中的Fe2+氧化成Fe3+。例如,在用氢氧化钠熔融试样且制成溶液时,一定要加入少量的浓硝酸。

由于在测定溶液中的铁后还要继续测定Al2O3的含量,因此磺基水杨酸钠指示液的用量不宜过多,以防止它与Al3+配位反应而使Al2O3的测定结果偏低。

调pH=1.6~1.8的经验方法:取试液后,首先加入8~9滴SS,用氨水(1+1)调至橘红色或红棕色,然后再滴加盐酸(1+1)至红紫色出现后,过量8~9滴,pH一般都在1.6~1.8(不需试纸消耗试液)。

幽默的睫毛
不安的缘分
2026-02-02 09:12:51

60.2.2.1 苦杏仁酸重量法测定锆(铪)合量

方法提要

将测定二氧化硅的滤液,以盐酸调节酸度,煮沸,用苦杏仁酸沉淀,重量法测定ZrO2和HfO2的合量。方法适用于锆钛砂、锆英石中ZrO2和HfO2合量的测定。

试剂

苦杏仁酸。

盐酸。

分析步骤

将60.2.1中二氧化硅滤液,以盐酸和水调整溶液体积至150mL,并保持酸度在Φ(HCl)=20%~25%,加热至近沸,加入3g苦杏仁酸,搅匀,于80℃左右的水浴中保温30min,然后放置3h以上,过滤,用(5+95)HCl(每100mL溶液中加2g苦杏仁酸)洗净烧杯,并洗沉淀8~10次,滤液及洗液收集于400mL烧杯中,用于测定Ti、Mn、Ca、Mg、Al、Fe2O3、ΣR2O3和Th。

将沉淀连同滤纸放入已恒量的瓷坩埚中,低温灰化,在850~900℃灼烧60min,称量,并灼烧至恒量,即得到ZrO2和HfO2的合量。

ZrO2和HfO2沉淀按纸上色层分离,偶氮胂Ⅲ光度法测定HfO2(详见下面60.2.2.3)。

按下式计算试样中ZrO2和HfO2的合量:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:w(B)为ZrO2和HfO2合量的质量分数,%m1为坩埚和沉淀的质量,gm0为坩埚的质量,gm为称取试样的质量,g。

注意事项

1)对于含有铌、钽的试样,可在苦杏仁酸沉淀前,加入酒石酸掩蔽铌、钽,使其留在溶液中。

2)当试样中铁的含量较高时,会使锆、铪沉淀缓慢,甚至沉淀不完全,对此应预先用40mL(1+1)HCl和1mLH3PO4(或1gNH4H2PO4),加热至大部分铁盐溶解,加水调至!(H3PO4)=20%酸度,静置后过滤,用(2+8)HCl溶液洗涤3~4次,沉淀及滤纸经灰化,碱熔,以下步骤同上。

3)沉淀锆、铪时,盐酸浓度应在!(HCl)=20%~25%,过高会使沉淀不完全,过低则会引起杂质沾污,使结果偏高。

60.2.2.2 EDTA容量法测定锆(铪)合量

方法提要

试样经碱熔,用水提取后,在1mol/LHCl中,以甲基百里酚蓝作指示剂,用EDTA标准溶液滴定测定锆(铪)。方法适用于锆钛砂、锆英石中ZrO2和HfO2合量的测定。

试剂

氢氧化钾。

过氧化钠。

硼酸钠。

盐酸。

硫酸。

氢氧化钾溶液(20g/L)。

二氯化锡溶液(100g/L)称取10gSnCl2·2H2O溶于10mLHCl中,用水稀释至100mL,混匀。

EDTA标准溶液c(EDTA)≈0.02mol/L称取EDTA7.5g于250mL烧杯中,加入200mL水,稍加热溶解,冷却后,转入1000mL容量瓶中,用水稀释至刻度,混匀。用锆标准溶液标定其滴定度。

标定:吸取20mL已校准锆标准溶液于250mL锥瓶中,加20mL水,并以1mol/LHCl稀释至50mL,加热至近沸,加入1滴SnCl2溶液、0.2g甲基百里酚蓝指示剂,用EDTA标准溶液滴定至溶液由蓝色变为淡黄色即为终点,计算EDTA标准溶液对锆的滴定度T(mg/mL)。

锆标准溶液ρ(ZrO2)≈2mg/mL称取5.2820gZrOCl2·8H2O,加入5mL(1+1)HCl溶解后,转入1000mL容量瓶中(有沉淀时需过滤),加入350mL(1+1)HCl,用水稀释至刻度,混匀,校准后使用。

校准:移取上述锆标准溶液20.0~25.0mL置于250mL烧杯中,加入50mL(2+8)HCl,加热至85℃,加入3g苦杏仁酸,充分搅拌后,置于85℃水浴中保温30~40min,取下,静置过夜。翌日用定量滤纸过滤,用(2+8)HCl-20g/L苦杏仁酸洗液洗涤沉淀6~8次,灰化后,沉淀在900℃灼烧至恒量。求得锆标准溶液的浓度(mg/mL)。

甲基百里酚蓝指示剂称取0.2g甲基百里酚蓝和20gNaCl于瓷研钵中,混匀并研磨成粉末,贮于棕色玻璃磨口瓶中。

分析步骤

称取0.1~0.5g(精确至0.0001g)试样,于预先盛有赶去水分的1~2gNa2B4O7的镍坩埚中,再加4~5gKOH(如为难熔矿样可再加2gNa2O2),置于高温炉中升温至650~700℃,熔融15~20min,取出稍冷,放入250mL烧杯中,加入100mL沸水浸提,用水洗出坩埚,煮沸片刻,过滤,用KOH溶液洗涤6~8次,然后用20mL热的4mol/LHCl溶解滤纸上的沉淀,溶液收集于100mL容量瓶中,待过滤完后,将滤纸移入原烧杯中,加20mL4mol/LHCl,加热煮沸,过滤,滤液合并于100mL容量瓶中,用(2+98)HCl洗至滤纸上无铁(Ⅲ)离子的黄色,冷却,用(2+98)HCl稀释至刻度,混匀。

分取10.0~25.0mL试液(使二氧化锆量在1.5~50mg之间)于250mL锥形瓶中,补加2mol/LHCl至40mL,使酸度为1mol/LHCl,并加40mL水,加5滴(1+1)H2SO4,加热至近沸,滴加SnCl2溶液还原至铁(Ⅲ)的黄色刚好褪去,加0.1g甲基百里酚蓝指示剂,用EDTA标准溶液滴定至溶液的颜色由蓝色变为淡黄色,再将溶液煮沸,如溶液返回蓝色,继续滴定至溶液变为黄色即为终点。

按下式计算试样中ZrO2和HfO2的合量:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:w(B)为ZrO2和HfO2合量的质量分数,%T为EDTA标准溶液对ZrO2的滴定度,mg/mLV1为分取试样溶液体积,mLV2为消耗EDTA标准溶液体积,mLV为试样溶液总体积,mLm为称取试样的质量,g。

注意事项

1)EDTA能与多种金属离子配位,但在1mol/LHCl介质中,加热近沸的条件下,只有锆(铪)的离子配合物最稳定。在上述条件下,锆以ZrO2+形式存在,与EDTA生成组成为1∶1的稳定配合物,而Zr4+则与EDTA生成组成为1∶2的配合物,因此,须将溶液煮沸,使锆全部转化为ZrO2+形式。

2)本法也可用二甲酚橙作指示剂,溶液的盐酸酸度应控制在0.8~1.2mol/L,酸度过大,难于判别滴定终点。其他条件同上。

3)无论以甲基百里酚蓝或以二甲酚橙作指示剂,滴定锆时都会出现终点“回头”现象。加入5~10滴(1+1)H2SO4可降低或克服“回头”现象,但加入过多,会使终点提前,使结果偏低。

4)如溶液中含有微量铌和钽,则出现假终点。如铌和钽含量较高,由于铌、钽的水解,使锆的测定结果偏低。若溶液中存在大量的铌和钽,可在碱性溶液中,以大量的钾盐使其生成可溶的铌酸钾和钽酸钾,经过滤分离除去大部分。残留的微量铌和钽,可在溶液中加入氟化钠以防止铌和钽的水解和滴定过程中出现假终点,过量的氟离子用铝盐掩蔽。分析步骤如下:

试样碱熔,提取,过滤,洗涤后的氢氧化物沉淀,用50mL热的含10g/LNaF的4mol/LHCl溶解于100mL容量瓶中,用(1+99)HCl洗至无铁(Ⅲ)离子,冷却,用水稀释至刻度,混匀。取试液5.0~25.0mL于250mL锥瓶中,补加2mol/LHCl至40mL,加4~5gAlCl3,于电炉上加热至溶液清亮,取下,加水40mL,以下分析步骤同上。

60.2.2.3 纸色层分离-偶氮胂Ⅲ光度法测定铪

方法提要

在硝酸介质中,以磷酸三丁酯-正丁醇-二甲苯为流动相,氯化铵为固定相,用纸色层法分离锆和铪,在规定条件下,锆的比移值(Rf)为0.7,铪的比移值(Rf)为0.4,两元素的分离效果很好。

在7mol/LHCl介质中,以偶氮胂Ⅲ光度法测定铪,最大吸收波长650nm,0~30μgZrO2符合比耳定律。对本法有干扰的物质:锆、铁(Ⅲ)、钍、铀、铈、草酸盐、磷酸盐、硝酸盐、过氧化氢等,通过苦杏仁酸沉淀和纸色层法分离完全。

本法适用于锆钛砂、锆英石中铪的测定,最低测定限为0.05%。

仪器

分光光度计。

试剂

焦硫酸钾。

氢氧化钾。

氯化铵。

尿素。

盐酸。

硝酸。

氢氧化铵。

磷酸三丁酯。

正丁醇。

二甲苯。

无水乙醇。

盐酸羟胺溶液(200g/L)。

偶氮胂Ⅲ溶液(0.5g/L)。

偶氮胂Ⅲ溶液(1.5g/L)配制时需过滤。

色层纸的处理将中速滤纸裁剪成29cm×15cm,竖向的三分之二浸入50g/LNH4Cl溶液中,取出风干或烘干。

展开剂取磷酸三丁酯、正丁醇和二甲苯按(10+7+4)混合,置于1000mL分液漏斗中,加100mL(1+1)HNO3,振摇100次,放置分层,弃去水相,将有机相转入干燥器中,展开剂的量以能使色层纸浸没1~2cm为宜。

铪标准储备溶液ρ(HfO2)=100.0μg/mL称取0.1000gHfO2于瓷坩埚中,加4gK2S2O7,低温加热赶去水分,于高温炉中900℃熔融10~15min,以(1+9)HCl浸提并洗出坩埚,煮沸,用氢氧化铵中和至析出沉淀再过量5mL,煮沸稍冷后过滤,以(5+95)NH4OH洗涤硫酸根,再以(1+1)HCl溶解沉淀,转入1000mL容量瓶中,定容,混匀。

铪标准溶液ρ(HfO2)=10.0μg/mL以(1+1)HCl稀释铪标准储备溶液配制。

校准曲线

移取含HfO20.0μg、5.0μg、10.0μg、15.0μg、20.0μg、25.0μg、30.0μg的铪标准溶液,分别置于一组25mL比色管中,以(1+1)HCl稀释至10mL,加2.5mL无水乙醇、1mL盐酸羟胺溶液,用力混匀。静置片刻,再加入10mLHCl和1.5mL1.5g/L偶氮胂Ⅲ水溶液,用水稀释至刻度,混匀。用1cm比色皿,于分光光度计650nm波长处,以试剂空白作参比测量吸光度,绘制校准曲线。

分析步骤

将60.2.2.1苦杏仁酸重量法的ZrO2和HfO2沉淀中,加入4gK2S2O7,于高温炉中900℃熔融10~20min,以(1+9)HCl浸提和洗出坩埚,并以(1+9)HCl调整体积约100mL,加热使盐类溶解。用氢氧化铵中和至沉淀完全,再过量5mL,煮沸,稍冷后过滤,以(5+95)NH4OH洗涤硫酸根(可用氯化钡溶液检查),再用水洗涤3~4次。沉淀以热的7mol/LHNO3溶解于25mL或50mL容量瓶中,冷却后,以7mol/LHNO3稀释至刻度,混匀。

分取0.50mL或1.0mL上述试液,均匀地涂在色层纸上未浸氯化铵溶液部分距底端5cm处,卷成圆筒放入盛有展开剂的大干燥器中,展开12~14h,使展开剂上升至29cm处,取出,稍烘一下,以0.5g/L偶氮胂Ⅲ溶液喷洒色层纸,显出蓝色锆、铪带(锆带在上,铪带在下),稍烘一下,剪下铪带,撕碎,放入150mL烧杯中,加入约0.5g尿素、20mL(1+1)HCl,置于沸水浴中边加热边搅拌,使色层纸成白色糊状,取下,以流水冷却,转入50mL或100mL容量瓶中,加入10mL或20mL无水乙醇(使溶液中乙醇体积分数!=20%),用(1+1)HCl洗净烧杯并入容量瓶中,用(1+1)HCl稀释至刻度,混匀。干过滤,移取10.0mL清液,置于25mL比色管中,以下按校准曲线进行测定。

按下式计算试样中二氧化铪的含量:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:w(HfO2)为二氧化铪的质量分数,%m1为从校准曲线上查得分取试样溶液中二氧化铪的质量,μgm0为从校准曲线上查得分取试样空白溶液中二氧化铪的质量,μgV1为分取试样溶液体积,mLV为试样溶液总体积,mLm为称取试样的质量,g。

注意事项

1)用纸色层分离锆和铪时,需注意:①色层纸的湿度。色层纸用50g/LNH4Cl溶液浸过后,注意不能烘焦,否则会阻碍展开剂上升也不能太湿,否则锆、铪的分离效果不佳,最好是烘干后置于干燥器中存放。试液上色层纸后不能烘干,否则锆、铪水解不能分离。②层析环境的温度。温度高展开得快,但效果不好在15~25℃,一般展开时间为12~14h。③展开剂的重复使用次数。一般可连续使用5次左右,如使用次数过多,将影响分离效果。磷酸三丁酯的质量对分离效果有影响,可能是其中含有的其他有机磷酸酯影响分配系数引起的。④上色层的锆、铪量。为达到理想分离效果,上色层的锆、铪量不宜大于15mgZrO2和0.2mgHfO2。

2)经苦杏仁酸沉淀分离的锆、铪,用本法进行纸色层分离时,可以见到明显的蓝绿色的锆(上端)和铪(下端)两个色带。当试样未经苦杏仁酸沉淀分离,直接进行纸色层分离时,则会出现5个色带,分别是铀和钍、锆、铪、稀土,其他元素留在原点。如果杂质较多时,可能使铪不能完全展开因此,如果试样中稀土(主要是铈)及铁含量不高时,可不必用苦杏仁酸沉淀分离杂质元素,直接进行纸色层分离,将由原点至铪带处的色层纸剪下,光度法测定铪。分析步骤简述如下:

试样经碱熔,用水浸提,过滤,沉淀以(1+3)HCl溶解,用氢氧化铵沉淀一次,过滤,洗涤后,将沉淀制成50mL7mol/LHNO3的溶液。分取0.50~1.0mL溶液进行色层分离,以下步骤同上。

3)用(1+1)HCl处理铪的色层纸时,温度不宜太高,不能进行煮沸否则铪的回收率严重偏低。可在水浴上加热。加入尿素是为了破坏色层上的硝酸。加入无水乙醇是为了使有机相(即铪的色带所含有的少量展开剂)能与水相混成均相,而使铪完全溶解于盐酸溶液中。必须控制乙醇的加入量,太少时铪不能完全溶解于盐酸溶液中,太多时则会影响光度法测定。当显色溶液中含!=10%的乙醇时,25mL溶液中HfO2含量在0~30μg符合比耳定律。

4)以偶氮胂Ⅲ显色时,各溶液(包括标准系列)的酸度必须严格控制一致,吸光度会随着酸度的升高而增大。

5)如同时测定锆和铪,可将试样经碱熔,用水浸提,过滤,沉淀以(1+3)HCl溶解,并用(1+3)HCl稀释至50mL或100mL,然后分取部分溶液进行苦杏仁酸沉淀-色层分离-光度法测定铪。另取部分溶液用重量法或EDTA滴定法测定锆(铪)合量后,减去铪的量即为锆的含量。

6)试样中如铌、钽含量较高,应预先分离除去。

糟糕的期待
紧张的樱桃
2026-02-02 09:12:51

一、高岭土的选矿

高岭土的选矿过程,实质上是分选出高岭石族矿物、多水高岭石族矿物和其他粘土矿物,除去石英、长石、云母以及磁铁矿、褐铁矿、赤铁矿、软锰矿、硬锰矿、金红石等非粘土独立矿物的过程。可分为干法选矿和湿法选矿。

(一)干法选矿

干法选矿工艺是一种简单经济的加工工艺,大致过程为:

原矿→干燥→破碎→粉碎→磨细→除砂→除铁

干法选矿可省掉产品脱水和干燥过程,减少微粉流失工艺流程短,生产成本低,适合于干旱缺水地区。但产品质量受原矿质量的影响较大,且不稳定。

(二)湿法选矿

湿法选矿工艺包括矿石准备、选矿加工和产品处理三个阶段。

1.矿石准备阶段

包括配料、破碎和泥料的捣浆分散作业。捣浆是将高岭土原矿与水、分散剂混合在捣浆机内制浆,捣浆作业可使原矿分散,为分选作业制备适当细度的高岭土矿浆,并同时去掉大粒砂石。在高岭土湿选工艺中,首先将原矿制成泥浆,使矿物以颗粒状单体形态在水中解离,颗粒大小以微米为单位,甚至于更小。为了使高岭石族矿物与杂质矿物(如石英、长石、云母、黄铁矿、钛铁矿等)分离,就必须使粘土颗粒分成细、中、粗三个粒级。高岭土颗粒界面上带着相反电荷,颗粒之间相互吸引产生絮凝呈絮团状,这样就需添加适当的分散剂,使之电离后吸附在带电荷的高岭土表面,使其具相同的电荷而相互排斥,此时泥浆便具有流动性(矿浆的浓度一般为5%~14%)。矿浆中的矿物颗粒只有达到充分分散,才能有效地进行分级和选别。一般粘土悬浮液呈现中性—碱性(pH=8)时,便显示稳定的分散状态。常用的分散剂有如下几种:

调整pH:氢氧化钠(NaOH),碳酸钠(Na2CO3)

沉淀Ca2+:草酸铵(NH4)2C2O4

络合Al3+,Fe3+:柠檬酸钠(Na3C6H5O7·2H2O)络合多价金属离子:水玻璃(Na2O·mSiO2),焦磷酸钠(Na4P2O7),六偏磷酸钠(NaPO3)6。

2.选矿阶段

选矿阶段包括除砂、分级、浮选、化学漂白、磁选等,以除去不同杂质。

(1)除砂

湿法除砂,即主要去掉石英、长石、云母等碎屑矿物和岩屑等较粗粒的杂质,同时也可除去部分铁钛矿物。常用耙式浮槽式分级机、螺旋式分级机、水力旋流器和振动筛等进行。我国小矿山采用自然沉淀除砂,再进入沉淀池浓缩、经沉降脱水干燥后生产出砖块状的高岭土坯子。这种产品一般用于陶瓷工业。在机械化选矿厂,则先用单轴捣浆机除去部分粗砂,而后再进入水力旋流器或振动筛等进一步除砂。据报道,目前国外有一种用于除砂的新型设备———工业型叶轮机(德国产),经过工业考核,其可以取代现有生产所用的螺旋分级机和振动筛的生产工艺。

(2)分级

目前我国生产高档产品,特别是涂料级高岭土产品,主要采用分级方法。

1)水力分级:将原矿用水在搅拌条件下,制成泥浆悬浮液,使粘土矿物和杂质矿物以颗粒状单体形态分散于水中,同时加入适当的分散剂,自然沉淀后,收集上层高岭土悬浮液。

2)各种分级机:水力旋流器、振动细筛,分成粗、细两个粒级。

在造纸涂料加工过程中,2μm粒级含量一直作为工作指标的控制点,要求粒度尽量均匀,既要小于2μm,又要防止研磨时发生过粉碎,因此必须分级。所谓分级就是利用矿物颗粒的大小或密度的差别来分离矿物,若组成矿浆的矿物粒度相差大,则一般用筛网分级若相近,则据其密度差别进行选别。常用的分级设备有水簸、水力旋流器、离心机等。

高岭土深加工工艺中的超细分级,在国外多采用卧式螺旋离心机,一般结构的卧式螺旋离心机在处理过程中,由于螺旋的搅动,中粗颗粒很难沉降,而随溢流带走,同时又夹带着相当部分的细颗粒由螺旋推送到出渣口排出,这样使得分级效果不好。目前国外较先进完善的粒子分级装置首推美国所产的专利离心机。

(3)浮选

浮选法是在提纯高岭土中应用十分广泛的选矿工艺,目前工艺和设备也在不断改进更新,使得高岭土精矿获得更高的白度,而满足工业需要。

浮选是采用一定的悬浮设备和浮选药剂,除选出杂质矿物的提纯方法。因高岭土原矿所含的杂质不同,所采用的浮选方法、药剂和设备也不一样。常用的有泡沫浮选、背负浮选、双液层浮选和选择性絮凝浮选等。泡沫浮选对处理几微米以下的矿物,特别是一些难选的矿物效果不大,一般不常用。

1)超细粒悬浮法:超细粒浮选(又称背负浮选)能处理100%小于3μm,其中48%小于0.5μm的矿物(如锐钛矿、石英砂、电气石和氧化铁等),是选别微细粒矿物极为有效的工艺之一。该法是采用油酸(塔尔油、燃料油)作捕收剂,松油作起泡剂,硅酸钠作分散剂,可溶性的碱土金属盐(石油磺酸钙)作助选剂,用氢氧化铵调整pH值(一般pH=9左右),采用-325目的方解石、石英、萤石、重晶石等作载体,用来捕集要分选的微细矿物杂质,这种方法的实质是用载体增大矿物与气泡的碰撞率和接触面,在浮选过程中,吸附捕收剂的载体背负着杂质颗粒上升到泡沫层,而随泡沫溢流排出,高岭土为底流产品,这样便达到分离的目的。残留在粘土中的化学药剂及载体矿物对最终产品有害,必须尽可能地除去。载体矿物从泡沫中回收后,可以加以循环使用。一般情况下,载体矿物粒度的减小,搅拌强度的提高,能显著提高载体矿物与微细悬浮矿粒的碰撞速率,对提高分选指标非常有利。另外对载体矿物预先进行疏水化处理是提高铁脱除率的一项必不可少的措施。

超细粒浮选的优点是可采用普通设备和浮选药剂,分选效果好,一般能除去70%的铁钛杂质,白度可达90以上。缺点是工艺流程复杂。

2)双液层浮选法:双液层浮选法是在超细粒浮选的基础上发展而来的,这种方法是先在高岭土矿浆中加入分散剂,调整pH在5~11范围之间,再加入能选择性地捕集其中一种矿物的阳离子捕集剂(脂肪酸类)和四氯化碳,然后用有机液(工业煤油)调和,矿浆在pH=8~12时,乳化而形成高岭土—水层和杂质—有机液层两种液体层,提纯的高岭土从水相中回收,杂质矿物从油相中除去,这种方法的特点是不使用矿物载体,而只用能捕集杂质的憎水性捕集剂和非极性的有机液处理矿浆,浮选过程可在水力旋流器或重力沉淀池中进行,分选前须调整矿浆的固含量并加入适当的分散剂,以得到最佳的分选效果。英国高岭土公司(ECC公司)采用此法进行分离高岭土中电气石等杂质的研究,其在粘土矿浆中添加硅酸钠和碱作分散剂,以工业煤油作调和剂,脂肪酸作捕集剂,搅拌混合后静置,两液分层,纯净的高岭土从液相回收,电气石从油相回收。使用过的调和剂(工业煤油),清除杂质后可重复使用。这种方法的缺点是成本较高。

3)选择性絮凝浮洗法:

①选择性絮凝高岭石。此法是使用一种阴离子絮凝剂(如高分子絮凝剂聚丙烯酰胺),通过桥键作用,将高岭石连接成一种松散的网状的聚集状态,沉淀于底部。对薄片状的高岭石,由于其层面与端面的电化学性质不同,其中端面与絮凝剂(聚丙烯酰胺)相互作用强烈,这种聚合物和端面的吸附形成桥键,引起端面与端面的絮凝,结果引起颗粒与颗粒之间的絮凝沉向底部。

其他矿物留在悬浮液中,静置一定时间后,倒出悬浮液,将絮凝物在清水中搅拌成悬浮液后再进一步分离。

②选择性絮凝石英、明矾石等杂质。高岭石与杂质矿物的电化学性质差异较大,也可选择一定的絮凝剂,将石英等杂质絮凝,使细微的高岭土呈分散状态悬浮状态,用虹吸或倾析法,使高岭土矿浆与絮凝杂质分离。进而可获得纯度高、粒度细的高岭土产品。

这种方法是近20年来发展起来的被认为是细粒选矿中最有前途的有效工艺之一,美国、俄罗斯、英国、德国、捷克等均采用了这种工艺,使得高岭土的分选能力和选矿回收率均有所提高。

我国在20世纪70年代末开始进行高岭土选择性絮凝浮选的研究,主要是除明矾石,并取得了一定的成果。试验中采用水玻璃作分散剂,水解的聚丙烯酰胺作絮凝剂,加Ca2+活化矿浆,结果矿石脱硫率可达65.72%。试验中絮凝剂浓度为160×10-6,絮凝剂聚丙烯酰胺水解度为70%,沉降时间为180min,pH=9.5~10,水玻璃用量为400×10-6时效果最佳。在矿浆中添加Ca2+可使高岭土和明矾石产生不同的絮凝效果,明矾石絮凝明显活化,当CaCl2达40×10-6时,明矾石絮凝回收率可达92%。

(4)漂白

高岭土的漂白主要是除去高岭土中的铁、钛氧化物着色杂质和染色的有机物。

1)化学漂白:采用化学方法可以除去牢固覆盖在高岭土颗粒表面的氧化铁膜。因为这部分铁采用磁选和浮选法很难除去,这就必须采用化学漂白进行处理,即采用化学方法溶出铁、钛等着色杂质再漂洗出去。常用的化学漂白法方法有氧化还原法、酸溶法、氯化法等。

还原法:该法的实质就是使高岭土中难溶性的Fe3+还原成可溶性的Fe2+,而后洗涤除去,从而提高高岭土的白度。这是高岭土工业中传统的除铁方法。在漂白前矿浆流入搅拌机搅拌,并要加入絮凝剂絮凝后,再进行漂白。常用的还原剂有:连二亚硫酸钠(又称保险粉)、硫代硫酸钠、亚硫酸锌等。

此过程可使难溶的Fe3+→Fe2+,然后洗涤除去。

影响漂白效果的因素有很多,如矿石的特征、温度、pH值、药剂用量、矿浆浓度、漂白时间、搅拌强度等。若矿石中杂质呈星点状、浸染状,含量低,那么可以得到较好的漂白效果,白度显著提高。若矿石中含有机质、杂质含量高,那么漂白效果差,白度提高的幅度不大。漂白过程中的温度一般宜在常温下,太高,虽然能加快漂白速度,但热耗量大,药剂分解速度过快,造成浪费并污染环境过低,反应缓慢,生产能力下降。矿浆的pH值调整到2~4时,漂白效果最佳。药剂用量方面,一般随着用量的增大,漂白速度加快,白度也随之提高,但达到一定程度时,白度不再增长。矿浆浓度以12%~15%为宜。漂白时间既不能过长,也不能过短,时间过长既浪费药剂,又降低了高岭土的质量,因为空气中的氧会导致Fe2+氧化成Fe3+过短,白度达不到要求。反应完毕后,应立即进行过滤洗涤,否则表面会逐渐发黄。对于产品发黄问题,20世纪70年代美国曾有专利介绍了添加磷酸盐可避免返黄。具体方法是:先加连二亚硫酸钠进行还原漂白,过一定时间后,加入磷酸盐。经验证,漂白后的产品能够达到永久性的漂白。采用连二亚硫酸盐对高岭土进行漂白,在一定程度上可使高岭土的白度和亮度显著提高,但这种还原剂性质极不稳定,受热、受潮或敞露于空气中都能发生分解。在漂白过程中有相当量的Na2S2O4消耗在自身的分解反应中,为了避免这种浪费,近几年来已研究出几种改进方法,如锌粉漂白法、硼氢化钠漂白法、二氧化硫电解法等,这些方法的相同点在于:在漂白过程中即时产生Na2S2O4,从而避免了药剂的浪费,降低了成本,同时也获得了较好的漂白效果。

对含黄铁矿、有机质的高岭土,一般采用氧化漂白法,即使处于还原状态的黄铁矿氧化成可溶性的硫酸亚铁和硫酸铁,同时氧化有机质,使其变成易被洗去的无色氧化物。据资料,国外采用了一种氧化-还原联合漂白法,并通过试验证明这种方法比单纯的还原或氧化漂白效果更佳。如美国佐治亚州高岭土,原土<2μm含量为80%,白度70.2%,制成20%的泥浆后,加入还原剂(Na2S2O4)漂白,白度增高到72.0%,显然,这种效果并不令人满意。如果在泥浆中先加入双氧水(过氧化氢)、次氯酸钠等氧化剂,让高岭土中着色杂质反应完全,然后再加入Na2S2O4漂白,其白度可提高到85.0%。

酸溶法:利用高岭土耐酸不耐碱的性质,用酸液(HCl、H2SO4、草酸)处理高岭土,使其中不溶化合物转变成可溶化合物,而与高岭土分离。一般为了使杂质充分溶解,可同时加入氧化剂(过氧化氢等)或还原剂(氯化亚锡、盐酸羟胺等)。酸溶漂白的效果与铁矿物的赋存状态、酸的用量、反应温度等有关,呈浸染状赋存于高岭土表面的赤铁矿易溶于盐酸而被除去,含钛矿物的高岭土很难用此法除去杂物而提高白度。

用硫酸处理高岭土,需在压力为2×155Pa的压力锅中持续2~3h,采用8%~10%H2SO4溶液且须过量,处理后洗去Fe和剩余酸,用这种方法可除去高岭土中约90%的Fe2O3。采用比例为1∶2的浓硫酸和硫酸铵的混合液在100℃下处理高岭土持续2h,过滤悬浮液并用硫酸清洗,钛、铁杂质都可清除。用0.1%~0.5%的草酸或草酸钠的热溶液,可使赋存于磨细的高岭土颗粒表面的铁钛化合物溶解而除去。

国外的高岭土漂白研究中新的进展:如在高岭土粉末中加入NH4Cl,在加到200~300℃时与高岭土中的铁反应,冷却后,用稀盐酸浸出铁的生成物FeCl3,即可漂白。目前正处于试验阶段,这种漂白需要在高温密闭条件下进行。

2)生物除铁漂白:利用某些微生物(细菌,真菌)具有从氧化铁(褐铁矿,针铁矿)中溶解铁的能力。利用微生物这种溶解铁的能力,可将高岭土中所含铁杂质除去。微生物这种溶解铁的能力,情况很复杂,原因尚不清楚,有人认为与起复合剂作用的有机酸和其他新陈代谢物的形成有关,也与酶解和非酶解对铁的还原作用有关。

目前已研制出一种两步处理方法:首先制备培养液(即浸出剂),浸出剂是将菌株在30℃下置于营养媒介中培养而成的。营养媒介中含有3gNH4NO3,1gKH2PO4,0.5gMgSO4·7H2O和每升天然水中不等量的糖蜜。媒介最初的pH值约为7,这类微生物在表面或水中生成,培养所需的时间取决于培养方法和介质中糖浆的初始浓度,一般为5~14天,当糖浆的初始浓度高于150g/L时,最终的pH值总是小于2,浸出剂中有机酸的浓度约大于40g/L。草酸与柠檬酸的含量之和占整个有机酸含量的95%以上,在人工合成的含同量有机酸的浸出剂中加盐酸酸化至pH=0.5,也可取得同样的浸取效果。浸出剂制备好后,在90℃下用浸出剂浸滤高岭土,试验中采用11种不同品种的高岭土,其Fe2O3含量从0.65%~1.49%不等,Al2O3含量分别为32%~35.2%,铁以氢氧化物形式出现,主要是针铁矿,其在高岭土中呈包裹体存在,其余的铁则是从外部渗入且污染了高岭土菌丝体内。试验搅拌强度为400~600r/min,矿浆最佳浓度为20%~25%,处理时间为2~5h。结果见表7-3,从表中可看出,经过浸出剂处理后,Fe2O3含量从0.65%~1.49%可降至0.44%~0.75%,白度从55~87提高到86~92。而仅有少量的铝随铁一起从高岭土中浸出。延长浸取周期,可以浸出高岭土中更多的铁,但同时会使铝发生强烈溶解,所以一般浸出时间要适当控制。

3)磁选除铁漂白:几乎所有的高岭土原矿都含有少量的铁矿物(Fe2O3一般为0.5%~3%),主要有铁的氧化物、钛铁矿、菱铁矿、黄铁矿、云母、电气石等。这些着色杂质通常具有弱磁性,这样即可用磁选方法除去这些有害杂质。磁选是利用矿物的磁性差别而在磁场中分离矿物颗粒的一种方法,对除去磁铁矿和钛铁矿等高磁性矿物或加工过程中混入的铁屑等较为有效。对于弱磁性矿物,一种方法是可以先焙烧,待其转变成强磁性氧化铁后再进行磁选分离再一种方法就是采用高梯度强磁场磁选法。

表7-3 用各种微生物方法除去高岭土中的铁

(据郭守国等,1991)

A.高梯度强磁场磁选法

1973年,美国生产出第一台高梯度磁选机。1981年,我国长冶研究院研制出我国第一台半工业型周期式高梯度磁选机,已用于陶瓷原料的提纯。目前,高梯度磁选机已广泛用于高岭土等非金属矿的除铁。

高梯度磁选机工作原理:工作时先接通电流,线圈便产生磁场,钢毛即被磁化,接着自动打开给料阀、排料阀和流速控制阀,矿浆进入分选箱,通过被磁化的钢毛后,磁化物质被钢毛截留,其余未被磁化的料浆通过排料阀,打开冲洗阀,冲掉钢毛上的非磁性料浆,再关掉电源,钢毛磁性消失,再用水冲洗出被磁化的磁性矿物,整个过程按程序自动控制完成。

这种方法有两大特点,一是具有能产生高磁场强度(107Gs/cm数量级)的聚磁介质(一般为钢毛),二是有先进的螺丝管磁体结构。高梯度磁分离技术对于脱除有用矿物中弱磁性微细颗粒甚至胶体颗粒十分有效。这种方法优点是工序简单、产量高、成本低、无污染,能借助于调整分离操作参数来生产不同档次的产品,并可按需要控制生产成本,是一种效果好、适应性强的技术,具有较好的经济效益。缺点是设备投资高、耗电大。早在70年代美国就有不少厂家用此项技术全部或部分取代浮选、化学漂白等传统的提纯高岭土的方法。美国佐治亚中部地区的一些高岭土公司已将高梯度磁选作为标准的处理工艺。表7-4为不同产地的高岭土用PEM-5型高梯度磁机除铁、钛试验的结果。

表7-4 不同产地高岭土用PEM-5型高梯度磁选结果

(据郭守国等,1991)

从表中数据可以看出,高梯度磁机选矿中,有害杂质钛比铁易于除去。

B.超导磁选

随着高岭土矿体不断开采,高岭土原矿的质量逐渐降低,赋存于高岭土中的铁钛矿物的粒度也越来越小,高梯度磁选机也无法将几个微米下的弱顺磁性矿物分离出来。据报道,目前国外已有10多个国家正从事用超导磁选机对高岭土进行除铁、钛的研究。

超导磁选机由三个主体部件组成。一是超导磁体,它是由铌钛线或铌锡线绕制而成二是超低温制冷系统,用液氦、液氮制冷,使铌钛或铌锡磁体在4.2K下达到磁体无直流电阻的超导状态三是分选管道或分选装置,使要分选的矿粒或矿浆在超导磁场中将磁性矿物与非磁矿物分开。超导磁选机根据有无介质及其所产生的梯度不同可分为无梯度超导磁选机和高梯度超导磁选机两种,高岭土比较适合于用后种,这种磁选机可处理几个微米或亚微米级别极弱的顺磁场矿物。超导磁选机能长期运转,与常规磁选机相比,降低电耗80%~90%,仅此一项每年可节约15万美元,其占地面积为原来的34%,重量为原有的47%另外,其还具有快速激磁和退磁能力,可使设备减少分选、退磁和冲洗杂物所需的时间,从而大大提高了矿物的处理量。该设备处理能力为6t/h。

美国贝尔电话实验室建造了一种10万Gs的电磁体,电耗达1600kW,每分钟还需用4.5t水冷却。早在1976年,日本就制造出了一台17.5万Gs的超导磁体,是世界上最强的超导磁体,总耗电才15kW。

二、高岭土的剥片与超细粉碎

纸张、橡胶、塑料作填料,纸张涂料,化妆品增稠剂等应用领域,对高岭土的细度和形状有一定的要求,因此,必须对精选的高岭土进行剥片和超细粉碎,从而提高产品的质量,而一般常规方法难以达到这一目的。近年来,在超细加工工艺研究方面有了很大的进展,如采用超音速气流粉碎等方法提高了高岭土细度,从而为生产更多的涂料级和高档填料级产品开辟了新的途径,扩大了资源利用率,获得了较好的经济效益。高岭土的剥片与超细粉碎工艺主要有磨剥法、高压挤出法、气流粉碎法。

1.磨剥法

粗粒的高岭土往往是由许多单片叠加而成,剥片工艺就是用研磨方法把叠层状的高岭石聚集体(>2μm)剥离成为单片或减少叠层的层次。目前剥分采用的主要设备是鳞片研磨机,研磨介质有瓷珠、玻璃珠、人造刚玉珠、尼龙聚乙烯珠。珠的相对密度约2~4.5,直径为2~3mm。通过搅拌泥浆和细研磨介质组成的混合物,使磨介与磨介之间产生相互碰撞,而达到使高岭石剥离的目的。高岭石经剥分后,晶体结构一般未被破坏,新生面不被污染,能解离释放出高岭土中的着色杂质,通过沉降或离心分离除去。所以,在细度大大提高的同时,白度和光泽度也有所提高。用于造纸业,可大大提高纸张的光泽度和不透明性。工艺简单,但生产效率略低,能耗大。

2.高压挤出法

高压挤出法是将高岭土制成泥浆,在高压挤出装置中,用高压泵(最高可调到5.88×107Pa),将泥浆以950m/s的线速度从窄缝中摩擦挤出,高速喷射到处于常压的叶轮上,当物料离开缝隙时,压力突然降低便产生空穴效应,像爆米花一般,利用高剪切力加空穴效应原理使高岭石的晶面沿结合力较弱的氢键方向层层剥开,可生产小于2μm占80%的涂料级产品。

用此工艺处理的高岭土粒度范围是2~20μm。经试验证明,用高压均浆器一次处理后的料浆中小于2μm的粒级可由原来的18%提高到37%。如福建龙岩高岭土矿,原矿天然白度很高(75~80),高岭石含量为20%~30%,精选后高岭土为片状,粒度以2~5μm、5~10μm为主,达不到涂料级产品标准,采用高压挤压法后,可得小于2μm颗粒占80%以上的涂料级产品,获得了最大的经济效益。

3.气流粉碎法

气流粉碎法的实质是利用流体能量,使粉料受到很大的剪切碰撞、摩擦力等的作用。当作用力大于粒子本身的破坏应力时,粒子即被粉碎。该法是利用750m/s或更高的超高速气流为流体能量,在特殊装置内,使粉体颗粒相互碰撞达到碾磨,同时使碾碎的颗粒随同喷射的旋涡气流在粉碎机内设置的特殊分级室中分级,再通过离心作用,将分级旋流中的粗粒子甩向外边,通过回路管使之再循环回到超音速喷嘴,从喷嘴中高速喷射出来的颗粒再碰撞碾磨室中旋涡着的粗颗粒,只有被粉碎了的、小于一定粒度大小的细颗粒被排放出来,进入捕集器收集。经气流粉碎后,煅烧高岭土90%以上的粒度均在5μm以下,由此可见,采用此法可以收到良好的效果。

4.化学剥片法

化学剥片法又称化学分散法,它是将高岭石加到某种药剂中浸泡,使药剂进入到高岭石的晶体叠层以氢键结合的晶面层,破坏晶层间的氢键,使晶层间的结合力变弱。晶层间的相对位移就变得较容易,从而使晶体叠层出现“松解”现象。此时再施加较小的外力即可使叠层的晶片一层层剥落下来,产生的小鳞片近于单位的高岭石晶层。化学药剂很多:尿素(CO(NH2)2)的饱和溶液,联氨,联苯氨,乙酰胺丙烯酸。苏州非金属矿工业设计研究院沈长乐、蒋军等研究后认为:化学剥片法用于工业生产的最大障碍是药剂成本高,而不是药剂本身的剥片能力。但原苏联学者声称,他们已找到了廉价的剥片剂。

5.快速冷冻剥片法

英、美等国家正在着手研究这种剥片方法,它是将高岭土迅速通过装有液氮的超低筒体,高岭石晶层间的水突然被冷冻而结冰膨胀,晶层遭到破坏,微弱的氢键断裂,叠层状高岭石便变成一片片单一的晶体。

三、高岭土煅烧加工

将精选的高岭土在一定的温度下煅烧成不同用途的高岭土熟料,然后再破碎、粉碎分级。据用途不同,其煅烧温度不同,一般在800~1500℃,用于生产特种陶瓷、精密铸件、橡胶、塑料、耐火材料原料。

煅烧是改善高岭土性能的特殊加工方法。造纸涂料工业使用煅烧高岭土可以增加纸张的散射力和遮盖率,提高油墨吸附速度。用于电缆填料可增加电阻率。在合成4A沸石、生产氯化铝、冰晶石工业中,煅烧可以增加高岭土的化学活性。高岭土经高温煅烧后能增加白度,可部分代替价格昂贵的钛白粉。煅烧高岭土可用来生产莫来石。对于煤系高岭土,煅烧是必不可少的工艺,因煅烧能脱除炭质、提高白度。

高岭石在煅烧过程中随着温度的升高,会产生不同的相变,煅烧相变过程的反应式如下:

非金属矿产加工与开发利用

从反应式可看出,500~700℃之间脱除结晶水,生成偏高岭石,仍保持片状形态。925℃后产生硅尖晶石相。1100℃时产生似莫来石相。1400℃产生莫来石。

高岭土煅烧温度的选择,视用途而定。作为电缆填料、化工产品,温度宜选用700℃左右。生产造纸涂料,宜选择800~900℃,此时产生的偏高岭石仍保持了片状形态。生产高白度和高亮度的填料,温度可选择1000℃左右。生产莫来石时,温度应大于1400℃。

为提高煅烧高岭土的白度,可加入煅烧添加剂。添加剂的品种有多种,要根据矿石的性质,合理选用添加剂。

四、表面改性处理

高岭土用于塑料、橡胶、油漆、电缆的填料,为使其与各种有机高分子材料容易均匀的分散,并更牢固的结合,需在高岭土表面包覆一层有机偶联剂,此过程称为表面改性。偶联剂与高岭土的结合,有化学反应、物理吸附或二者兼有。常用的偶联剂有硅烷、钛酸酯、铝酸酯、硬脂酸及其皂类。

改性方法有干法和湿法,干法比湿法效果好。常用的设备为高速捏合机。在改性生产中,高岭土则直接与有机材料在一定温度下掺和,在单螺杆或双螺杆捏合机中进行。

改性效果的检测,用红外光谱能准确地测出偶联剂的包覆面积。简便的方法是用疏水法:取少许改性后产品,放入盛有清水的烧杯中,用玻璃棒搅拌一两分钟,静止后观察水中的浊度。改性效果好的高岭土是疏水的,它漂浮在水的表面而不下沉。

光亮的微笑
阔达的白猫
2026-02-02 09:12:51

可以吃。

大蒜中天然含有一些含硫化合物、氨基酸和有机酸类物质。这些物质本来是无色的,但在低温和酸性条件下,大蒜中的吡咯基氨基酸类物质与丙酮酸反应生成黄色素,与含硫的烯丙基硫代亚磺酸酯反应生成蓝色素。它们叠加在一起就呈现出绿色。

扩展资料

大蒜营养成分相当的丰富,而且还具有很好的食疗以及药用价值。大蒜鳞茎中含有丰富的蛋白质、低聚糖和多糖类、另外还有脂肪、矿物质等。100g新鲜大蒜含蛋白质为4.4g、脂肪为0.2g、碳水化合物为23g、粗纤维为0.7g、灰分为1.3g。

大蒜中还含有丰富的含硫化合物,其中大蒜素具有杀菌、抑菌、抗癌、抗衰老等医疗保健功能。

参考资料来源:人民健康网-大蒜变绿是农药用多了吗?