建材秒知道
登录
建材号 > 甲苯 > 正文

指甲油的成分

糊涂的酒窝
欣慰的万宝路
2023-01-26 12:40:05

指甲油的成分

最佳答案
壮观的香烟
务实的微笑
2026-02-02 21:31:18

一般指甲油的成分

1.溶剂或稀释剂:

把指甲油滴在保丽龙上会产生凹陷及溶解保丽龙,主要是因为溶剂的关系,其目的在让指甲油色泽均匀及快干,长时间涂抹情况下可能会引起甲面粗糙及无光泽。

2.主要薄膜形成剂:

主要形成指甲油涂抹后薄膜的成分。

3.次要薄膜形成剂:

增加指甲油涂抹后薄膜的柔软度、强韧度及减低脆性,但有些成份会引起过敏性接触性皮肤炎的可能性。

4.塑形剂:

让产品柔软易涂抹及增加可塑性。

5.色剂及色料:

让产品有各式各样的颜色,矿物性或合成性色料都有。

6.附属成分:

A.分散剂:让产品色料能均匀分散。

B.安定剂:增加产品的安定性及稳定性。

(1)化学性防晒剂: Benzophenone-1/-3, Octyl methoxycinnamate, Octyl salicylate

(2)防腐抗氧化剂: Citric acid, Tocopheryl acetate

C.强化剂:增加指甲油涂抹后薄膜的耐久性及持久性。

五颜六色的指甲油,很多人爱用。但台湾的消基会调查发现,指甲油的成分复杂,有些甚至含环境荷尔蒙成分,会引发癌症、并会影响胎儿发展。专家建议,一般消费者没事少擦指甲油;为了胎儿的健康,孕妇更不宜使用。

稀释指甲油其实也很简单哦!

用香蕉水(一种化工原料)兑在指甲油里面就可以了,

更简单的就是买一瓶指甲油稀释液

很多地方都有卖,DHC有,网站上也有的卖,去搜下就找得到了

最新回答
腼腆的绿茶
忧虑的飞机
2026-02-02 21:31:18

融铅浴,后改用氯化钠和氯化钙盐浴,以后使用催化活性低的金属(如镍铬合金)制成的电阻加热器。反应中要避免局部过热以及在高温区停留过长,以防止生成炭和大量的多联苯,实际生产过程常采用很高的物料流速并加入过热蒸气或高温烟道气进行稀释。当有催化剂(MgO、ThO2和CoO等)存在时,在较低温度下即可获得较高的联苯产率。

联苯的另一来源是甲苯热脱烷基制苯时的副产物。随着甲苯热脱烷基制苯方法的发展,副产联苯将逐渐成为联苯的主要来源。

平淡的可乐
懦弱的裙子
2026-02-02 21:31:18
应用领域

工业

(1)生产苯酚

苯甲酸经液相氧化可以生产苯酚。日前主要生产国有荷兰、美国和加拿大,近年来鲁姆斯(Lumus)公司开发了苯甲酸气相氧化制苯酚工艺。

(2)生产对苯二甲酸

对苯二甲酸是合成纤维涤纶的原料之一。苯甲酸钾发生歧化反应生成对苯二甲酸钾和苯,用酸处理反应混合物,可得对苯二甲酸,副产钾盐可循环使用。世界上绝大部分对苯二甲酸是以对二甲苯为原料生产的,而对二甲苯比甲苯要贵得多 。

(3)生产己内酰胺

己内酰胺是生产尼龙的原料,一股都用苯酚和环己烷生产,也可以用苯甲酸生产。

(4)化工中间体

苯甲酸可以作为生产苯甲酸酯和苯二甲酸酯的中间体,苯甲酸酯和苯二甲酸酯是重要的增塑剂。苯甲酸经溴化反应可以制得溴苯甲酸,间-溴苯甲酸可以作为电照像材料的粘合剂。

(5)增塑剂

苯甲酸分别与二甘醇、三甘醇、二丙二醇反应分别生成重要的常见的树脂增塑剂二甘醇二苯甲酸酯(DEDB)、三甘醇二苯甲酸酯(TEDB)和二丙二醇二苯甲酸酯(DPGDB),广泛用于树脂、涂料和粘合剂的生产 。这些酯佛点高,化学稳定性好,主要用作聚氯乙烯树脂,聚醋酸乙烯树脂和聚酯树脂的增塑剂,此外苯甲酸苄酯还可作醋酸纤维素和硝化纤维素树脂的增塑剂。

(6)缓蚀剂

苯甲酸钠有缓蚀作用,如把苯甲酸钠加入汽车冷却系统的冷却水中(苯甲酸钠浓度为1.5%)可防止冷却系统生锈和腐蚀。若该冷却装置中包含有铸铁,还需同时加入亚硝酸钠增加缓蚀效果。此外还可以把苯甲酸钠掺入包装纸浆、胶乳涂料、漆、切削油和机器油中防止金属腐蚀。

(7)涂料

苯甲酸还可用于改进各种醇酸树脂涂料的光泽、粘性、强度和耐化学腐蚀性。苯甲酸盐和苯甲酸可终止醇酸树脂高聚物的链增长,促进产品的结晶度。将苯甲酸引入醇酸树脂之后可使漆膜快干,但又不似苯乙烯那样不耐溶剂。改性后的醇酸树脂制成的漆膜的光泽、硬度和耐水性等都有所提高。

(8)染料载体

苯甲酸、苯甲酸丁酯大量应用在聚酯纤维染色中,在疏水的聚酯纤维染色时,它们可作为染料载体。

(9)润滑剂

苯甲酸钠可以作为金属加工、药品生产中的润滑剂。

发嗲的大船
简单的铅笔
2026-02-02 21:31:18
它们都是芳香烃。

具有芳香性的烃称为芳香烃,一般是指分子中含有苯环的化合物。广义的芳香烃应包括非苯芳烃。甲苯、乙苯和丙苯可以被强氧化剂氧化,是苯环上的甲基、乙基、丙基被氧化了。

苯的同系物的通式是CnH2n-6 (n≥6的正整数)。芳香烃的π电子数为4n+2 (n为非负整数)。

近代物理方法证明:苯分子的六个碳原子和六个氢原子都在一个平面内,因此它是一个平面分子,六个碳原子组成一个正六边形,碳键键长是均等的,约为140 pm,介于单键和双键之间。碳氢键键长为108pm,所有的键角都为120°。

从结构上看,苯具有平面的环状结构,键长完全平均化,碳氢比为1。从性质上看,苯具有特殊的稳定性:环己烯的氢化热ΔH=-120kJ/mol,1,3-环己二烯的氢化热ΔH=-232kJ/mol(由于其共轭双键增加了其稳定性)。而苯的氢化热ΔH=-208kJ/mol。1,3-环己二烯失去两个氢变成苯时,不但不吸热,反而放出少量的热量。这说明:苯比相应的环己三烯类要稳定得多,从1,3-环己二烯变成苯时,分子结构已发生了根本的变化,并导致了一个稳定体系的形成。

最简单的联苯是二联苯。在二联苯中,每个苯环都保持了苯的结构特性。连接两个苯环之间的单键可以自由旋转,但当二联苯的四个邻位氢原子都被相当大的基团取代时,单键的旋转将会受到阻碍,并产生出一对光活性异构体。

芳香烃不溶于水,但溶于有机溶剂,如二乙醚、四氯化碳等非极性溶剂。一般芳香烃均比水轻;沸点随相对分子质量升高而升高;熔点除与相对分子质量有关外,还与其结构有关,通常对位异构体由于分子对称,熔点较高。

苯具有特殊的稳定性,一般不易发生加成反应。但在特殊情况下,芳烃也能发生加成反应,而且总是三个双键同时发生反应,形成一个环己烷体系。如苯和氯在阳光下反应,生成六氯代环己烷。

只在个别情况下,一个双键或两个双键可以单独发生反应。

希望我能帮助你解疑释惑。

冷酷的墨镜
贪玩的芒果
2026-02-02 21:31:18
苯与苯基叫苯基,用Ph表示。因此苯也可表示为PhH。

CAS号 71-43-2

RTECS号 CY1400000

SMILES C1=CC=CC=C1

化学式 C6H6

摩尔质量 78.11 g mol-1

密度 0.8786 g/mL

熔点 278.65 K (5.5 ℃)

沸点 353.25 K (80.1 ℃)

在水中的溶解度 0.18 g/ 100 ml 水

标准摩尔熵So298 173.26 J/mol·K

标准摩尔热容 Cpo 135.69 J/mol·K (298.15 K)

闪点 -10.11℃(闭杯)

自燃温度 562.22℃。 编辑本段|回到顶部发现历史 苯最早是在18世纪初研究将煤气作为照明用气时合成出来的。

1803年~1819年G. T. Accum制出了许多产品,其中一些样品用现代的分析方法检测出有少量的苯。

1825年,迈克尔·法拉第(Michael Faraday)从鱼油等类似物质的热裂解产品中分离出了较高纯度的苯,称之为“氢的重碳化物”(Bicarburet of hydrogen)。并且测定了苯的一些物理性质和它的化学组成,阐述了苯分子的碳氢比。

1833年,Milscherlich确定了苯分子中6个碳和6个氢原子的实验式(C6H6)。

1845年德国化学家霍夫曼从煤焦油的轻馏分中发现了苯,他的学生C. Mansfield随后进行了加工提纯。后来他又发明了结晶法精制苯。他还进行工业应用的研究,开创了苯的加工利用途径。

凯库勒双键摆动模型1865年,弗里德里希·凯库勒提出了苯环单、双键交替排列、无限共轭的结构,即现在所谓“凯库勒式”。他对这一结构作出解释说环中双键位置不是固定的,可以迅速移动,所以造成6个碳等价。他通过对苯的一氯代物、二氯代物种类的研究,发现苯是环形结构,每个碳连接一个氢。也有说法指出,把苯的分子结构画成六角形环状结构最早是法国化学家奥古斯特·劳伦1854年在《化学方法》一书中提出的。但是出于某种原因,凯库勒在论文没有提及劳伦的成果。

此外,詹姆斯·杜瓦发现了一种苯的类似物;命名为“杜瓦苯”,现已被证实,可由苯经光照得到。

1865年,苯成为一种工业产品。最初是从煤焦油中回收。随着它的用途的扩大,产量不断上升,到1930年已经成为世界十大吨位产品之一。 编辑本段|回到顶部物质结构 苯分子中的离域大Π键苯具有的苯环结构导致它有特殊的芳香性。苯环是最简单的芳环,由六个碳原子构成一个六元环,每个碳原子接一个基团,苯的6个基团都是氢原子。

碳数为4n+2(n是正整数,苯即n=1),且具有单、双键交替排列结构的环烯烃称为轮烯(annulene),苯是一种轮烯。(参见“4n+2规则”)

苯分子是平面分子,12个原子处于同一平面上,6个碳和6个氢是均等的,C-H键长为1.08Α,C-C键长为1.40Α,此数值介于单双键长之间。分子中所有键角均为120°,碳原子都采取sp2杂化。每个碳原子还剩余一个p轨道垂直于分子平面,每个 苯分子中的σ键轨道上有一个电子。6个轨道重叠形成离域大Π键,莱纳斯·鲍林提出的共振杂化理论认为,苯拥有共振杂化体是苯环非常稳定的原因,也直接导致了苯环的芳香性。

从分子轨道理论来看,可以认为苯的6个p轨道相互作用形成6个π分子轨道,其中ψ1、ψ2、ψ3是能量较低的成键轨道,ψ4、ψ5、ψ6是能量较高的反键轨道。ψ2、ψ3和ψ4、ψ5是两对简并轨道。基态时苯的电子云分布是三个成键轨道叠加的结果,故电子云均匀分布于苯环上下及环原子上,形成闭合的电子云。它是苯分子在磁场中产生环电流的根源。 编辑本段|回到顶部物理性质 苯的沸点为80.1℃,熔点为5.5℃,在常温下是一种无色、有芳香气味的透明液体,易挥发。苯比水密度低,密度为0.88g/ml,但其分子质量比水重。苯难溶于水,1升水中最多溶解1.7g苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强。

苯能与水生成恒沸物,沸点为69.25℃,含苯91.2%。因此,在有水生成的反应中常加苯蒸馏,以将水带出。

在10-1500mmHg之间的饱和蒸气压可以根据安托万方程计算

lgP = A - P/(C + t)

参数:A = 6.91210,B = 1214.645,C = 221.205

其中,P 单位为 mmHg,t 单位为 ℃。 编辑本段|回到顶部化学性质 苯参加的化学反应大致有3种:一种是其他基团和苯环上的氢原子之间发生的取代反应;一种是发生在C-C双键上的加成反应;一种是苯环的断裂。

取代反应(substitution reaction)

详见“取代反应”、参见“亲电芳香取代反应”

苯环上的氢原子在一定条件下可以被卤素、硝基、磺酸基、烃基等取代,生成相应的衍生物。由于取代基的不同以及氢原子位置的不同、数量不同,可以生成不同数量和结构的同分异构体。

苯环的电子云密度较大,所以发生在苯环上的取代反应大都是亲电取代反应。亲电取代反应是芳环有代表性的反应。苯的取代物在进行亲电取代时,第二个取代基的位置与原先取代基的种类有关。

卤代反应

苯的卤代反应的通式可以写成:

PhH+X2——→PhX+HX

反应过程中,卤素分子在苯和催化剂的共同作用下异裂,X+进攻苯环,X-与催化剂结合。

以溴为例,反应需要加入铁粉,铁在溴作用下先生成三溴化铁。

催化历程:

FeBr3+Br-——→FeBr4-

PhH+Br+FeBr4-——→PhBr+FeBr3+HBr

在工业上,卤代苯中以氯和溴的取代物最为重要。

硝化反应

苯和硝酸在浓的硫酸作催化剂的条件下可生成硝基苯

PhH+HO-NO2——→PhNO2+H2O

硝化反应是一个强烈的放热反应,很容易生成一取代物,但是进一步反应速度较慢。

磺化反应

用浓的硫酸或者发烟硫酸在较高温度下可以将苯磺化成苯磺酸。

PhH+HO-SO3H——→PhSO3H+H2O

苯环上引入一个磺酸基后反应能力下降,不易进一步磺化,需要更高的温度才能引入第二、第三个磺酸基。这说明硝基、磺酸基都是钝化基团,即妨碍再次亲电取代进行的基团。

傅-克反应

在AlCl3催化下,苯也可以和醇、烯烃和卤代烃反应,苯环上的氢原子被烷基取代生成烷基苯。这种反应称为烷基化反应,又称为傅-克烷基化反应。例如与乙烯烷基化生成乙苯

PhH+CH2=CH2—AlCl3→Ph-CH2CH3

在反应过程中,R基可能会发生重排:如1-氯丙烷与苯反应生成异丙苯,这是由于自由基总是趋向稳定的构型。

在强路易斯酸催化下,苯与酰氯或者羧酸酐反应,苯环上的氢原子被酰基取代生成酰基苯。反应条件类似烷基化反应。

加成反应(addition reaction)

参见“加成反应”

苯环虽然很稳定,但是在一定条件下也能够发生双键的加成反应。通常经过催化加氢,镍作催化剂,苯可以生成环己烷。

C6H6+3H2——→C6H12

此外由苯生成六氯环己烷(六六六)的反应可以在紫外线照射的条件下,由苯和氯气加成而得。

氧化反应(redox)

燃烧

苯和其他的烃一样,都能燃烧。当氧气充足时,产物为二氧化碳和水。但在空气中燃烧时,火焰明亮并有浓黑烟。这是由于苯中碳的质量分数较大。

2C6H6+15O2——→12CO2+6H2O

臭氧化反应

苯在特定情况下也可被臭氧氧化,产物是乙二醛。这个反应可以看作是苯的离域电子定域后生成的环状多烯烃发生的臭氧化反应。

在一般条件下,苯不能被强氧化剂所氧化。但是在氧化钼等催化剂存在下,与空气中的氧反应,苯可以选择性的氧化成顺丁烯二酸酐。这是屈指可数的几种能破坏苯的六元碳环系的反应之一。(马来酸酐是五元杂环。)

这是一个强烈的放热反应。

其他反应

苯在高温下,用铁、铜、镍做催化剂,可以发生缩合反应生成联苯。和甲醛及次氯酸在氯化锌存在下可生成氯甲基苯。和乙基钠等烷基金属化物反应可生成苯基金属化物。在四氢呋喃、氯苯或溴苯中和镁反应可生成苯基格氏试剂。 编辑本段|回到顶部制备方法 </B>苯可以由含碳量高的物质不完全燃烧获得。自然界中,火山爆发和森林火险都能生成苯。苯也存在于香烟的烟中。

直至二战,苯还是一种钢铁工业焦化过程中的副产物。这种方法只能从1吨煤中提取出1千克苯。1950年代后,随着工业上,尤其是日益发展的塑料工业对苯的需求增多,由石油生产苯的过程应运而生。现在全球大部分的苯来源于石油化工。工业上生产苯最重要的三种过程是催化重整、甲苯加氢脱烷基化和蒸汽裂化。

从煤焦油中提取

在煤炼焦过程中生成的轻焦油含有大量的苯。这是最初生产苯的方法。将生成的煤焦油和煤气一起通过洗涤和吸收设备,用高沸点的煤焦油作为洗涤和吸收剂回收煤气中的煤焦油,蒸馏后得到粗苯和其他高沸点馏分。粗苯经过精制可得到工业级苯。这种方法得到的苯纯度比较低,而且环境污染严重,工艺比较落后。

从石油中提取

在原油中含有少量的苯,从石油产品中提取苯是最广泛使用的制备方法。

烷烃芳构化

重整这里指使脂肪烃成环、脱氢形成芳香烃的过程。这是从第二次世界大战期间发展形成的工艺。

在500-525°C、8-50个大气压下,各种沸点在60-200°C之间的脂肪烃,经铂-铼催化剂,通过脱氢、环化转化为苯和其他芳香烃。从混合物中萃取出芳香烃产物后,再经蒸馏即分出苯。也可以将这些馏分用作高辛烷值汽油。

蒸汽裂解

蒸汽裂解是由乙烷、丙烷或丁烷等低分子烷烃以及石脑油、重柴油等石油组份生产烯烃的一种过程。其副产物之一裂解汽油富含苯,可以分馏出苯及其他各种成分。裂解汽油也可以与其他烃类混合作为汽油的添加剂。

裂解汽油中苯大约有40-60%,同时还含有二烯烃以及苯乙烯等其他不饱和组份,这些杂质在贮存过程中易进一步反应生成高分子胶质。所以要先经过加氢处理过程来除去裂解汽油中的这些杂质和硫化物,然后再进行适当的分离得到苯产品。

芳烃分离

从不同方法得到的含苯馏分,其组分非常复杂,用普通的分离方法很难见效,一般采用溶剂进行液-液萃取或者萃取蒸馏的方法进行芳烃分离,然后再采用一般的分离方法分离苯、甲苯、二甲苯。根据采用的溶剂和技术的不同又有多种分离方法。

①Udex法:由美国道化学公司和UOP公司在1950年联合开发,最初用二乙二醇醚作溶剂,后来改进为三乙二醇醚和四乙二醇醚作溶剂,过程采用多段升液通道(multouocomer)萃取器。苯的收率为100%。

②Suifolane法:荷兰壳牌公司开发,专利为UOP公司所有。溶剂采用环丁砜,使用转盘萃取塔进行萃取,产品需经白土处理。苯的收率为99.9%。

③Arosolvan法:由联邦德国的鲁奇公司在1962年开发。溶剂为N-甲基吡咯烷酮(NMP),为了提高收率,有时还加入10-20%的乙二醇醚。采用特殊设计的Mechnes萃取器,苯的收率为99.9%。

IFP法:由法国石油化学研究院在1967年开发。采用不含水的二甲亚砜作溶剂,并用丁烷进行反萃取,过程采用转盘塔。苯的收率为99.9%。

④Formex法:为意大利SNAM公司和LRSR石油加工部在1971年开发。吗啉或N-甲酰吗啉作溶剂,采用转盘塔。芳烃总收率98.8%,其中苯的收率为100%。

甲苯脱烷基化

甲苯脱烷基制备苯,可以采用催化加氢脱烷基化,或是不用催化剂的热脱烷基。原料可以用甲苯、及其和二甲苯的混合物,或者含有苯及其他烷基芳烃和非芳烃的馏分。

甲苯催化加氢脱烷基化

用铬,钼或氧化铂等作催化剂,500-600°C高温和40-60个大气压的条件下,甲苯与氢气混合可以生成苯,这一过程称为加氢脱烷基化作用。如果温度更高,则可以省去催化剂。反应按照以下方程式进行

Ph-CH3+H2——→PhH+CH4

根据所用催化剂和工艺条件的不同又有多种工艺方法

①Hydeal法,由Ashiand &refing 和UOP公司在1961年开发。原料可以是重整油、加氢裂解汽油、甲苯、碳6-碳8混合芳烃、脱烷基煤焦油等。催化剂为氧化铝-氧化铬,反应温度600-650℃,压力3.43-3.92MPa。苯的理论收率为98%,纯度可达99.98%以上,质量优于Udex法生产的苯。

②Detol法,Houdry公司开发。用氧化铝和氧化镁做催化剂,反应温度540-650℃,反应压力0.69-5.4MPa,原料主要是碳7-碳9芳烃。苯的理论收率为97%,纯度可达99.97%。

③Pyrotol法,Air products and chemicals公司和Houdry公司开发。适用于从乙烯副产裂解汽油中制苯。催化剂为氧化铝-氧化铬,反应温度600-650℃,压力0.49-5.4MPa。

④Bextol法,壳牌公司开发。

⑤BASF法,BASF公司开发。

⑥Unidak法,UOP公司开发。

甲苯热脱烷基化

甲苯在高温氢气流下可以不用催化剂进行脱烷基制取苯。反应为放热反应,针对遇到的不同问题,开发出了多种工艺过程。

①MHC加氢脱烷基过程,由日本三菱石油化学公司和千代田建设公司在1967年开发。原料可以用甲苯等纯烷基苯,含非芳烃30%以内的芳烃馏分。操作温度500-800℃,操作压力0.98MPa,氢/烃比为1-10。过程选择性97-99%(mol),产品纯度99.99%。

②HDA加氢脱烷基过程,由美国Hydrocarbon Research和Atlantic Richfield公司在1962年开发。原料采用甲苯,二甲苯,加氢裂解汽油,重整油。从反应器不同部位同如氢气控制反应温度,反应温度600-760℃,压力3.43-6.85MPa,氢/烃比为1-5,停留时间5-30秒。选择性95%,收率96-100%。

③Sun过程,由Sun Oil公司开发

④THD过程,Gulf Research and Development公司开发

⑤孟山都(Monsanto)过程,孟山都公司开发。

甲苯歧化和烷基转移

随着二甲苯用量的上升,在1960年代末相继开发出了可以同时增产二甲苯的甲苯歧化和烷基转移技术。(主要反应见下图)

烷基转移这个反应为可逆反应,根据使用催化剂、工艺条件、原料的不同而有不同的工艺过程。

①LTD液相甲苯岐化过程,美国美孚化学公司在1971年开发,使用非金属沸石或分子筛催化剂,反应温度260-315℃,反应器采用液相绝热固定床,原料为甲苯,转化率99%以上

②Tatoray过程,日本东丽公司和UOP公司1969年开发,以甲苯和混合碳9芳烃为原料,催化剂为丝光沸石,反应温度350-530℃,压力2.94MPa,氢/烃比5-12,采用绝热固定床反应器,单程转化率40%以上,收率95%以上,选择性90%,产品为苯和二甲苯混合物。

Xylene plas过程:由美国Atlantic Richfield公司和Engelhard公司开发.使用稀土Y型分子筛做催化剂,反应器为气相移动床,反应温度471-491℃,常压。

③TOLD过程,日本三菱瓦斯化学公司1968年开发,氢氟酸-氟化硼催化剂,反应温度60-120℃,低压液相。有一定腐蚀性。

其他方法

此外,苯还可以通过乙炔三聚得到,但产率很低。 编辑本段|回到顶部检测方法 气相色谱法和高效液相色谱法可以检测各种产品中苯的含量。苯的纯度的测定一般使用冰点法。

对空气中微量苯的检测,可以用甲基硅油等有挥发性的有机溶剂或者低分子量的聚合物吸收,然后通过色谱进行分析;或者采用比色法分析;也可以将含有苯的空气深度冷冻,将苯冷冻下来,然后把硫酸铁和过氧化氢溶液加入得到黄褐色或黑色沉淀,再用硝酸溶解,然后通过比色法分析。或者直接用硝酸吸收空气中的苯,硝化成间二硝基苯,然后用二氯化钛溶液滴定,或者用间二甲苯配制的甲乙酮碱溶液比色定量。 编辑本段|回到顶部工业用途 早在1920年代,苯就已是工业上一种常用的溶剂,主要用于金属脱脂。由于苯有毒,人体能直接接触溶剂的生产过程现已不用苯作溶剂。

苯有减轻爆震的作用而能作为汽油添加剂。在1950年代四乙基铅开始使用以前,所有的抗爆剂都是苯。然而现在随着含铅汽油的淡出,苯又被重新起用。由于苯对人体有不利影响,对地下水质也有污染,欧美国家限定汽油中苯的含量不得超过1%。

苯在工业上最重要的用途是做化工原料。苯可以合成一系列苯的衍生物:

①苯与乙烯生成乙苯,后者可以用来生产制塑料的苯乙烯;

②苯与丙烯生成异丙苯,后者可以经异丙苯法来生产丙酮与制树脂和粘合剂的苯酚;

制尼龙的环己烷;

③合成顺丁烯二酸酐;

④用于制作苯胺的硝基苯;

⑤多用于农药的各种氯苯;

⑥合成用于生产洗涤剂和添加剂的各种烷基苯。

⑦合成氢醌,蒽醌等化工产品。 编辑本段|回到顶部健康危害 由于苯的挥发性大,暴露于空气中很容易扩散。人和动物吸入或皮肤接触大量苯进入体内,会引起急性和慢性苯中毒。有研究报告表明,引起苯中毒的部分原因是由于在体内苯生成了苯酚。

毒理学资料

LD50: 3306mg/kg(大鼠经口);48mg/kg(小鼠经皮)

LC50: 10000ppm 7小时(大鼠吸入)

由于每个人的健康状况和接触条件不同,对苯的敏感程度也不相同。嗅出苯的气味时,它的浓度大概是1.5ppm,这时就应该注意到中毒的危险。在检查时,通过尿和血液的检查可以很容易查出苯的中毒程度。

接触限值

中国MAC 40 mg/m3(皮)

美国ACGIH 10ppm, 32mg/m3 TWA: OSHA 1ppm, 3.2 mg/m3

代谢

苯主要通过呼吸道吸入(47-80%)、胃肠及皮肤吸收的方式进入人体。一部分苯可通过尿液排出,未排出的苯则首先在肝中细胞色素P450单加氧酶作用下被氧分子氧化为环氧苯(7-氧杂双环[4.1.0]庚-2,4-二烯)。环氧苯与它的重排产物氧杂环庚三烯存在平衡,是苯代谢过程中产生的有毒中间体。接下来有三种代谢途径:与谷胱甘肽结合生成苯巯基尿酸;继续代谢为苯酚、邻苯二酚、对苯二酚、偏苯三酚、邻苯醌、对苯醌等,以葡萄糖苷酸或硫酸盐结合物形式排出;以及被氧化为已二烯二酸。乙醇和甲苯可以降低苯的毒性。

中毒症状

短期接触

苯对中枢神经系统产生麻痹作用,引起急性中毒。重者会出现头痛、恶心、呕吐、神志模糊、知觉丧失、昏迷、抽搐等,严重者会因为中枢系统麻痹而死亡。少量苯也能使人产生睡意、头昏、心率加快、头痛、颤抖、意识混乱、神志不清等现象。摄入含苯过多的食物会导致呕吐、胃痛、头昏、失眠、抽搐、心率加快等症状,甚至死亡。吸入20000ppm的苯蒸气5-10分钟会有致命危险。

长期接触

长期接触苯会对血液造成极大伤害,引起慢性中毒。引起神经衰弱综合症。苯可以损害骨髓,使红血球、白细胞、血小板数量减少,并使染色体畸变,从而导致白血病,甚至出现再生障碍性贫血。苯可以导致大量出血,从而抑制免疫系统的功用,使疾病有机可乘。有研究报告指出,苯在体内的潜伏期可长达12-15年。

妇女吸入过量苯后,会导致月经不调达数月,卵巢会缩小。对胎儿发育和对男性生殖力的影响尚未明了。孕期动物吸入苯后,会导致幼体的重量不足、骨骼延迟发育、骨髓损害。

对皮肤、粘膜有刺激作用。国际癌症研究中心(IARC)已经确认为致癌物。

机灵的啤酒
幸福的饼干
2026-02-02 21:31:18

苯的沸点:80ºC。甲苯沸点110.6℃。二甲苯沸点137~140℃。

苯可以由含碳量高的物质不完全燃烧获得。自然界中,火山爆发和森林火险都能生成苯。苯也存在于香烟的烟中。煤干馏得到的煤焦油中,主要成分为苯。

直至二战,苯还是一种钢铁工业焦化过程中的副产物。这种方法只能从1吨煤中提取出1千克苯。1950年代后,随着工业上,尤其是日益发展的塑料工业对苯的需求增多,由石油生产苯的过程应运而生。21世纪以来全球大部分的苯来源于石油化工。工业上生产苯最重要的三种过程是催化重整、甲苯加氢脱烷基化和蒸汽裂化。

扩展资料:

苯的急救措施:

皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。

眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

食入:饮足量温水,催吐。就医。

参考资料:百度百科-苯

参考资料:百度百科-甲苯

参考资料:百度百科-二甲苯

野性的电脑
落寞的菠萝
2026-02-02 21:31:18

1. 在高温煤焦油中,约含3.0%联苯,可从洗油馏分中回收。1926年,美国陶氏化学公司等开始用苯通过热解法生产联苯。联苯的另一来源是甲苯热脱烷基制苯时的副产物。随着该工艺的发展,这一过程的副产联苯逐渐成为联苯的主要来源。在实验室里,将苯胺重氮化,所得重氮盐加入苯中,再把这种混合物慢慢加入氢氧化钠溶液中,搅拌反应,温度从5℃以下慢慢升至30-35℃,反应8h后即生成联苯

2. 用亚硝酸钠与苯胺进行重氮化,生成氯化重氮苯,用碱中和后,再与苯缩合即得联苯,然后蒸馏精制:

潇洒的项链
耍酷的学姐
2026-02-02 21:31:18
60SiMn(A)钢化学成分-临界点温度

⑴模具钢的特性中碳合金弹簧钢,是标准件冷镦冲头的基本钢号。该钢具有屈服强度、疲劳极限高,淬透性较大,塑性优良,钢材价格低廉,以及热处理工艺操作简单的优点。该钢具有明显的脱碳倾向,对耐磨性能、疲劳抗力均有明显损害。还有过热敏感性,易出现淬火裂纹。

该钢用做模具主要零件时必须先经过锻造,以避免产生纵向开裂。但是为了削除锻造后的应力和使钢的内部碳化物均匀,必须进行球化退火,以提高模具钢的使用寿命。但该钢用于制造弹簧时不需要经过球化退火。

若采用快速球化工艺热处理取代传统球化退火工艺后,可以使球化组织更均匀、球化率提高,提高产品质量,使生产周期缩短一半。采用低碳马氏体高温淬火,有利于延长冷作模具的使用寿命。

可以通过提高奥氏体化温度,使该钢的Ms点升高,获得更多的低碳马氏体组织,提高模具的强韧性,有较高的断裂韧性、冲击韧性和优良的耐磨性。淬火、回火后模具硬度为58HRC,金相组织为片状回火马氏体+残余奥氏体,产生显微裂纹的敏感性较高,因此韧性较低,在使用过程中易断裂。

等温淬火工艺比普通淬火所获得的硬度仅相差1HRC,而抗弯强度和韧性却会有很大提高。

该钢模具的加工工艺过程如:下料→锻造→球化热处理→加工成型→淬火、回火。

⑵化学成分(质量分数,%)C0.56~0.64、Si1.50~2.00、Mn

0.60~0.90、P≤0.035、S≤0.035、Cr≤0.035、Ni≤0.35、Cu≤0.25。

⑶参考对应钢号我国GB标准钢号60Si2Mn(A)、美国ASTM标准钢号H2600、日本JIS标准钢号SUP6/SUP7、国际标准化组织ISO 标准钢号61SiCr7。

⑷临界点温度(近似值)A

c1=755(735)℃,A

c3

=810℃,,A

r3

=770

℃,A

r1=700℃,M

s

=305℃。

⑸热加工规范始锻温度1100℃,终锻温度850℃

⑹冷压毛坯软化处理规范温度740~760℃保温时间4~6h,再以5~10℃/h的冷速,降温到≤600℃,出炉空冷。

处理前硬度≤255HBS,软化后硬度≤217HBS。

⑺普通淬火、回火规范淬火温度870℃±10℃,油冷却;回火温度480℃±10℃。

⑻等温淬火、回火规范温度870℃,保温20min,出炉油冷,立即放入250℃硝盐浴中等温20min,出炉空冷。

⑼最佳热处理规范预备热处理:870℃油冷淬火→780℃加热保温25min→急冷到680℃保温40min→炉冷到500℃出炉空冷。

最终热处理工艺:淬火温度870℃,等温温度250℃,等温时间20min。

⑽弘超模具商城典型应用举例

①该钢冷镦螺帽冲模的高温淬火后,经920~950℃淬火并回火后,使用寿命比正常温度淬火的模具提高了2倍左右。

②某自卸车非标准垫片冷冲模主要零件要求有高硬度、高强度、良好的抗冲击性和较好的韧性,一般要采用Cr制造。但该钢价高,供货和热处理有难度,只好改用T10A钢制造冷冲模。但由于T10A 钢韧性差、脆性大,每副模具冲垫片1000件左右就损坏,后采用该钢制作冷冲模主要零件,进行淬火、回火,使模具寿命大大延长。

③该钢可用于内外六角螺栓成型冷镦冲头、硬质合金凹模预应力套(48~52HRC)、中厚钢板穿孔冲头等。

④采用该钢制作内六角螺钉冷镦冲头、寿命超过Cr12、9CrSi、GCr15、Cr6WV、3Cr2W8V钢渗碳、W6M5Cr4V2等钢种,达0.5万~0.7万次。

⑤多用于小型企业冷冲模及冷镦凸模、螺母冷镦模、冲孔模制造等场合。

⑥是各种冲剪工具、挤压模、冷镦模的基本材料。

⑦该钢按传统热处理工艺不成球化退火、淬火、回火后,其使用寿命可冲垫片0.5万~0.6件,而采用快速球化工艺和等温淬火的模具可冲垫片1.2万件以上,寿命提高了一倍。

⑧对该钢采用球化退火工艺,冷冲模使用寿命可提高1倍。

⑨采用快速球化工艺并进行870℃奥氏体化、250℃等温淬火后,较传统热处理工艺的模具寿命可提高一倍。

友好的绿茶
激昂的盼望
2026-02-02 21:31:18

江西巍华化学有限公司是2005-08-12在江西省上饶市弋阳县注册成立的有限责任公司(非自然人投资或控股的法人独资),注册地址位于江西省上饶市弋阳县高新技术产业园区展望大道西段。

江西巍华化学有限公司的统一社会信用代码/注册号是913611267788079051,企业法人张俊荣,目前企业处于开业状态。

江西巍华化学有限公司的经营范围是:3-硝基三氟甲苯、4-氯-3,5-二硝基三氟甲苯、2,4-二氯-3,5-二硝基三氟甲苯、2,6-二氯-4-三氟甲基苯胺、三氯甲苯、三氟甲苯、对氯三氯甲苯、对氯三氟甲苯、4-氯-3硝基三氟甲苯、3,4-二氯三氟甲苯、2,4-二氯甲苯、2,4-二氯三氯甲苯、2,4-二氯三氟甲苯、3,4,5-三氯三氟甲苯、2,4,5-三氯三氟甲苯、3,4-二氯甲苯、多氯甲苯、30%副产盐酸、10%副产次氯酸钠、85%硫酸、10%-20%氨水、1,1,1-三氯-2,2,2-三氟乙烷(许可证有效期至2017年09月21日) 经营本企业自产产品、副产品、中间体及技术的出口业务;经营本企业生产和科研所需的原辅材料、机械设备、仪器仪表、零配件及技术的进口业务(国家限定公司经营或禁止进出口的商品及技术除外);经营进料加工和“三来一补”业务。(依法须经批准的项目,经相关部门批准后方可开展经营活动)。在江西省,相近经营范围的公司总注册资本为9135万元,主要资本集中在 5000万以上 和 100-1000万 规模的企业中,共16家。本省范围内,当前企业的注册资本属于优秀。

江西巍华化学有限公司对外投资1家公司,具有0处分支机构。

通过百度企业信用查看江西巍华化学有限公司更多信息和资讯。