酚氯仿抽提dna原理
苯酚/氯仿提取DNA是利用酚是蛋白质的变性剂,反复抽提,使蛋白质变性,SDS(十二烷基磺酸钠)将细胞膜裂解,在蛋白酶K、EDTA 的存在下消化蛋白质或多肽或小肽分子,核蛋白变性降解,使DNA从核蛋白中游离出来。
DNA易溶于水,不溶于有机溶剂。蛋白质分子表面带有亲水基团,也容易进行水合作用,并在表面形成一层水化层,使蛋白质分子能顺利地进入到水溶液中形成稳定的胶体溶液。当有机溶液存在时,蛋白质的这种胶体稳定性遭到破坏,变性沉淀。
离心后有机溶剂在试管底层(有机相),DNA存在于上层水相中,蛋白质则沉淀于两相之间。酚–氯仿抽提的作用是除去未消化的蛋白质。氯仿的作用是有助于水相与有机相分离和除去DNA溶液中的酚。抽提后的DNA溶液用2倍体积的无水乙醇在NaCl存在下沉淀DNA,回收DNA用70%乙醇洗去DNA沉淀中的盐,真空干燥,用TE缓冲液溶解DNA备用。
原理:
1.析出溶解在NaC1溶液中的DNA。
2.用冷酒精提取出含杂质较少的DNA。
3.DNA在沸水浴时被二苯胺染成蓝色。
方法步骤:
1.提取细胞核物质:顺时针方向搅拌,稍快,稍重。
5
min
2.溶解DNA:
3.析出含DNA的黏稠物:蒸馏水300mL,逆时针方向搅拌,缓慢
4.过滤:取黏稠物
5.再溶解:顺时针方向搅拌,较慢。3
min
6.过滤:取滤液。
7.提取出含杂质较少的DNA,逆时针方向搅拌,稍慢。5
min
8.DNA的鉴定:沸水浴5min
大学:
DNA提取分为三个基本步骤,每个步骤的具体方法可根据样品种类、影响提取的物质以及后续步骤的不同而有区别。
利用研磨或者超声破碎细胞,并通过加入去污剂以除掉膜脂。
加入蛋白酶,醋酸盐沉淀,或者酚/氯仿抽提,以除掉细胞内的蛋白,如与DNA结合的组蛋白。
将DNA在冷乙醇或异丙醇中沉淀,因为DNA在醇中不可溶而黏在一起,这一步也能除掉盐分。
另外,目前也有利用吸附过柱的方法提取DNA的商业化试剂盒。
2.细胞的破碎
细菌有坚硬的细胞壁,首先要破碎经胞。方法有三种①机械方法:超声波处理法、研磨法、匀浆法②化学试剂法:用SDS处理细胞③酶解法:加入溶菌酶或蜗牛酶,都可使细胞壁破碎。
3.DNA提取的几种方法
(1).浓盐法
A.
利用RNA和DNA在电解溶液中溶解度不同,将二者分离,常用的方法是用1M
氯
纳提取化钠抽提,得到的DNP粘液与含有少量辛醇的
氯仿一起摇荡,使乳化,再离心除去蛋白质,此时蛋白质凝胶停留在水相及氯仿相中间,而DNA位于上层水相中,用2倍体积95%乙醇可将DNA
钠盐沉淀出来.
B.
也可用0.15
MNaCL液反复洗涤细胞破碎液除去RNP,再以1MNaCL提取脱氧核糖蛋白,再按氯仿---异醇法除去蛋白.
两种方法比较,后种方法使核酸降解可能少一些.
C.以稀盐酸溶液提取DNA
时,加入适量去污剂,如SDS可有助于蛋白质与DNA
的分离。在提取过程中为抑制组织中的DNase对DNA
的降解作用,在氯化钠溶液中加入柠檬酸钠作为金属离子的烙合剂.通常用.15MNaCL,0.015M柠檬钠,并称SSC溶液,提取DNA.
(2).阴离子去污剂法
用SDS或二甲苯酸钠等去污剂使蛋白质变性,可以直接从生物材料中提取DNA
.由于细胞中DNA与蛋白质之间常借静电引力或配位键结合,因为阴离子去污剂能够破坏这种价键,所以常用阴离子去污剂提取DNA
(3).苯酚抽提法:苯酚作为蛋白变性剂,同时抑制了DNase的降解作用.用苯酚处理匀浆液时,由于蛋白与DNA
联结键已断,蛋白分子表面又含有很多极性基团与苯酚相似相溶。蛋白分子溶于酚相,而DNA溶于水相。离心分层后取出水层,多次重复操作,再合并含DNA
的水相,利用核酸不溶于醇的性质,用乙醇沉淀DNA
。此时DNA是十分粘稠的物质,可用玻璃漫漫绕成一团,取出。此法的特点是使提取的DNA保持天然状态
(4).水抽提法:利用核酸溶解于水的性质,将组织细胞破碎后,用低盐溶液除去RNA,然后将沉淀溶于水中,使DNA充分溶解于水中,离心后收集上清液.在上清中加入固体氯化钠调节至2.6M.加入2倍体积95%乙醇,立即用搅拌法搅出.然后分别用66%
,80%和95%乙醇以及丙铜洗涤,最后在空气中干燥,既得DNA样品.此法提取的DNA中蛋白质含量较高,故一般不用.为除蛋白可将此法加以改良,在提取过程中加入SDS.
结果就是得到DNA
提取细胞核要先把细胞破碎分离出细胞核,要在甘油或其他保护剂中进行
SDS十二烷基磺酸钠:可破坏细胞膜、核膜,并使组织蛋白与DNA分离
CATB是一种抽提液,破坏细胞膜的~具体忘了~
DNA不溶于异丙醇,异丙醇可以析出DNA,产生白色絮状沉淀,用枪头挑出就可以了
以下是一些具体方法,希望有用
基因组DNA提取方法
制备基因组DNA是进行基因结构和功能研究的重要步骤,通常要求得到的片段的长度不小于100-200kb。在DNA提取过程中应尽量避免使DNA断裂和降解的各种因素,以保证DNA的完整性,为后续的实验打下基础。主要是CTAB方法,其他的方法还有1物理方式:玻璃珠法,超声波法,研磨法,冻融法。2化学方式:异硫氰酸胍法,碱裂解法3生物方式:酶法。根据核酸分离纯化方式的不同有:硅质材料、阴离子交换树脂等
试验步骤:
1、贴壁细胞用胰酶消化,离心收集。
2、细胞重悬于冰冷的PBS漂洗一次,离心收集。试验步骤2再重新作一边。
3、加入5mlDNA提取缓冲液,(10mmol/LTris-cl,0.1mol/LEDTA,o.5%SDS),混匀。
4、加入25ul蛋白酶K,使终浓度达到100ug/ml,混匀,50℃水浴3h,
5、用等体积的酚抽提一次,2500rpm离心收集水相,用等体积的(酚,氯仿,异戊醇)混合物抽提一次,2500r/min离心收集水相
6、用等体积的氯仿,异戊醇抽提一次。加入等体积的5mol/L的LiCL,混匀,冰浴,10min.。
7、2500rpm离心10min.转上清于一离心管中。加入等体积的异丙醇。室温10min。
2500rpm,离心10min。弃上清。
8、加入0.1倍体积3mol/L乙酸钠(PH5.2)与2倍体积-20℃预冷无水乙醇。-20℃20min。
9、12000r/min,室温离心5min。弃上清。将DNA溶于适量TE中。
外周血DNA提取技术
分离外周血白细胞提取方法:
试验步骤:
1、取人肘静脉血5ml,EDTA抗凝,2500rpm离心10min。
2、小心吸取上层血浆,分装到3个0.5ml离心管中。
3、在血细胞中加入3倍体积的溶血液,摇匀,冰浴15min。
4、2500rpm离心10min,弃上清。
5、加入10ml溶血液,摇匀,冰浴15min。
6、3000rpm离心10min,弃上清。
7、倒置离心管,去掉残液。
8、得白细胞,-80?C冻存。
试验要求:
血至分离白细胞之间隔时间在室温下放置不超过2h,4℃放置不超过5h,以防白细胞自溶。
氯仿法抽提外周血白细胞基因组DNA:
试验试剂:
Ligsisbuffer:
133mMNH4ClNHCl7.12g0.9mMNH4HCO3NH4HCO30.071g0.1mMEDTA0.5mMEDTA0.2ml;最后加灭菌去离子水至1000ml,高压灭菌。
ACD抗凝剂:柠檬酸1.68g柠檬酸钠4.62g葡萄糖5.15g;最后加灭菌去离子水至350ml,高压灭菌。
提取缓冲液(Extractionbuffer):
10mMTrisCl(PH=8.0)1MTris.Cl(PH=8.0)1ml0.1mMEDTA(PH=8.0)0.5mMEDTA(PH=8.0)20ml0.5%SDS10%SDS0.5ml;最后加灭菌去离子水至100ml,高压灭菌
试验步骤:
1、在500μl抗凝血中加入ligsisbuffer1000μl,充分颠混至清亮。以4000rpm,离心5min。弃上清液。
2、沉淀中加入ligsisbuffer1500μl,充分匀浆。以6000rpm,离心5min。
3、彻底弃去上清,加入extractionbuffer500μl(裂解细胞),混匀置于37℃,水溶1h。
4、加入8μl的蛋白酶K,颠混,37℃过夜(或55℃,3h,但是37℃效果要好些)。
5、每管加入450μl饱和酚(取溶液下层)缓慢摇晃10min,以5500rpm,离心15min。
6、取上清,每管加入250μl饱和酚和250μl氯仿-异戊醇,摇匀10min,以5500rpm,离心15min。
7、取上清,每管加入500μl氯仿-异戊醇,摇匀10min,以5500rpm,离心15min。
8、取上清,每管加50μl的3M的NaAC+,适量无水乙醇(预冷)至满,摇匀放入-20℃保存2h以上。
9、以12000rpm,离心20min。去上清,加入70%乙醇500μl,以12000rpm,离心5min,去上清,50-60℃干燥。
10、加入50μl灭菌去离子水,转弹,混匀。
NaI提取法提取外周血白细胞基因组:
实验步骤:
1、取外周抗凝血(全血)100ul于eppendorf管中,12000rpm离心12min。
2、弃上清,加双蒸水200ul溶解,摇匀20s。
3、混匀后加6MNaI溶液200ul,摇匀20s。
4、加入氯仿/异戊醇(24:1)400ul,边加边摇,摇匀20s,12000rpm离心12min。
5、取上层液350ul,加入另一新eppendorf管中,加0.6倍体积异丙醇,摇匀20s,室温放置15min,静置后的反应体系15000rpm离心12min,使沉淀紧贴eppendorf管壁。
6、弃异丙醇,加70%乙醇1ml(不振动),以15000rpm离心12min。
7、弃乙醇,敞开eppendorf管盖,烘干(37℃恒温箱)后,加1xTE溶液30ul,溶解DNA>12h以上,制成的DNA液-20℃冰箱保存备用。
常用的外周血白细胞基因提取方法:
试验原理:
苯酚/氯仿提取DNA是利用酚是蛋白质的变性剂,反复抽提,使蛋白质变性,SDS(十二烷基磺酸钠)将细胞膜裂解,在蛋白酶K、EDTA的存在下消化蛋白质或多肽或小肽分子,核蛋白变性降解,使DNA从核蛋白中游离出来。DNA易溶于水,不溶于有机溶剂。蛋白质分子表面带有亲水基团,也容易进行水合作用,并在表面形成一层水化层,使蛋白质分子能顺利地进入到水溶液中形成稳定的胶体溶液。当有机溶液存在时,蛋白质的这种胶体稳定性遭到破坏,变性沉淀。离心后有机溶剂在试管底层(有机相),DNA存在于上层水相中,蛋白质则沉淀于两相之间。酚-氯仿抽提的作用是除去未消化的蛋白质。氯仿的作用是有助于水相与有机相分离和除去DNA溶液中的酚。抽提后的DNA溶液用2倍体积的无水乙醇在1/103mol/LNaCl存在下沉淀DNA,回收DNA用70%乙醇洗去DNA沉淀中的盐,真空干燥,用TE缓冲液溶解DNA备用。
试验步骤:
1、将1mlEDTA抗凝贮冻血液于室温解冻后移入5ml离心管中,加入1ml磷酸缓冲盐溶液(PBS),混匀,3500rpm离心15min,倾去含裂解红细胞的上清。重复一次。用0.7mlDNA提取液混悬白细胞沉淀,37℃水浴温育1h。
2、将上述DNA提取液混悬白细胞,37℃水浴温育1h后,加入1mg/ml蛋白酶K0.2ml,至终浓度为100-200ug/ml,上下转动混匀,液体变粘稠。50℃水浴保温3h,裂解细胞,消化蛋白。保温过程中,应不时上下转动几次,混匀反应液。
3、反应液冷却至室温后,加入等体积的饱和酚溶液,温和地上下转动离心管5-10min,直至水相与酚相混匀成乳状液。5000rpm离心15min,用大口吸管小心吸取上层粘稠水相,移至另一离心管中。重复酚抽提一次。加等体积的氯仿:异戊醇(24:1),上下转动混匀,5000rpm离心15min,用大口吸管小心吸取上层粘稠水相,移至另一离心管中。重复一次。
4、加入1/5体积的3mol/LNaAc及2倍体积的预冷的无水乙醇,室温下慢慢摇动离心管,即有乳白色云絮状DNA出现。用玻璃棒小心挑取云絮状的DNA,转入另一1.5ml离心管中,加70%乙醇0.2ml,以5000rpm离心5min。洗涤DNA,弃上清,去除残留的盐。重复一次。室温挥发残留的乙醇,但不要让DNA完全干燥。加TE液20ul溶解DNA,置于摇床平台缓慢摇动,DNA完全溶解通常需12-24h。制成的DNA液-20℃冰箱保存备用。
真核细胞DNA的制备
一般真核细胞基因组DNA有107-9bp,可以从新鲜组织、培养细胞或低温保存的组织细胞中提取,常是采用在EDTA以及SDS等试剂存在下用蛋白酶K消化细胞,随后用酚抽提而实现的。这一方法获得的DNA不仅经酶切后可用于Southern分析,还可用于PCR的模板、文库构建等实验。
根据材料来源不同,采取不同的材料处理方法,而后的DNA提取方法大体类似,但都应考虑以下两个原则:
1、防止和抑制DNase对DNA的降解。
2、尽量减少对溶液中DNA的机械剪切破坏。
试剂准备:
1、TE:10mMTris-HCl(pH7.8)1mMEDTA(pH8.0)。
2、TBS:25mMTris-HCl(pH7.4)200mMNaCl5mMKCl。
3、裂解缓冲液:250mMSDS使用前加入蛋白酶K至100mg/ml。
4、20%SDS
5、2mg/ml蛋白酶K
6、Tris饱和酚(pH8.0)、酚/氯仿(酚∶氯仿=1∶1)、氯仿
7、无水乙醇、75%乙醇
试验步骤:
材料处理:
1、新鲜或冰冻组织处理:
1)取组织块0.3-0.5cm3,剪碎,加TE0.5ml,转移到匀浆器中匀浆。
2)将匀浆液转移到1.5ml离心管中。
3)加20%SDS25ml,蛋白酶K(2mg/ml)25ml,混匀。
4)60°C水浴1-3hr。
2、培养细胞处理:
1)将培养细胞悬浮后,用TBS洗涤一次。
2)离心4000g×5min,去除上清液。
3)加10倍体积的裂解缓冲液。
4)50-55°C水浴1-2hr。
DNA提取:
1、加等体积饱和酚至上述样品处理液中,温和、充分混匀3min。
2、离心5000g×10min,取上层水相到另一1.5ml离心管中。
3、加等体积饱和酚,混匀,离心5000g×10min,取上层水相到另一管中。
4、加等体积酚/氯仿,轻轻混匀,离心5000g×10min,取上层水相到另一管中。如水相仍不澄清,可重复此步骤数次。
5、加等体积氯仿,轻轻混匀,离心5000g×10min,取上层水相到另一管中。
6、加1/10体积的3M醋酸钠(pH5.2)和2.5倍体积的无水乙醇,轻轻倒置混匀。
7、待絮状物出现后,离心5000g×5min,弃上清液。
8、沉淀用75%乙醇洗涤,离心5000g×3min,弃上清液。
9、室温下挥发乙醇,待沉淀将近透明后加50-100mlTE溶解过夜。
植物组织中DNA的提取
试验原理:
脱氧核糖核酸(deoxribonucleicacid,DNA)是一切生物细胞的重要组成成分,主要存在于细胞核中,盐溶法是提取DNA的常规技术之一。从细胞中分离得到的DNA是与蛋白质结合的DNA,其中还含有大量RNA,即核糖核蛋白。如何有效地将这两种核蛋白分开是技术的关键。DNA不溶于0.14mol/L的NaCl溶液中,而RNA则能溶于0.14mol/L的NaCl溶液之中,利用这一性质就可以将二者从破碎细胞浆液中分开。制备过程中,细胞破碎的同时就有Dnase释放到提取液中,使DNA因被降解而影响得率,在提取缓冲液中加入适量的柠檬酸盐和EDTA,既可抑制酶的活性又可使蛋白质变性而与核酸分离,再加入阴离子去垢剂0.15%的SDS,经过2h搅拌,或用氯仿-异醇除去蛋白,通过离心使蛋白质沉淀而除去,得到的是含有核酸的上清液。然后用95%的预冷乙醇即可把DNA从除去蛋白质的提取液中沉淀出来。
植物DNA的SDS提取法:
试验试剂:
1、研磨缓冲液:称取59.63gNaCl,13.25g柠檬酸三钠,37.2gEDTA-Na分别溶解后合并为一,用0.2mol/L的NaOH调至pH7.0,并定容至1000ml。
2、10×SSC溶液:称取87.66gNaCl和44.12g柠檬酸三钠,分别溶解,一起定容至1000ml。
3、1×SSC溶液:用10×SSC溶液稀释10倍。
4、0.1×SSC溶液:用1×SSC溶液稀释10倍。
5、Rnase溶液:用0.14mol/LNaCl溶液配制成25mg/ml的酶液,用1mol/LHCl,pH至5.0,使用前经80℃水浴处理5min(以破坏可能存在的Dnase)。
6、氯仿-异戊醇:按24ml氯仿和1ml异戊醇混合。
7、5mol/L高氯酸钠溶液:称取NaClO4.H2O70.23g,先加入少量蒸馏水溶解再容至100ml。
8、SDS(十二烷基硫酸钠)化学试剂的重结晶:将SDS放入无水酒精中达到饱和为止,然后在70~80℃的水浴中溶解,趁热过滤,冷却之后即将滤液放入冰箱,待结晶出现再置室温下凉干待用。
9、1mol/LHCl。
10、0.2mol/LNaOH。
11、二苯胺乙醛试剂:1.5g二苯胺溶于100ml冰醋酸中,添加1.5ml浓硫酸,装入棕色瓶,贮存暗处,使用时加0.1ml乙醛液〔浓乙醛:H2O=1:50(V/V)〕。
12、1.0mol/L高酸溶液(HClO4)。
13、0.05mol/LNaOH。
14、DNA标准液:取标准DNA25mg溶于少量0.05mol.L-1NaOH中,再用0.05mol/LNaOH定容至25ml,后用移溶管吸取此液5ml至50ml容量瓶中,加5.0ml1mol/LHClO4,混合冷却后用0.5mol/LHClO4定容至刻度,则得100μg/ml的标准溶液。
实验步骤:
1、称取植物幼嫩组织10g剪碎置研钵中,加10ml预冷研磨缓冲液并加入0.1g左右的SDS,置冰浴上研磨成糊状。
2、将匀浆无损转入25ml刻度试管中加入等体积的氯仿-异戊醇混合液,加上塞子,剧烈振荡30s,转入离心管,静置片刻以脱除组织蛋白质。以4000rpm离心5min。
3、离心形成三层,小心地吸取上层清液至刻度试管中,弃去中间层的细胞碎片、变性蛋白质及下层的氯仿。
4、将试管置72℃水浴中保温3min(不超过4min),以灭活组织的DNA酶,然后迅速取出试管置冰水浴中冷却到室温,加5mol/L高氯酸钠溶液〔提取液:高氯酸钠溶液=4:1(V/V)〕,使溶液中高氯酸钠的最终浓度为1mol/L。
5、再次加入等体积氯仿-异戊醇混合液至大试管中,振荡1min,静置后在室温下离心(4000rpm)5min,取上清液置小烧杯中。
6、用滴管吸95%的预冷乙醇,慢慢地加入烧杯中上清液的表面上,直至乙醇的体积为上清液的两倍,用玻璃棒轻轻搅动。此时核酸迅速以纤维状沉淀缠绕在玻璃棒上。
7、然后加入0.5ml左右的10×SSC,使最终浓度为1×SSC。
8、重复第6步骤和第7步骤即得到DNA的粗制品。
9、加入已处理的Rnase溶液,使其最后的作用浓度为50~70μg/ml,并在37℃水浴中保温30min,以除去RNA。
10、加入等体积的氯仿-异戊醇混合液,在三角瓶中振荡1min,再除去残留蛋白质及所加Rnase蛋白,室温下以4000rpm离心5min,收集上层水溶液。
11、再按6、7步骤处理即可得到纯化的DNA液。
植物DNA的CTAB提取法:
试验步骤:
1、称取新鲜叶片2-3g,剪碎放入研钵中,在液氮中研磨成粉末。
2、将粉末转移到加有7ml经预热的15×CTAB提取缓冲液15ml离心管中,迅速混匀后置于65℃水浴中,温育30min。
3、取出离心管,冷却至室温,加入氯仿/异戊醇(24:1),充分混匀,室温下2300转离心20min。
4、将上清转移至另一新的15ml离心管中,加入1/10体积10%的CTAB和等体积的氯仿/异戊醇。充分混匀,2300rpm离心20min。
5、转移上清至另一新的15ml离心管中,加入等体积1%的CTAB沉淀缓冲液,轻轻摇晃至形成DNA絮状沉淀。1000rpm离心10min,使DNA沉淀于管底。
6、加入1.5-2ml的1mol/LNaCl及5μlRNase置于56℃水浴中过夜。
7、待DNA完全溶解后,加2-3ml4℃预冷的95%的冰乙醇使DNA沉淀,挑出DNA,置于15ml离心管中,用70%乙醇清洗30min。
8、离心机甩5s,倒出70%乙醇,再用95%乙醇浸泡5min,倒出95%乙醇,在超净工作台上吹干。
9、将风干的DNA直接在4℃保存备用或溶于100μlTE溶液中于-20℃保存。
细菌DNA的提取方法
针对一些不易于提取的细菌的方法:
试验试剂:
抽提缓冲液:2%CTAB(W/V)2%PVPK25(w/v)(去色素)100mMTris-HCl(pH8.0)
25mMEDTA(pH8.0)2.0MNaCl
10MLiCl
2MLiCl
DEPC-water(抑制RNA酶活性)
3MNaAc(pH5.2)
96%乙醇
70%乙醇
试验步骤:
1、抽提缓冲液65℃预热。
2、加菌体到已经预热的缓冲液(700ul)中混匀,65℃,10min。
3、加酚/氯仿/异戊醇(25:24:1),振荡,以12,000rpm,离心10min。
4、取上清,加氯仿/异戊醇(24:1)振荡,以12,000rpm,离心10min。
5、重复再作一次步骤4。
6、加入1/10体积的3M醋酸钠和1.5倍体积的乙醇(或加入等体积的异丙醇),-20C下沉淀。
7、以2,000rpm,离心10min。
8、弃上清,以70%乙醇条洗沉淀,也可以再用100%乙醇洗,然后溶解于100ml水中。
较为常用的细菌DNA提取方法:
实验步骤:
1、将菌株接种于液体LB培养基,37℃震荡培养过夜。
2、取1.5ml培养物12000rpm离心2min。
3、沉淀中加入567ul的TE缓冲液,反复吹打使之重新悬浮,加入30ul10%SDS和15ul的蛋白酶K,混匀,于37℃温育1h.
4、加入100ul5mol/LNaCl,充分混匀,再加入80ulCTAB/NaCl溶液,混匀后再65℃温育10min。
5、加入等体积的酚/氯仿/异戊醇混匀,离心4-5min,将上清转入一只新管中,加入0.6-0.8倍体积的异丙醇,轻轻混合直到DNA沉淀下来,沉淀可稍加离心。
6、沉淀用1ml的70%乙醇洗涤后,离心弃乙醇.
真菌DNA提取总结的两种方法:
第一种方法:
试验步骤:
1、取真菌菌丝0.5g,在液氮中迅速研磨成粉。
2、加入4mL提取液,快速振荡混匀。
3、加入等体积的4mL的氯仿:异戊醇(24:1),涡旋3~5min(此处是粗提没有加酚)。
4、以4℃,1000rpm,离心5min。
5、上清再用等体积的氯仿:异戊醇(24:1)抽提一次。以4℃,10,000rpm,离心5min。
6、取上清,加入2/3倍体积的-20℃预冷的异丙醇或2.5倍体积的无水乙醇沉淀,混匀,静置约30min。
7、用毛细玻棒挑出絮状沉淀,用75%乙醇反复漂洗数次,再用无水乙醇漂洗1次,吹干,重悬于500ulTE中。
8、加入1ulRNaseA(10mg/mL),37℃下处理1h。
9、用酚(pH8.0):氯仿:异戊醇(25:24:1)和氯仿:异戊醇(24:1)各抽提1次。以4℃,10,000rpm,离心5min。
10、取上清,加入1/10倍体积的3MNaAc,2.5倍体积的无水乙醇,-70℃沉淀30min以上。
11、沉淀用75%乙醇漂洗,风干,溶于200ulTE中,-20℃保存备用。
DNA提取液:0.2MTris-HCl(pH7.5),0.5MNaCl,0.01MEDTA,1%SDS,3MNaAc。
第二种方法:
试验步骤:
1、真菌菌丝0.5-1g,在液氮中迅速研磨成粉。
2、加入3mL65℃预热的DNA提取缓冲液,快速振荡混匀65℃水浴30min,期间混匀2-3次。
3、加入1mL5MKAc,冰浴20min。
4、等体积的氯仿:异戊醇(24:1)抽提1次(10,000rpm,4℃离心5min)。
5、取上清,加入2/3倍体积的-20℃预冷异丙醇,混匀,静置约30min。
6、用毛细玻棒挑出絮状沉淀,用75%乙醇反复漂洗数次,再用无水乙醇漂洗1次,吹干,重悬于500ulTE中。
7、加入1ulRNaseA(10mg/mL),37℃处理1h。
8、用酚(pH8.0):氯仿:异戊醇(25:24:1)和氯仿:异戊醇(24:1)各抽提1次。以4℃,10,000rpm,离心5min。
9、取上清,1/10V3MNaAc,2.5V体积的无水乙醇,-70℃沉淀30min以上。
10、沉淀用75%乙醇漂洗,风干,溶于200ulTE中,-20℃保存备用。
植物基因组提取(CATB法)
作者:时间:2008-05-13 14:26:27 来源: 生物谷 浏览评论
一、实验目的
掌握植物总DNA的抽提方法和基本原理。学习根据不同的植物和实验要求设计和改良植物总DNA抽提方法。
二、实验原理
通常采用机械研磨的方法破碎植物的组织和细胞,由于植物细胞匀浆含有多种酶类(尤其是氧化酶类)对DNA的抽提产生不利的影响,在抽提缓冲液中需加入抗氧化剂或强还原剂(如巯基乙醇)以降低这些酶类的活性。在液氮中研磨,材料易于破碎,并减少研磨过程中各种酶类的作用。
十二烷基肌酸钠(sarkosyl)、十六烷基三甲基溴化铵(hexadyltrimethyl ammomum bromide,简称为CTAB)、十二烷基硫酸钠(sodium dodecyl sulfate,简称SDS)等离子型表面活性剂,能溶解细胞膜和核膜蛋白,使核蛋白解聚,从而使DNA得以游离出来。再加入苯酚和氯仿等有机溶剂,能使蛋白质变性,并使抽提液分相,因核酸(DNA、RNA)水溶性很强,经离心后即可从抽提液中除去细胞碎片和大部分蛋白质。上清液中加入无水乙醇使DNA沉淀,沉淀DNA溶于TE溶液中,即得植物总DNA溶液。
三、实验材料
水稻幼叶
四、主要配方
2% CTAB抽提缓冲溶液: CTAB 4g NaCl 16.364 g 1M Tris-HCl 20ml( PH8.0) 0.5M EDTA 8ml,先用70ml ddH2O溶解, 再定容至200ml灭菌, 冷却后0.2-1% 2-巯基乙醇 (400ul) 氯仿-异戊醇(24:1):先加96ml氯仿,再加4ml异戊醇,摇匀即可。
五、实验步骤
1. DNA的提取
(1) 2%CTAB抽提缓冲液在65℃水浴中预热。
(2)取少量叶片(约1g)置于研钵中,用液氮磨至粉状;
(3) 加入700ul的2%CTAB抽提缓冲液,轻轻搅动;
(4) 将磨碎液分倒入1.5 ml的灭菌中,磨碎液的高度约占管的三分之二;
(5)置于65℃的水浴槽或恒温箱中,每隔10 min轻轻摇动,40 min后取出;
(6)冷却2 min后,加入氯仿-异戊醇(24:1)至满管,剧烈振荡2~3 min,使两者混合均匀;
(7)放入离心机中10 000 rpm离心10 min,与此同时,将600 µl的异丙醇加入另一新的灭菌中;
(8) 10 000 rpm离心1 min后,移液器轻轻地吸取上清夜,转入含有异丙醇的内,将离心管慢慢上下摇动30 sec,使异丙醇与水层充分混合至能见到DNA絮状物;
(9)10000 rpm离心1 min后,立即倒掉液体,注意勿将白色DNA沉淀倒出,将离心管倒立于铺开的纸巾上; (10)60 sec后,直立离心管,加入720 µl的75%乙醇及80 µl 5 M的醋酸钠,轻轻转动,用手指弹管尖,使沉淀与管底的DNA块状物浮游于液体中;
(11)放置30 min,使DNA块状物的不纯物溶解;
(12)10000 rpm离心1 min后,倒掉液体,再加入800 µl 75%的乙醇,将DNA再洗 30 min;
(13)10000 rpm离心30 sec后,立即倒掉液体,将离心管倒立于铺开的纸巾上;数分钟后,直立离心管,干燥DNA(自然风干或用风筒吹干);
(14)加入50 µl 0.5 × TE(含RNase)缓冲液,使DNA溶解,置于37℃恒温箱约15 h,使RNA消解;
(15)置于-20℃保存、备用。
2. DNA质量检测
琼脂糖电泳检测,原理和方法见实验二。
六、 注意事项
(1)叶片磨得越细越好。
(2)移液器的使用。
(3)由于植物细胞中含有大量的DNA酶,因此,除在抽提液中加入EDTA抑制酶的活性外,第一步的操作应迅速,以免组织解冻,导致细胞裂解,释放出DNA酶,使DNA降解。
细胞膜
质体
线粒体
叶绿体
剩下细胞核了。就是DNA了。
通常采用机械研磨的方法破碎植物的组织和细胞,由于植物细胞匀浆含有多种酶类(尤其是氧化酶类)对DNA的抽提产生不利的影响,在抽提缓冲液中需加入抗氧化剂或强还原剂(如巯基乙醇)以降低这些酶类的活性。在液氮中研磨,材料易于破碎,并减少研磨过程中各种酶类的作用。
十二烷基肌酸钠(sarkosyl)、十六烷基三甲基溴化铵(hexadyltrimethyl
ammomum
bromide,简称为CTAB)、十二烷基硫酸钠(sodium
dodecyl
sulfate,简称SDS)等离子型表面活性剂,能溶解细胞膜和核膜蛋白,使核蛋白解聚,从而使DNA得以游离出来。再加入苯酚和氯仿等有机溶剂,能使蛋白质变性,并使抽提液分相,因核酸(DNA、RNA)水溶性很强,经离心后即可从抽提液中除去细胞碎片和大部分蛋白质。上清液中加入无水乙醇使DNA沉淀,沉淀DNA溶于TE溶液中,即得植物总DNA溶液
酚-氯仿方法是提取核酸的经典方法,主要原理是利用核酸、蛋白等杂质在水相和有机相中溶解度不同而重新分配。
试剂盒原理是在特定溶液环境下(高盐、低pH)使核酸吸附在固相介质(一般是硅胶膜)上,洗涤去除杂质后,再改变溶液环境使DNA溶解到纯水或TE中。
酚氯仿方法经典、便宜,用的都是实验室常用试剂,提纯效率和纯度都很高,但缺点是费时费力,苯酚和氯仿还有一定毒性,我见过的实验室很少有用这种方法的。
试剂盒严格来说也分好多种,经典的是离心柱的,就是把硅胶膜固定在离心管中,类似于超滤膜,用离心力或者负压让液体通过硅胶膜,核酸就留在膜上。在经过洗涤、洗脱的步骤得到核酸。这种方法的优点是操作简单、时间短,现在也能达到很高的质量,价格也不贵。缺点是不易放大,需要多次离心。
试剂盒基本步骤是先使样本裂解,在特定溶液中通过离心流过硅胶膜,再经过几次洗涤,最后加上洗脱液,离心后核酸就溶解到洗脱液中。具体的你可以根据你自己的需要到网上查一下说明书,现在做试剂盒公司的很多,步骤大同小异。
试剂盒也不是一定很便宜,对一些难度高(病毒核酸、法医样本核酸)或者要求高(去内毒素)的用途也比较贵。还有一种磁珠法提取,不需要离心,易于放大,可以用于自动化操作。这种高端一点的产品基本上是外国公司垄断的。
国内也有一批人在做这种磁珠,希望能打破这种垄断。上海交大的古宏晨教授和他创立的上海奥润微纳就是这批人的代表。(有点打广告的嫌疑,看在码了这么多字的份上也可以理解哈)
核酸提取试剂盒的学问很多,有兴趣的话还可以再交流。:)
剧烈振荡可使DNA断裂,故操作时应尽量轻柔、缓慢地颠倒混匀。
要获得高纯度DNA,可加入蛋白酶K降解蛋白质。
DNA在260nm处有一吸收峰,而蛋白质在280nm处有吸收峰。当纯度比值小于1.6时,应考虑进行再次纯化。
整个实验须接触多种有毒、有腐蚀性试剂,故应注意操作规范安全。
目录
一、质粒提取原理
质粒是细胞内的一种环状的小分子DNA,是进行DNA重组的常用载体。作为一个具有自身复制起点的复制单位独立于细胞的主染色体之外,质粒DNA上携带了部分的基因信息,经过基因表达后使其宿主细胞表现相应的性状。在DNA重组中,质粒或经过改造后的质粒载体可通过连接外源基因构成重组体。
从宿主细胞中提取质粒DNA,是DNA重组技术中最基础的实验技能。分离质粒DNA有三个步骤:培养细菌使质粒扩增,收集和裂解细菌,分离和纯化质粒DNA。
在质粒提取过程中,由于机械力、酸碱度、试剂等的原因,可能使质粒DNA链发生断裂。所以,多数质粒粗提取物中含有三种构型的质粒:共价闭合环状DNA(cccDNA): 质粒的两条链没有断裂;超螺旋开环DNA(ocDNA): 质粒的一条链断裂;松弛的环状分子线形DNA(lDNA): 质粒的两条链均断裂;线性分子质粒DNA的分子构型 。
质粒DNA琼脂塘凝胶电泳模式图可分为:松弛线性的DNA; 松弛开环的OC构型; 超螺旋的SC构型。由于琼脂糖中加有嵌入型染料溴化乙锭,因此,在紫外线照射下DNA电泳带成橘黄色。 道中的SC DNA走在最前沿,OC DNA则位于凝胶的最后边;道中的L DNA 是经核酸内切限制酶切割质粒之后产生的,它在凝胶中的位置介于OC DNA 和 SC DNA 之间。
二、质粒提取方法
质粒DNA的提取方法主要有碱裂解法、煮沸法、酚氯仿裂解法。跟据不同的实验目的和仪器设备择取不同的实验方案。
(一) 碱裂解法:
此方法适用于小量质粒DNA的提取,提取的质粒DNA可直接用于酶切、PCR扩增、银染序列分析。方法如下:
1. 接1%含质粒的大肠杆菌细胞于2ml LB培养基。
2. 37℃振荡培养过夜。
3. 取1.5ml菌体于Ep管,以4000rpm离心3min,弃上清液。
4. 加0.lml溶液I(1%葡萄糖,50mM/L EDTA pH8.0,25mM/L Tris-HCl pH8.0)充分混合。
5. 加入0.2ml溶液 II(0.2 mM/L NaOH,1% SDS),轻轻翻转混匀,置于冰浴5 min 。
6. 加入0.15m1预冷溶液III(5 mol/L KAc,pH4.8),轻轻翻转混匀,置于冰浴5 min 。
7. 以10,000rpm离心20min,取上清液于另一新Ep管
8. 加入等体积的异戊醇,混匀后于0℃静置10min。
9. 再以10,000rpm离心20min,弃上清。
10. 用70%乙醇0.5ml洗涤一次,抽干所有液体。
11. 待沉淀干燥后,溶于0.05mlTE缓冲液中
(二) 煮沸法:
1. 将1.5ml培养液倒入eppendorf管中,4℃下12000g离心30秒。
2. 弃上清,将管倒置于卫生纸上几分钟,使液体流尽。
3. 将菌体沉淀悬浮于120ml STET溶液中,涡旋混匀。
4. 加入10ml新配制的溶菌酶溶液(10mg/ml), 涡旋振荡3秒钟。
5. 将eppendorf管放入沸水浴中,50秒后立即取出。
6. 用微量离心机4℃下12000g离心10分钟。
7. 用无菌牙签从eppendorf管中去除细菌碎片。
8. 取20ml进行电泳检查。
(三) 酚氯仿裂解法:
1. 从琼脂平板上挑取转化菌阳性克隆,接种到标准LB培养液中(含有卡那霉素30 μg/mL)摇菌12 h;收集1.5 mL菌液,8000 g/min离心3 min,弃上清,沉淀加入200 μL TE,充分混匀;加入400 μL酚氯仿(1∶1体积)混合液,剧烈振动10 s,混匀;12 000 g/min离心5 min,1 mL胰岛素注射针收集上清,尽量避免吸入蛋白沉淀层;上清经国产0。22 μm针式滤器过滤1次;向过滤上清液内加入2倍体积无水乙醇,振荡10 s,12 000 g/min离心5 min;沉淀溶于20 μL的RTE溶液中,37℃水浴。
2. 按PstI内切酶说明书进行酶切反应(37℃,1 h)。 酶切产物10 μL,10 g/L琼脂糖凝胶电泳。
3. PCR引物根据参考文献〔1〕设计,预计扩增产物片断大小为714 bp。
4. 常规制备感受态菌E。coli DH5a,提取质粒DNA常规转化感受态,涂于含有卡那霉素(30 μ/mL)LB培养平板中,37℃培养,15 h后观察筛选克隆情况。
三、质粒提取常见问题
(一) 溶液I—溶菌液:
溶菌酶:它是糖苷水解酶,能水解菌体细胞壁的主要化学成分肽聚糖中的β-1,4糖苷键,因而具有溶菌的作用。当溶液中pH小于8时,溶菌酶作用受到抑制。
葡萄糖:增加溶液的粘度,维持渗透压,防止DNA受机械剪切力作用而降解。
EDTA:1. 螯合Mg2+、Ca2+等金属离子,抑制脱氧核糖核酸酶对DNA的降解作用(DNase作用时需要一定的金属离子作辅基)2. EDTA的存在,有利于溶菌酶的作用,因为溶菌酶的反应要求有较低的离子强度的环境。
(二) 溶液II-NaOH-SDS液:
NaOH:核酸在pH大于5,小于9的溶液中,是稳定的。但当pH>12或pH<3时,就会引起双链之间氢键的解离而变性。在溶液II中的NaOH浓度为0.2mo1/L,加抽提液时,该系统的pH就高达12.6,因而促使染色体DNA与质粒DNA的变性。
SDS:SDS是离子型表面活性剂。它主要功能有:1. 溶解细胞膜上的脂质与蛋白,因而溶解膜蛋白而破坏细胞膜。2. 解聚细胞中的核蛋白。3. SDS能与蛋白质结合成为R-O-SO3-…R+-蛋白质的复合物,使蛋白质变性而沉淀下来。但是SDS能抑制核糖核酸酶的作用,所以在以后的提取过程中,必须把它去除干净,防止在下一步操作中(用RNase去除RNA时)受到干扰。
(三) 溶液III--3mol/L NaAc(pH4.8)溶液:
NaAc的水溶液呈碱性,为了调节pH至4.8,必须加入大量的冰醋酸。所以该溶液实际上是NaAc-HAc的缓冲液。用pH4.8的NaAc溶液是为了把pH12.6的抽提液,调回pH至中性,使变性的质粒DNA能够复性,并能稳定存在。而高盐的3mol/L NaAc有利于变性的大分子染色体DNA、RNA以及SDS-蛋白复合物凝聚而沉淀之。前者是因为中和核酸上的电荷,减少相斥力而互相聚合,后者是因为钠盐与SDS-蛋白复合物作用后,能形成较小的钠盐形式复合物,使沉淀更完全。
(四) 为什么用无水乙醇沉淀DNA?
用无水乙醇沉淀DNA,这是实验中最常用的沉淀DNA的方法。乙醇的优点是可以任意比和水相混溶,乙醇与核酸不会起任何化学反应,对DNA很安全,因此是理想的沉淀剂。
DNA溶液是DNA以水合状态稳定存在,当加入乙醇时,乙醇会夺去DNA周围的水分子,使DNA失水而易于聚合。一般实验中,是加2倍体积的无水乙醇与DNA相混合,其乙醇的最终含量占67%左右。因而也可改用95%乙醇来替代无水乙醇(因为无水乙醇的价格远远比95%乙醇昂贵)。但是加95%的乙醇使总体积增大,而DNA在溶液中有一定程度的溶解,因而DNA损失也增大,尤其用多次乙醇沉淀时,就会影响收得率。折中的做法是初次沉淀DNA时可用95%乙醇代替无水乙酵,最后的沉淀步骤要使用无水乙醇。也可以用0.6倍体积的异丙醇选择性沉淀DNA。一般在室温下放置15-30分钟即可。
(五) 在用乙醇沉淀DNA时,为什么一定要加NaAc或NaCl至最终浓度达0.1~0.25mol/L?
在pH为8左右的溶液中,DNA分子是带负电荷的,加一定浓度的NaAc或NaCl,使Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,易于互相聚合而形成DNA钠盐沉淀,当加入的盐溶液浓度太低时,只有部分DNA形成DNA钠盐而聚合,这样就造成DNA沉淀不完全,当加入的盐溶液浓度太高时,其效果也不好。在沉淀的DNA中,由于过多的盐杂质存在,影响DNA的酶切等反应,必须要进行洗涤或重沉淀。
(六) 加核糖核酸酶降解核糖核酸后,为什么再要用SDS与KAc来处理?
加进去的RNase本身是一种蛋白质,为了纯化DNA,又必须去除之,加SDS可使它们成为SDS-蛋白复合物沉淀,再加KAc使这些复合物转变为溶解度更小的钾盐形式的SDS-蛋白质复合物,使沉淀更加完全。也可用饱和酚、氯仿抽提再沉淀,去除RNase。在溶液中,有人以KAc代替NaAc,也可以收到较好效果。
(七) 为什么在保存或抽提DNA过程中,一般采用TE缓冲液?
在基因操作实验中,选择缓冲液的主要原则是考虑DNA的稳定性及缓冲液成分不产生干扰作用。磷酸盐缓冲系统(pKa=7.2)和硼酸系统(pKa=9.24)等虽然也都符合细胞内环境的生理范围(pH),可作DNA的保存液,但在转化实验时,磷酸根离子的种类及数量将与Ca2+产生Ca3(PO4)2沉淀;在DNA反应时,不同的酶对辅助因子的种类及数量要求不同,有的要求高离子浓度,有的则要求低盐浓度,采用Tris-HCl(pKa=8.0)的缓冲系统,由于缓冲液是TrisH+/Tris,不存在金属离子的干扰作用,故在提取或保存DNA时,大都采用Tris-HCl系统,而TE缓冲液中的EDTA更能稳定DNA的活性。
(八) 如何选择聚乙二醇(6000)的浓度来沉淀DNA?
采用PEG(6000)沉淀DNA,大小不同的DNA分子所用的PEG的浓度也不同,PEG的浓度低,选择性沉淀DNA分子量大,大分子所需PEG的浓度只需1%左右,小分子所需PEG浓度高达20%。本实验选择性沉淀4.3kb的pBR322质粒DNA,每毫升加入0.4毫升的30% PEG,其最终PEG浓度为12%。PEG选择性沉淀DNA的分辨率大约100bp。
(九) 抽提DNA去除蛋白质时,怎样使用酚与氯仿较好?
酞与氯仿是非极性分子,水是极性分子,当蛋白水溶液与酚或氯仿混合时,蛋白质分子之间的水分子就被酚或氯仿挤去,使蛋白失去水合状态而变性。经过离心,变性蛋白质的密度比水的密度为大,因而与水相分离,沉淀在水相下面,从而与溶解在水相中的DNA分开。而酚与氯仿有机溶剂比重更大,保留在最下层。
作为表面变性的酚与氯仿,在去除蛋白质的作用中,各有利弊,酚的变性作用大,但酚与水相有一定程度的互溶,大约10%~15%的水溶解在酚相中,因而损失了这部分水相中的DNA,而氯仿的变性作用不如酚效果好,但氯仿与水不相混溶,不会带走DNA。所以在抽提过程中,混合使用酚与氯仿效果最好。经酚第一次抽提后的水相中有残留的酚,由于酚与氯仿是互溶的,可用氯仿第二次变性蛋白质,此时一起将酚带走。也可以在第二次抽提时,将酚与氯仿混合(1:1)使用。
(十) 为什么用酚与氯仿抽提DNA时,还要加少量的异戊酵?
在抽提DNA时,为了混合均匀,必须剧烈振荡容器数次,这时在混合液内易产生气泡,气泡会阻止相互间的充分作用。加入异戊醇能降低分子表面张力,所以能减少抽提过程中的泡沫产生。一般采用氯仿与异戊酵为24:1之比。也可采用酚、氯仿与异戊醇之比为25:24:1(不必先配制,可在临用前把一份酚加一份24:1的氯仿与异戊醇即成),同时异戊醇有助于分相,使离心后的上层水相,中层变性蛋白相以及下层有机溶剂相维持稳定。
(十一) 为什么要用pH8的Tris水溶液饱和酚?呈粉红色的酚可否使用?如何保存酚不被空气氧化?
因为酚与水有一定的互溶,苯酚用水饱和的目的是使其抽提DNA过程中,不致吸收样品中含有DNA的水分,减少DNA的损失。用Tris调节至pH为8是因为DNA在此条件下比较稳定。在中性或碱性条件下(pH5~7),RNA比DNA更容易游离到水相,所以可获得RNA含量较少的DNA样品。
保存在冰箱中的酚,容易被空气氧化而变成粉红色的,这样的酚容易降解DNA,一般不可以便用。为了防止酚的氧化,可加入疏基乙醇和8-羟基喹琳至终浓度为0.1%。8-羟基喹琳是带有淡黄色的固体粉末,不仅能抗氧化,并在一定程度上能抑制DNase的活性,它是金属离子的弱螯合剂。用Tris pH8.0水溶液饱和后的酚,最好分装在棕色小试剂瓶里,上面盖一层Tris水溶液或TE缓冲液,隔绝空气,以装满盖紧盖子为宜,如有可能,可充氮气,防止与空气接触而被氧化。平时保存在4℃或-20℃冰箱中,使用时,打开盖子吸取后迅速加盖,这样可使酚不变质,可用数月。
(十二) 未提出质粒或质粒得率较低?
1. 大肠杆菌老化
请涂布平板培养后,重新挑选新菌落进行液体培养。
2. 质粒拷贝数低
由于低使用低拷贝数载体引起的质粒DNA提取量低,可更换具有相同功能的高拷
贝数载体。
3. 菌体中无质粒
有些质粒本身不能在某些菌种中稳定存在,经多次转接后有可能造成质粒丢失。
例如,柯斯质粒在大肠杆菌中长期保存不稳定,因此不要频繁转接,每次接种时
应接种单菌落。另外,检查筛选用抗生素使用浓度是否正确。
4. 碱裂解不充分
使用过多菌体培养液,会导致菌体裂解不充分,可减少菌体用量或增加溶液P1、
P2和P3的用量。对低拷贝数质粒,提取时,可加倍使用溶液P1、P2和P3,可能
有助于增加质粒提取量和质粒质量。
5. 溶液使用不当
溶液P2、P3在温度较低时可能出现浑浊,应置于37℃保温片刻直至溶解为清亮的
溶液,才能使用。
6. 吸附柱过载
不同产品中吸附柱吸附能力不同,如果需要提取的质粒量很大,请分多次提取。若
用富集培养基,例如TB 或2×YT,菌液体积必须减少;若质粒或宿主菌是非常高
的拷贝数或生长率,则需调整LB培养液体积。
7. 质粒未全部溶解(尤其质粒较大时)
洗脱溶解质粒时,可适当加温或延长溶解时间。
8. 乙醇残留
漂洗液洗涤后应离心尽量去除残留液体,树脂型试剂盒漂洗后应晾干树脂,再加
入洗脱缓冲液。
9. 洗脱液加入位置不正确
洗脱液应加在硅胶膜中心部位以确保洗脱液会完全覆盖硅胶膜的表面达到最大洗脱
效率。
10. 洗脱液不合适
DNA只在低盐溶液中才能被洗脱,如洗脱缓冲液EB (10 mM Tris?Cl, pH 8.5)
或水。洗脱效率取决于pH值。最大洗脱效率在pH7.0-8.5间。当用水洗脱时确保
其pH值在此范围内,如果pH过低可能导致洗脱量低。洗脱时将灭菌蒸馏水或洗脱
缓冲液加热至60℃后使用有利于提高洗脱效率。
11. 洗脱体积太小
洗脱体积对回收率有一定影响。随着洗脱体积的增大回收率增高,但产品浓度降
低。为了得到较高的回收率可以增大洗脱体积。
12. 洗脱时间过短
洗脱时间对回收率也会有一定影响。洗脱时放置一分钟可达到较好的效果。
(十三) 质粒纯度不高?
1. 混有蛋白
不要使用过多菌体。溶液P1、P2、P3处理并离心后溶液应为澄清的,如果还混有
微小蛋白悬浮物,可再次离心去除后再进行下一步骤。
2. 混有RNA
RNase A处理不彻底,请减少菌体用量或加入溶液P3之后室温放置一段时间。如
果溶液P1已保存6个月以上,请在溶液P1中添加RNase A。
3. 混有基因组DNA
加入溶液P2和P3后应温和混匀,如果剧烈振荡,可能把基因组DNA剪切成碎片从
而混杂在质粒中。如果加入溶液P2后过于粘稠,无法温和混匀,请减少菌体用
量。细菌培养时间过长会导致细胞和DNA的降解,不要超过16 小时。
4. P3溶液加入时间过长
P3溶液加入后,放置时间不要太长,否则有可能会产生小片段DNA污染。
5. 含大量核酸酶的宿主菌
宿主菌含大量核酸酶,在质粒提取过程中降解质粒DNA,影响提取质粒DNA的完
整性,最好选用不含核酸酶的大肠杆菌宿主菌,如DH5α和Top10。
6. 裂解时间过长
加入溶液P2后裂解时间不应超过5分钟。
7. 质粒的二聚体和多聚体形式
质粒复制过程中形成的,与宿主菌相关,电泳可检测出。