如何用新制氢氧化铜鉴别乙醇 丙三醇
新制氢氧化铜与乙醇:无明显现象,不反应,不过由于稀释颜色会变浅;
与甘油:变成绛蓝色溶液,原因是反应生成了蓝色可溶性的甘油铜;
与乙醛:加热有红色沉淀生成;
与乙酸:变澄清的蓝色溶液,酸碱中和反应;
与乙酸乙酯:乙酸乙酯不溶于水,会在表面形成一层油层;
与葡萄糖溶液:先形成绛蓝色溶液,然后加热(我自己想的,呵呵)生成砖红色沉淀.
就这么多,好久没学化学,忘干净了,找了找就找着这么多,应该差不多了,翻一下书,再系统的整理一下就可以了,
能溶
不同浓度丙二醇和不同浓度的丙三醇溶液沸点是多少?
这个问题有点纠结
浓度不同 物质也不同 这不好比较
这样说 同样浓度的丙二醇和丙三醇 后者的沸点较前者低
丙二醇
无色粘稠稳定的吸水性液体,几乎无味无臭,易燃,低毒。与水、乙醇及多种有机溶剂混溶。沸点187.3℃。熔点-60℃。相对密度1.0381(20/20℃)。折射率nD(20℃)1.4326。表面张力(20℃)38mN/m。粘度(20℃)60.5mPa·s。比热容(20℃)2.49kJ/(kg·℃)。汽化热(101.3kPa)711kJ/kg。燃烧热(25℃)1824.0kJ/mol。闪点(开杯)99℃。自燃点415.5℃。临界温度352℃。临界压力6.1MPa。产品用途 丙二醇可用作不饱和聚酯树脂的原料,也是增塑剂、表面活性剂、乳化剂和破乳剂的原料。可用作防霉剂、水果催熟剂、防腐剂、防冻剂及烟草保湿剂。
丙三醇
无色澄明黏稠液体。无臭。有暖甜味。能从空气中吸收潮气,也能吸收硫化氢、氰化氢和二氧化硫。对石蕊呈中性。长期放在0℃的低温处,能形成熔点为17.8℃有光泽的斜方晶体。遇强氧化剂如三氧化铬、氯酸钾、高锰酸钾能引起燃烧和爆炸。能与水、乙醇任意混溶,1份本品能溶于11份乙酸乙酯,约500份乙醚,不溶于苯、氯仿、四氯化碳、二硫化碳、石油醚和油类。相对密度1.26362。熔点17.8℃。沸点290.0℃(分解)。折光率1.4746。闪点(开杯)176℃。
乙醇与水可以任意比例互溶
20°c时氯化钠溶解度35g/100g水,碳酸钠溶解度33g/100g水
15℃时乙酸乙酯溶解度8.5g/100g水(没有oh之类亲水基团,两头都是憎水的烷基,所以溶解度小,上课老师做实验的时候分层的,还可以用水去除溶在乙酸乙酯里的乙酸,怎么可能混溶?)
1.请理解规律
1.官能团的溶解性:
(1)易溶于水的官能团(即亲水基团)有—OH、—CHO、—COOH、—NH2。
(2)难溶于水的官能团(即憎水基团)有:所有的烃基(—CnH2n+1、—CH=CH2、—C6H5等)、卤原子(—X)、硝基(—NO2)等。
2.分子中亲水基团与憎水基团的比例影响物质的溶解性:
(1)当官能团的个数相同时,随着烃基(憎水基团)碳原子数目的增大,溶解性逐渐降低;
例如,溶解性:CH3OH>C2H5OH>C3H7OH>……,一般地,碳原子个数大于5的醇难溶于水。
(2)当烃基中碳原子数相同时,亲水基团的个数越多,物质的溶解性越大;
例如,溶解性:CH3CH2CH2OH<CH3CH(OH)CH2OH<CH2(OH)CH(OH)CH2OH。
(3)当亲水基团与憎水基团对溶解性的影响大致相同时,物质微溶于水;
例如,常见的微溶于水的物质有:苯酚 C6H5—OH、苯胺 C6H5—NH2、苯甲酸 C6H5—COOH、正戊醇 CH3CH2CH2CH2CH2—OH(上述物质的结构简式中“—”左边的为憎水基团,右边的为亲水基团);乙酸乙酯 CH3COOCH2CH3(其中—CH3和—CH2CH3为憎水基团,—COO—为亲水基团)。
(4)由两种憎水基团组成的物质,一定难溶于水。
例如,卤代烃 r-x、硝基化合物r-no2 ,由于其中的烃基r—、卤原子—x和硝基—no2均为憎水基团,故均难溶于水。
溶于水的有机物比较多,常见的有 乙醇,乙二醇,丙三醇,甲醛,乙醛,乙酸等等
有亲水基团,-OH,-CHO。-COOH,-NH2,-SO3H,
烃、卤代烃、酯、油脂都不溶于水,
【含碳数少的含氧衍生物溶解性很好,有的与水互溶,如:甲醇、乙醇、已二醇;甲醛、乙醛;甲酸、乙酸;单糖、二糖;氨基酸等。
只限于低级醇......高级醇连伯醇的溶解度都不大...
含碳数少的含氧衍生物溶解性很好,多了就不溶解了,一般C原子数少于4。】
下午好,丙三醇的密度是1.26g/cm3已经算是常见极性溶剂中很大的了,要比它还大还能保持液体只能考虑聚醇或者卤代羟基溶剂了比如PEG、液体聚丙烯酸钠和溴乙醇,比重略小的含磷阻燃溶剂有磷酸三乙酯和甲基膦酸二甲酯请酌情参考。
下午好,视黄醇不溶于冷水和丙三醇,它氧化后生成的维A酸也难溶于多元醇易溶于非极性溶剂比如乙酸乙酯、甲苯和四氯化碳等等,能促进这些脂溶性维生素吸收一般医药中配合大豆油和辛癸酸甘油酯服用。丙三醇也不是绝大多数维生素及其衍生物的良溶剂之一只能作为增溶剂。
不溶于水,易溶于有机溶剂
酸性水解,碱性水解
物理性质、
乙酸乙酯,乙酸中羟基被乙氧基取代而生成的化合物,分子式CH3COOC2H5。无色易挥发的液体;有水果香味;熔点-83.6℃,沸点77.06℃,相对密度0.9003(20/4℃);微溶于水,易溶于有机溶剂。乙酸乙酯与水和乙醇皆能生成二元共沸混合物:与水生成的共沸混合物的沸点为70.4℃;与乙醇形成的共沸混合物的沸点为71.8℃;与水和乙醇还可以形成三元共沸混合物,其沸点为70.2℃。
乙醇,又称酒精。为最常见的醇,分子式CH3CH2OH。透明的可燃液体;具有醇香,味辣;吸水性极强;熔点-117.3℃,沸点78.5℃,相对密度0.7893(20/4℃)。乙酸,纯乙酸为无色液体;有刺激性臭味;熔点16.6℃,沸点117.9℃,相对密度1.0492(20/4℃)。纯乙酸在16℃以下时,能结成冰状的固体,所以常被称为冰醋酸。乙酸易溶于水、醇、醚和四氯化碳,不溶于二硫化碳。当水加到乙酸中,混合后的的总体积变小,密度增加,直至分子比为1:1,相当于形成一元酸的原乙酸CH3C(OH)3,进一步稀释,不再发生上述体积的改变。乙酸的水溶液是一个典型的弱电离酸(Ka=1.75*10^-5)。
乙酸乙酯 ethyl acetate
别名:醋酸乙酯 acetic ester
溶剂名称 沸点范围(℃) 蒸发潜热(kcal25/kg) 挥发速度(s)
乙酸乙酯 72~80 401 85
比热容1.92J/(g·℃)。
CAS No.: 141-78-6
分子式 C4H8O2
分子量 88.11
存在:除人工合成外,还存在于许多酒以及菠萝、香蕉等果品中。
外观:无色澄清液体。
香气:有强烈的醚似的气味,清灵、微带果香的酒香,易扩散,不持久。
熔点(℃): -83.6
折光率(20℃):1.3708--1.3730
沸点(℃): 77.2
相对密度(水=1): 0.894--0.898
相对蒸气密度(空气=1): 3.04
饱和蒸气压(kPa): 13.33(27℃)
燃烧热(kJ/mol): 2244.2
临界温度(℃): 250.1
临界压力(MPa): 3.83
辛醇/水分配系数的对数值: 0.73
闪点(℃): 25
引燃温度(℃): 426
爆炸上限%(V/V): 11.5
爆炸下限%(V/V): 2.0
室温下的分子偶极距:6.555*10^-30
溶解性: 微溶于水,溶于醇、酮、醚、氯仿等多数有机溶剂。
小知识:
一、酯化反应的特点:
1.酯化反应在常温下进行得很慢,为了使反应加快,使用了催化剂并加热的条件。 2.酯化反应是可逆反应,它会达到平衡状态,如何使平衡向生成酯的方向移动呢?
增大反应物的浓度或减小生成物的浓度。为了使平衡向生成酯的方向移动,我们加入的乙醇、乙酸是无水的,且乙醇是过量的,以增大反应物的浓度;同时将生成的产物乙酸乙酯蒸出,水可以被浓硫酸吸收,由此使生成物的浓度减少,平衡向生成酯的方向移动。所以浓硫酸在反应中既是催化剂又是吸水剂.
为了使蒸发出的乙酸乙酯蒸气迅速冷凝,加长了导气管,为了防止试管受热不均匀造成碳酸钠溶液倒吸,所以导管口位于接近液面的上方。
3.为什么必须用饱和碳酸钠溶液来吸收乙酸乙酯呢?因为:
①碳酸钠能跟蒸发出的乙酸反应生成没有气味的乙酸钠,所以反应完毕后振荡试管酚酞的红色变浅,液层变薄;它还能溶解蒸发出的乙醇,由此可以提纯乙酸乙酯。 ②乙酸乙酯在饱和碳酸钠溶液中的溶解度减小,容易分层析出.
4.反应混合液的混合顺序:先加无水乙醇,再缓慢加入浓硫酸和冰醋酸,边加边振荡。大试管内反应混合液体积不超过1/3。加入碎瓷片的目的是防止暴沸。
二、油脂是组成复杂的高级脂肪酸形成的酯。油脂在适当的条件下能发生水解反应,生成相应的高级脂肪酸和甘油。工业上根据这一反应原理,来制取高级脂肪酸和甘油。在碱性条件下水解可制造肥皂。
三、在有浓硫酸存在并加热的条件下,乙酸能跟乙醇发生酯化反应,生成有香味的乙酸乙酯。这种酯化反应在常温下也能进行,但速率很慢,几乎看不出反应:有人错误地认为,乙醇和乙酸不论在什么情况下都能发生酯化反应,当遇到有人喝醉酒时,就让其喝一些醋,以便发生酯化反应而解酒,这种做法是不科学的,因为在人体器官中。短时间内不可能发生酯化反应;这样做不但没有达到解酒的目的,反而又增加了对胃肠有利激作用的醋酸。