建材秒知道
登录
建材号 > 苯酚 > 正文

底泥对苯酚的吸附作用为什么苯酚平衡浓度比初始浓度高

笨笨的宝马
傻傻的小馒头
2023-01-26 11:39:56

底泥对苯酚的吸附作用为什么苯酚平衡浓度比初始浓度高

最佳答案
会撒娇的玉米
微笑的柚子
2026-02-03 17:54:34

底泥对苯酚的吸附作用底泥对苯酚的吸附作用引言 底泥/悬浮颗粒物是水中污染物的源和汇。水体中有机污染物的迁移转化途径很多,如挥发、扩散、化学或生物降解等,其中底泥/悬浮颗粒物的吸附作用对有机污染物的迁移、转化、归趋及生物效应有重要影响,在某种程度上起着决定作用。底泥对有机物的吸附主要包括分配作用和表面吸附。 苯酚是化学工业的基本原料,也是水体中常见的有机污染物。底泥对苯酚的吸附作用与其组成、结构等有关。吸附作用的强弱可用吸附系数表示。探讨底泥对苯酚的吸附作用对了解苯酚在水/沉积物多介质的环境化学行为,乃至水污染防治都具有重要的意义。 本实验以两种不同组成的底泥为吸附剂,吸附水中的苯酚,测出吸附等温线后,用回归法求出底泥对苯酚的吸附常数,比较它们对苯酚的吸附能力。目录页CONTENTS PAGEP1.实验目的和 实验原理P2.仪器与试剂P3.实验步骤P4.数据处理Part1实验目的和实验原理Part 1Part 2Part 3Part 4*实验目的 &实验原理实验原理实验目的 试验底泥对一系列浓度苯酚的吸附情况,计算平衡浓度和相应的吸附量,通过绘制等温吸附曲线,分析底泥的吸附性能和机理。 本实验采用4-氨基安替比林法测定苯酚。即在pH 10.0 0.2介质中,在铁氰化钾存在下,苯酚与4-氨基安替比林法反应,生成的吲哚酚安替比林染料,其水溶液在波长510 nm处有最大吸收。用2 cm比色皿测量时,苯酚的最低检出浓度为0.1 mg/L。1. 绘制两种底泥对苯酚的吸附等温线,求出吸附常数,对比它们对苯酚的吸附能力并进行分析。2. 了解水体中底泥的环境化学意义及其在水体自净中的作用。Part2仪器与试剂Part 1Part 2Part 3Part 4*仪器 &试剂仪器(1) 恒温调速振荡器。(2) 低速离心机。(3) 可见光分光光度计。(4) 碘量瓶:150mL。(5) 离心管:25mL。(6) 比色管:50mL。(7) 移液管:2mL,5mL,10mL,20mL。试剂(1) 无酚水:于1L水中加入0.2 g经200活化0.5 h的活性炭粉末,充分振荡后,放置过夜。用双层中速滤纸过滤,或加氢氧化钠使水呈碱性,并滴加高锰酸钾溶液至紫红色,移入蒸馏瓶中加热蒸馏,收集流出液备用。本实验应使用无酚水。 注:无酚水应贮备于玻璃瓶中,取用时应避免与橡胶制品(橡皮塞或乳胶管)接触。Part 1Part 2Part 3Part 4*仪器 &试剂试剂(2) (2) 淀粉溶液:称取淀粉溶液:称取1g1g可溶性淀粉,用少量水调成糊状,加沸水至可溶性淀粉,用少量水调成糊状,加沸水至100 100 mLmL,冷却,置冰箱保存。,冷却,置冰箱保存。(3) (3) 溴酸钾溴酸钾溴化钾标准参考溶液(溴化钾标准参考溶液(c c1/6KBrO31/6KBrO3 = 0. 1mol/L = 0. 1mol/L)称取)称取2.784 2.784 g g 溴酸钾溶于水中,加入溴酸钾溶于水中,加入10g10g溴化钾,使其溶解,移入溴化钾,使其溶解,移入1000 mL1000 mL容量瓶中,容量瓶中,稀释至标线。稀释至标线。(4) (4) 碘酸钾标准参考溶液(碘酸钾标准参考溶液(c c1/6KIO31/6KIO3 =0.0125 mol/L =0.0125 mol/L)称取预先在)称取预先在180180烘烘干的碘酸钾干的碘酸钾0.4458 g0.4458 g溶于水中,移入溶于水中,移入1000 mL1000 mL容量瓶中,稀释至标线。容量瓶中,稀释至标线。Part 1Part 2Part 3Part 4*仪器 &试剂试剂(5) (5) 硫代硫酸钠标准溶液(硫代硫酸钠标准溶液(cNacNa2 2S S2 2O O3 30.0125 mol/L0.0125 mol/L):称取):称取3.1 g3.1 g硫代硫酸钠溶于煮硫代硫酸钠溶于煮沸放冷的水中,加入沸放冷的水中,加入0.2 g0.2 g碳酸钠,释释至碳酸钠,释释至1000 mL ,1000 mL ,临用前,用碘酸钾标定。临用前,用碘酸钾标定。标定方法:取标定方法:取10.0 mL10.0 mL碘酸钾溶液置于碘酸钾溶液置于250 mL250 mL碘量瓶中,加水稀释至碘量瓶中,加水稀释至100mL100mL,加,加1g1g碘化碘化钾,再加钾,再加5mL 15mL 1:5 5硫酸,加塞,轻轻摇匀。置暗处放置硫酸,加塞,轻轻摇匀。置暗处放置5 min5 min,用硫代硫酸钠溶液滴定,用硫代硫酸钠溶液滴定至淡黄色,加至淡黄色,加1 mL1 mL淀粉溶液,继续滴定至蓝色刚褪去为止,记录硫代硫酸钠溶液用量。淀粉溶液,继续滴定至蓝色刚褪去为止,记录硫代硫酸钠溶液用量。按下式计算硫代硫酸钠溶液浓度(按下式计算硫代硫酸钠溶液浓度(mol/Lmol/L):):3450125.02322VVcOHOSNa式中:式中: V V3 3 硫代硫酸钠溶液消耗量,硫代硫酸钠溶液消耗量,mL mL ; V V4 4 移取碘酸钾标准参考溶液量,移取碘酸钾标准参考溶液量,mL mL ; 0.01250.0125碘酸钾标准参考溶液浓度,碘酸钾标准参考溶液浓度,mol/Lmol/L。Part 1Part 2Part 3Part 4*仪器 &试剂试剂(6) (6) 苯酚标准储备液:称取苯酚标准储备液:称取2 2.00 g.00 g无色苯酚溶于水中,移入无色苯酚溶于水中,移入1000 mL1000 mL容量瓶中,稀释至容量瓶中,稀释至标线(浓度为标线(浓度为2g/L2g/L)。在冰箱内保存,至少稳定)。在冰箱内保存,至少稳定1 1个月。个月。 标定方法:吸取标定方法:吸取10.00 ml10.00 ml,苯酚储备液于,苯酚储备液于250 mL250 mL碘量瓶中,加水稀释至碘量瓶中,加水稀释至100mL100mL,加,加10.0 mL 0.1 mol/L10.0 mL 0.1 mol/L溴酸钾溴酸钾溴化钾溶液,立即加入溴化钾溶液,立即加入5 mL5 mL,盐酸,盖好瓶塞,轻轻摇匀,盐酸,盖好瓶塞,轻轻摇匀,在暗处放置在暗处放置10 min10 min。加入。加入1 g1 g碘化钾,盖好瓶塞,再轻轻摇匀,在暗处放置碘化钾,盖好瓶塞,再轻轻摇匀,在暗处放置5 min5 min。用。用0.0125 mol/L0.0125 mol/L硫代硫酸钠标准溶液滴定至淡黄色,加入硫代硫酸钠标准溶液滴定至淡黄色,加入1mL1mL淀粉溶液,继续滴定至蓝色淀粉溶液,继续滴定至蓝色刚好褪去,记录用量。同时以水代替苯酚储备液作空白试验,记录硫代硫酸钠标准溶刚好褪去,记录用量。同时以水代替苯酚储备液作空白试验,记录硫代硫酸钠标准溶液滴定用量。苯酚储备液的浓度由下式计算:液滴定用量。苯酚储备液的浓度由下式计算:VcVV68.1521苯酚式中:式中:苯酚苯酚苯酚储备液的浓度苯酚储备液的浓度mg/mLmg/mL; V V1 1 空白试验中硫代硫酸钠标准溶液滴定用量,空白试验中硫代硫酸钠标准溶液滴定用量,mLmLV V2 2 滴定苯酚储备液时,硫代硫酸钠标准溶液滴定用量,滴定苯酚储备液时,硫代硫酸钠标准溶液滴定用量,mLmLV V 取用苯酚储备液体积,取用苯酚储备液体积,mLmLc c 硫代硫酸钠标准溶液浓度,硫代硫酸钠标准溶液浓度,mol/Lmol/L; 15.6815.681/61/6苯酚摩尔质量,苯酚摩尔质量,g/molg/mol。Part 1Part 2Part 3Part 4*仪器 &试剂试剂(7) 苯酚标准中间液(使用时当天配制):取适量苯酚储备液,用水稀释,苯酚标准中间液(使用时当天配制):取适量苯酚储备液,用水稀释,配制成配制成10g/mL苯酚中间液。苯酚中间液。(8) 缓冲溶液(缓冲溶液(pH约为约为10):称取):称取20 g氯化铵溶于氯化铵溶于100 mL氨水中,加塞,氨水中,加塞,置冰箱中保存。置冰箱中保存。(9) 2% 4-氨基安替比林溶液:称取氨基安替比林溶液:称取4-氨基安替比林(氨基安替比林(C11H13N3O)2g溶于溶于水,稀释至水,稀释至100 mL,置于冰箱中保存。可使用,置于冰箱中保存。可使用1周。周。(10) 8%铁氰化钾溶液:称取铁氰化钾溶液:称取8g铁氰化钾铁氰化钾K3Fe(CN)6溶于水,稀释至溶于水,稀释至100 mL。置于冰箱内可保存。置于冰箱内可保存1周。周。Part3实验步骤Part 1Part 2Part 3Part 4*标准曲线的绘制&吸附实验1在9支50 mL比色管中分别加入0.0、1.00、3.00、5.00、7.00、10.00、12.00、15.00、18.00 ml浓度为10g /mL的苯酚标准液,并用水稀释至刻度。2加0.5 mL缓冲溶液,混匀。此时pH为10.0 0.2,加4-氨基安替比林溶液1.0mL,混匀。3再加1.0 mL铁氰化钾溶液,充分混匀后,放置10 min,立即在510nm波长处,以蒸馏水为参比,用2 cm比色皿,测量吸光度,记录数据,经空白校正后,绘制吸光度对苯酚含量( g /mL )的标准曲线。1、标准曲线的绘制Part 1Part 2Part 3Part 4*标准曲线的绘制&吸附实验2、吸附实验序 号 123456苯酚储备液/mL1.03.06.012.520.025.0无酚水/mL24221912.550起始浓度0/gmL180240480100016002000取上清液/mL2.001.001.001.000.500.50稀释倍数125250250250500500表一 苯酚加入浓度系列取12只干净的150 mL碘量瓶,分为A、B两组。分别在每个瓶内放入1.0g左右的沉积物样品A、B(称准到0.0001g,以下同)。然后按表一所给数量加入浓度为2g/L的苯酚储备液和无酚水,加塞密封并摇匀后,将瓶子放入振荡器中,在251.0下,以150175 r/min的转速振荡8h,静置30 min后,在低速离心机上以3000 r/min速度离心5 min,移出上清液至50 mL容量瓶中,用水定容至刻度,摇匀,然后移出数毫升(视平衡浓度而定)至50 mL比色管中,用水稀释至刻度。按与绘制标准曲线相同步骤测定吸光度,从标准曲线上查出苯酚的浓度,并计算出苯酚的平衡浓度。Part4数据处理Part 1Part 2Part 3Part 4* 数据处理1. 计算平衡浓度(e)及吸附量(Q)。1利用平衡浓度和吸附量数据绘制苯酚在底泥上的吸附等温线。2利用三种吸附等温式拟合吸附等温线,求各自的线性方程及相关系数。34SUGGESTION 式中:0起始浓度,g /mL; e平衡浓度,g /mL; 1在标准曲线上查得的测量浓度,g /mL; n溶液的稀释倍数; V吸附实验中所加苯酚溶液的体积,mL ; W吸附实验所加底泥样品的量,g; Q苯酚在底泥样品上的吸附量,mg/g。数据处理 计算平衡浓度(e)及吸附量(Q):补充Langmuir等温吸附方程式在1916年langmuir利用气体分子被吸附于金属固体表面的研究,提出第一个有理论根据的吸附等温方程式,由于其方程中的参数具有一定的意义,此等温方程式已被广泛应用在各种溶液的吸附系统。其方程式如下:化简得直线方程式:qr为平衡时的吸附量,Cr为平衡时的溶液浓度,qm是吸附剂饱和吸附量,K是等温吸附方程式常数。三种吸附等温式拟合吸附等温线补充Freundlich等温吸附方程式Freundlich等温吸附方程式是建立在实验基础之上的吸附理论,其方程式如下: QKC1/n化简得直线方程式:logQ=(1/n)*logC+logKK为吸附系数,n是常数,Q为平衡时的吸附量,C为平衡时的溶液浓度。三种吸附等温式拟合吸附等温线补充Redlich-Peterson等温吸附方程式Jossens等人合并Langmuir和Freundlich等温吸附方程式与Redlich和Peterson所提的等温吸附方程式相一致。此等温吸附方程式为:Q=ACr/(1+BCr)其中A、B及g为等温吸附方程式的常数,其g介于0与1之间。当g=1时,其方程式为:Q=ACr/(1+BCr),即为Langmuir等温吸附方程式。三种吸附等温式拟合吸附等温线g

最新回答
激动的发箍
勤奋的电源
2026-02-03 17:54:34

1、水解法 由邻硝基氯苯经氢氧化钠溶液水解、酸化而得。将浓度为76-80g/L的氢氧化钠溶液1850-1950L加入水解锅内,再加入250kg熔融的邻硝基氯苯。当加热到140-150℃,压力约0.45MPa时,保持2.5h,然后才升温到153-155℃,压力到0.53MPa左右,继续保温3h。反应完成后,冷却到60℃。将1000L水和60L浓硫酸预先加入结晶锅中,然后压入上述的水解产物,并慢慢加入硫酸至刚果红试纸呈紫色,再加冰冷却到30℃,搅拌,抽滤,用离心机甩去母液,于是得含量为90%左右的邻硝基苯酚210kg。收率90%左右。另一种制备法是将苯酚硝化成邻硝基酚和对硝基酚的混合物,再用水蒸气蒸馏出邻硝基酚。硝化反应在15-23℃下进行,最高不得超过25℃。

2、苯酚硝化法 由苯酚经硝酸硝化成邻硝基苯酚和对硝基苯酚混合物,再经水蒸气蒸馏分离而得。

虚拟的发夹
鲤鱼小蘑菇
2026-02-03 17:54:34
用足量碳酸钠溶液进行分液。具体步骤:向酚水中加入碳酸钠溶液(苯酚和碳酸钠反应生成溶于水的酚钠和碳酸氢钠二者都将在水中)焦油是不反应的,形成互不溶解的上下两相层。因焦油密度通常在0.95-1.10g./cm3之间所以有的可能在分液漏斗下方,也可能在水层上方。若油层在下方,静置足够长时间后打开旋塞漫漫把焦油放出,把水层从分液漏斗顶部的小孔中倾倒出,再向水层通入过量CO2,苯酚就析出来了。(水应是凉的,水越热,苯酚溶解的就越多)。若油层在上方也类似地进行分离。

分液漏斗http://baike.baidu.com/view/485835.htm

高挑的钻石
腼腆的哑铃
2026-02-03 17:54:34
提取基因组DNA和细胞核DNA是不同的方法

提取细胞核要先把细胞破碎分离出细胞核,要在甘油或其他保护剂中进行

SDS十二烷基磺酸钠:可破坏细胞膜、核膜,并使组织蛋白与DNA分离

CATB是一种抽提液,破坏细胞膜的~具体忘了~

DNA不溶于异丙醇,异丙醇可以析出DNA,产生白色絮状沉淀,用枪头挑出就可以了

以下是一些具体方法,希望有用

基因组DNA提取方法

制备基因组DNA是进行基因结构和功能研究的重要步骤,通常要求得到的片段的长度不小于100-200kb。在DNA提取过程中应尽量避免使DNA断裂和降解的各种因素,以保证DNA的完整性,为后续的实验打下基础。主要是CTAB方法,其他的方法还有1物理方式:玻璃珠法,超声波法,研磨法,冻融法。2化学方式:异硫氰酸胍法,碱裂解法3生物方式:酶法。根据核酸分离纯化方式的不同有:硅质材料、阴离子交换树脂等

试验步骤:

1、贴壁细胞用胰酶消化,离心收集。

2、细胞重悬于冰冷的PBS漂洗一次,离心收集。试验步骤2再重新作一边。

3、加入5mlDNA提取缓冲液,(10mmol/LTris-cl,0.1mol/LEDTA,o.5%SDS),混匀。

4、加入25ul蛋白酶K,使终浓度达到100ug/ml,混匀,50℃水浴3h,

5、用等体积的酚抽提一次,2500rpm离心收集水相,用等体积的(酚,氯仿,异戊醇)混合物抽提一次,2500r/min离心收集水相

6、用等体积的氯仿,异戊醇抽提一次。加入等体积的5mol/L的LiCL,混匀,冰浴,10min.。

7、2500rpm离心10min.转上清于一离心管中。加入等体积的异丙醇。室温10min。

2500rpm,离心10min。弃上清。

8、加入0.1倍体积3mol/L乙酸钠(PH5.2)与2倍体积-20℃预冷无水乙醇。-20℃20min。

9、12000r/min,室温离心5min。弃上清。将DNA溶于适量TE中。

外周血DNA提取技术

分离外周血白细胞提取方法:

试验步骤:

1、取人肘静脉血5ml,EDTA抗凝,2500rpm离心10min。

2、小心吸取上层血浆,分装到3个0.5ml离心管中。

3、在血细胞中加入3倍体积的溶血液,摇匀,冰浴15min。

4、2500rpm离心10min,弃上清。

5、加入10ml溶血液,摇匀,冰浴15min。

6、3000rpm离心10min,弃上清。

7、倒置离心管,去掉残液。

8、得白细胞,-80?C冻存。

试验要求:

血至分离白细胞之间隔时间在室温下放置不超过2h,4℃放置不超过5h,以防白细胞自溶。

氯仿法抽提外周血白细胞基因组DNA:

试验试剂:

Ligsisbuffer:

133mMNH4ClNHCl7.12g0.9mMNH4HCO3NH4HCO30.071g0.1mMEDTA0.5mMEDTA0.2ml;最后加灭菌去离子水至1000ml,高压灭菌。

ACD抗凝剂:柠檬酸1.68g柠檬酸钠4.62g葡萄糖5.15g;最后加灭菌去离子水至350ml,高压灭菌。

提取缓冲液(Extractionbuffer):

10mMTrisCl(PH=8.0)1MTris.Cl(PH=8.0)1ml0.1mMEDTA(PH=8.0)0.5mMEDTA(PH=8.0)20ml0.5%SDS10%SDS0.5ml;最后加灭菌去离子水至100ml,高压灭菌

试验步骤:

1、在500μl抗凝血中加入ligsisbuffer1000μl,充分颠混至清亮。以4000rpm,离心5min。弃上清液。

2、沉淀中加入ligsisbuffer1500μl,充分匀浆。以6000rpm,离心5min。

3、彻底弃去上清,加入extractionbuffer500μl(裂解细胞),混匀置于37℃,水溶1h。

4、加入8μl的蛋白酶K,颠混,37℃过夜(或55℃,3h,但是37℃效果要好些)。

5、每管加入450μl饱和酚(取溶液下层)缓慢摇晃10min,以5500rpm,离心15min。

6、取上清,每管加入250μl饱和酚和250μl氯仿-异戊醇,摇匀10min,以5500rpm,离心15min。

7、取上清,每管加入500μl氯仿-异戊醇,摇匀10min,以5500rpm,离心15min。

8、取上清,每管加50μl的3M的NaAC+,适量无水乙醇(预冷)至满,摇匀放入-20℃保存2h以上。

9、以12000rpm,离心20min。去上清,加入70%乙醇500μl,以12000rpm,离心5min,去上清,50-60℃干燥。

10、加入50μl灭菌去离子水,转弹,混匀。

NaI提取法提取外周血白细胞基因组:

实验步骤:

1、取外周抗凝血(全血)100ul于eppendorf管中,12000rpm离心12min。

2、弃上清,加双蒸水200ul溶解,摇匀20s。

3、混匀后加6MNaI溶液200ul,摇匀20s。

4、加入氯仿/异戊醇(24:1)400ul,边加边摇,摇匀20s,12000rpm离心12min。

5、取上层液350ul,加入另一新eppendorf管中,加0.6倍体积异丙醇,摇匀20s,室温放置15min,静置后的反应体系15000rpm离心12min,使沉淀紧贴eppendorf管壁。

6、弃异丙醇,加70%乙醇1ml(不振动),以15000rpm离心12min。

7、弃乙醇,敞开eppendorf管盖,烘干(37℃恒温箱)后,加1xTE溶液30ul,溶解DNA>12h以上,制成的DNA液-20℃冰箱保存备用。

常用的外周血白细胞基因提取方法:

试验原理:

苯酚/氯仿提取DNA是利用酚是蛋白质的变性剂,反复抽提,使蛋白质变性,SDS(十二烷基磺酸钠)将细胞膜裂解,在蛋白酶K、EDTA的存在下消化蛋白质或多肽或小肽分子,核蛋白变性降解,使DNA从核蛋白中游离出来。DNA易溶于水,不溶于有机溶剂。蛋白质分子表面带有亲水基团,也容易进行水合作用,并在表面形成一层水化层,使蛋白质分子能顺利地进入到水溶液中形成稳定的胶体溶液。当有机溶液存在时,蛋白质的这种胶体稳定性遭到破坏,变性沉淀。离心后有机溶剂在试管底层(有机相),DNA存在于上层水相中,蛋白质则沉淀于两相之间。酚-氯仿抽提的作用是除去未消化的蛋白质。氯仿的作用是有助于水相与有机相分离和除去DNA溶液中的酚。抽提后的DNA溶液用2倍体积的无水乙醇在1/103mol/LNaCl存在下沉淀DNA,回收DNA用70%乙醇洗去DNA沉淀中的盐,真空干燥,用TE缓冲液溶解DNA备用。

试验步骤:

1、将1mlEDTA抗凝贮冻血液于室温解冻后移入5ml离心管中,加入1ml磷酸缓冲盐溶液(PBS),混匀,3500rpm离心15min,倾去含裂解红细胞的上清。重复一次。用0.7mlDNA提取液混悬白细胞沉淀,37℃水浴温育1h。

2、将上述DNA提取液混悬白细胞,37℃水浴温育1h后,加入1mg/ml蛋白酶K0.2ml,至终浓度为100-200ug/ml,上下转动混匀,液体变粘稠。50℃水浴保温3h,裂解细胞,消化蛋白。保温过程中,应不时上下转动几次,混匀反应液。

3、反应液冷却至室温后,加入等体积的饱和酚溶液,温和地上下转动离心管5-10min,直至水相与酚相混匀成乳状液。5000rpm离心15min,用大口吸管小心吸取上层粘稠水相,移至另一离心管中。重复酚抽提一次。加等体积的氯仿:异戊醇(24:1),上下转动混匀,5000rpm离心15min,用大口吸管小心吸取上层粘稠水相,移至另一离心管中。重复一次。

4、加入1/5体积的3mol/LNaAc及2倍体积的预冷的无水乙醇,室温下慢慢摇动离心管,即有乳白色云絮状DNA出现。用玻璃棒小心挑取云絮状的DNA,转入另一1.5ml离心管中,加70%乙醇0.2ml,以5000rpm离心5min。洗涤DNA,弃上清,去除残留的盐。重复一次。室温挥发残留的乙醇,但不要让DNA完全干燥。加TE液20ul溶解DNA,置于摇床平台缓慢摇动,DNA完全溶解通常需12-24h。制成的DNA液-20℃冰箱保存备用。

真核细胞DNA的制备

一般真核细胞基因组DNA有107-9bp,可以从新鲜组织、培养细胞或低温保存的组织细胞中提取,常是采用在EDTA以及SDS等试剂存在下用蛋白酶K消化细胞,随后用酚抽提而实现的。这一方法获得的DNA不仅经酶切后可用于Southern分析,还可用于PCR的模板、文库构建等实验。

根据材料来源不同,采取不同的材料处理方法,而后的DNA提取方法大体类似,但都应考虑以下两个原则:

1、防止和抑制DNase对DNA的降解。

2、尽量减少对溶液中DNA的机械剪切破坏。

试剂准备:

1、TE:10mMTris-HCl(pH7.8)1mMEDTA(pH8.0)。

2、TBS:25mMTris-HCl(pH7.4)200mMNaCl5mMKCl。

3、裂解缓冲液:250mMSDS使用前加入蛋白酶K至100mg/ml。

4、20%SDS

5、2mg/ml蛋白酶K

6、Tris饱和酚(pH8.0)、酚/氯仿(酚∶氯仿=1∶1)、氯仿

7、无水乙醇、75%乙醇

试验步骤:

材料处理:

1、新鲜或冰冻组织处理:

1)取组织块0.3-0.5cm3,剪碎,加TE0.5ml,转移到匀浆器中匀浆。

2)将匀浆液转移到1.5ml离心管中。

3)加20%SDS25ml,蛋白酶K(2mg/ml)25ml,混匀。

4)60°C水浴1-3hr。

2、培养细胞处理:

1)将培养细胞悬浮后,用TBS洗涤一次。

2)离心4000g×5min,去除上清液。

3)加10倍体积的裂解缓冲液。

4)50-55°C水浴1-2hr。

DNA提取:

1、加等体积饱和酚至上述样品处理液中,温和、充分混匀3min。

2、离心5000g×10min,取上层水相到另一1.5ml离心管中。

3、加等体积饱和酚,混匀,离心5000g×10min,取上层水相到另一管中。

4、加等体积酚/氯仿,轻轻混匀,离心5000g×10min,取上层水相到另一管中。如水相仍不澄清,可重复此步骤数次。

5、加等体积氯仿,轻轻混匀,离心5000g×10min,取上层水相到另一管中。

6、加1/10体积的3M醋酸钠(pH5.2)和2.5倍体积的无水乙醇,轻轻倒置混匀。

7、待絮状物出现后,离心5000g×5min,弃上清液。

8、沉淀用75%乙醇洗涤,离心5000g×3min,弃上清液。

9、室温下挥发乙醇,待沉淀将近透明后加50-100mlTE溶解过夜。

植物组织中DNA的提取

试验原理:

脱氧核糖核酸(deoxribonucleicacid,DNA)是一切生物细胞的重要组成成分,主要存在于细胞核中,盐溶法是提取DNA的常规技术之一。从细胞中分离得到的DNA是与蛋白质结合的DNA,其中还含有大量RNA,即核糖核蛋白。如何有效地将这两种核蛋白分开是技术的关键。DNA不溶于0.14mol/L的NaCl溶液中,而RNA则能溶于0.14mol/L的NaCl溶液之中,利用这一性质就可以将二者从破碎细胞浆液中分开。制备过程中,细胞破碎的同时就有Dnase释放到提取液中,使DNA因被降解而影响得率,在提取缓冲液中加入适量的柠檬酸盐和EDTA,既可抑制酶的活性又可使蛋白质变性而与核酸分离,再加入阴离子去垢剂0.15%的SDS,经过2h搅拌,或用氯仿-异醇除去蛋白,通过离心使蛋白质沉淀而除去,得到的是含有核酸的上清液。然后用95%的预冷乙醇即可把DNA从除去蛋白质的提取液中沉淀出来。

植物DNA的SDS提取法:

试验试剂:

1、研磨缓冲液:称取59.63gNaCl,13.25g柠檬酸三钠,37.2gEDTA-Na分别溶解后合并为一,用0.2mol/L的NaOH调至pH7.0,并定容至1000ml。

2、10×SSC溶液:称取87.66gNaCl和44.12g柠檬酸三钠,分别溶解,一起定容至1000ml。

3、1×SSC溶液:用10×SSC溶液稀释10倍。

4、0.1×SSC溶液:用1×SSC溶液稀释10倍。

5、Rnase溶液:用0.14mol/LNaCl溶液配制成25mg/ml的酶液,用1mol/LHCl,pH至5.0,使用前经80℃水浴处理5min(以破坏可能存在的Dnase)。

6、氯仿-异戊醇:按24ml氯仿和1ml异戊醇混合。

7、5mol/L高氯酸钠溶液:称取NaClO4.H2O70.23g,先加入少量蒸馏水溶解再容至100ml。

8、SDS(十二烷基硫酸钠)化学试剂的重结晶:将SDS放入无水酒精中达到饱和为止,然后在70~80℃的水浴中溶解,趁热过滤,冷却之后即将滤液放入冰箱,待结晶出现再置室温下凉干待用。

9、1mol/LHCl。

10、0.2mol/LNaOH。

11、二苯胺乙醛试剂:1.5g二苯胺溶于100ml冰醋酸中,添加1.5ml浓硫酸,装入棕色瓶,贮存暗处,使用时加0.1ml乙醛液〔浓乙醛:H2O=1:50(V/V)〕。

12、1.0mol/L高酸溶液(HClO4)。

13、0.05mol/LNaOH。

14、DNA标准液:取标准DNA25mg溶于少量0.05mol.L-1NaOH中,再用0.05mol/LNaOH定容至25ml,后用移溶管吸取此液5ml至50ml容量瓶中,加5.0ml1mol/LHClO4,混合冷却后用0.5mol/LHClO4定容至刻度,则得100μg/ml的标准溶液。

实验步骤:

1、称取植物幼嫩组织10g剪碎置研钵中,加10ml预冷研磨缓冲液并加入0.1g左右的SDS,置冰浴上研磨成糊状。

2、将匀浆无损转入25ml刻度试管中加入等体积的氯仿-异戊醇混合液,加上塞子,剧烈振荡30s,转入离心管,静置片刻以脱除组织蛋白质。以4000rpm离心5min。

3、离心形成三层,小心地吸取上层清液至刻度试管中,弃去中间层的细胞碎片、变性蛋白质及下层的氯仿。

4、将试管置72℃水浴中保温3min(不超过4min),以灭活组织的DNA酶,然后迅速取出试管置冰水浴中冷却到室温,加5mol/L高氯酸钠溶液〔提取液:高氯酸钠溶液=4:1(V/V)〕,使溶液中高氯酸钠的最终浓度为1mol/L。

5、再次加入等体积氯仿-异戊醇混合液至大试管中,振荡1min,静置后在室温下离心(4000rpm)5min,取上清液置小烧杯中。

6、用滴管吸95%的预冷乙醇,慢慢地加入烧杯中上清液的表面上,直至乙醇的体积为上清液的两倍,用玻璃棒轻轻搅动。此时核酸迅速以纤维状沉淀缠绕在玻璃棒上。

7、然后加入0.5ml左右的10×SSC,使最终浓度为1×SSC。

8、重复第6步骤和第7步骤即得到DNA的粗制品。

9、加入已处理的Rnase溶液,使其最后的作用浓度为50~70μg/ml,并在37℃水浴中保温30min,以除去RNA。

10、加入等体积的氯仿-异戊醇混合液,在三角瓶中振荡1min,再除去残留蛋白质及所加Rnase蛋白,室温下以4000rpm离心5min,收集上层水溶液。

11、再按6、7步骤处理即可得到纯化的DNA液。

植物DNA的CTAB提取法:

试验步骤:

1、称取新鲜叶片2-3g,剪碎放入研钵中,在液氮中研磨成粉末。

2、将粉末转移到加有7ml经预热的15×CTAB提取缓冲液15ml离心管中,迅速混匀后置于65℃水浴中,温育30min。

3、取出离心管,冷却至室温,加入氯仿/异戊醇(24:1),充分混匀,室温下2300转离心20min。

4、将上清转移至另一新的15ml离心管中,加入1/10体积10%的CTAB和等体积的氯仿/异戊醇。充分混匀,2300rpm离心20min。

5、转移上清至另一新的15ml离心管中,加入等体积1%的CTAB沉淀缓冲液,轻轻摇晃至形成DNA絮状沉淀。1000rpm离心10min,使DNA沉淀于管底。

6、加入1.5-2ml的1mol/LNaCl及5μlRNase置于56℃水浴中过夜。

7、待DNA完全溶解后,加2-3ml4℃预冷的95%的冰乙醇使DNA沉淀,挑出DNA,置于15ml离心管中,用70%乙醇清洗30min。

8、离心机甩5s,倒出70%乙醇,再用95%乙醇浸泡5min,倒出95%乙醇,在超净工作台上吹干。

9、将风干的DNA直接在4℃保存备用或溶于100μlTE溶液中于-20℃保存。

细菌DNA的提取方法

针对一些不易于提取的细菌的方法:

试验试剂:

抽提缓冲液:2%CTAB(W/V)2%PVPK25(w/v)(去色素)100mMTris-HCl(pH8.0)

25mMEDTA(pH8.0)2.0MNaCl

10MLiCl

2MLiCl

DEPC-water(抑制RNA酶活性)

3MNaAc(pH5.2)

96%乙醇

70%乙醇

试验步骤:

1、抽提缓冲液65℃预热。

2、加菌体到已经预热的缓冲液(700ul)中混匀,65℃,10min。

3、加酚/氯仿/异戊醇(25:24:1),振荡,以12,000rpm,离心10min。

4、取上清,加氯仿/异戊醇(24:1)振荡,以12,000rpm,离心10min。

5、重复再作一次步骤4。

6、加入1/10体积的3M醋酸钠和1.5倍体积的乙醇(或加入等体积的异丙醇),-20C下沉淀。

7、以2,000rpm,离心10min。

8、弃上清,以70%乙醇条洗沉淀,也可以再用100%乙醇洗,然后溶解于100ml水中。

较为常用的细菌DNA提取方法:

实验步骤:

1、将菌株接种于液体LB培养基,37℃震荡培养过夜。

2、取1.5ml培养物12000rpm离心2min。

3、沉淀中加入567ul的TE缓冲液,反复吹打使之重新悬浮,加入30ul10%SDS和15ul的蛋白酶K,混匀,于37℃温育1h.

4、加入100ul5mol/LNaCl,充分混匀,再加入80ulCTAB/NaCl溶液,混匀后再65℃温育10min。

5、加入等体积的酚/氯仿/异戊醇混匀,离心4-5min,将上清转入一只新管中,加入0.6-0.8倍体积的异丙醇,轻轻混合直到DNA沉淀下来,沉淀可稍加离心。

6、沉淀用1ml的70%乙醇洗涤后,离心弃乙醇.

真菌DNA提取总结的两种方法:

第一种方法:

试验步骤:

1、取真菌菌丝0.5g,在液氮中迅速研磨成粉。

2、加入4mL提取液,快速振荡混匀。

3、加入等体积的4mL的氯仿:异戊醇(24:1),涡旋3~5min(此处是粗提没有加酚)。

4、以4℃,1000rpm,离心5min。

5、上清再用等体积的氯仿:异戊醇(24:1)抽提一次。以4℃,10,000rpm,离心5min。

6、取上清,加入2/3倍体积的-20℃预冷的异丙醇或2.5倍体积的无水乙醇沉淀,混匀,静置约30min。

7、用毛细玻棒挑出絮状沉淀,用75%乙醇反复漂洗数次,再用无水乙醇漂洗1次,吹干,重悬于500ulTE中。

8、加入1ulRNaseA(10mg/mL),37℃下处理1h。

9、用酚(pH8.0):氯仿:异戊醇(25:24:1)和氯仿:异戊醇(24:1)各抽提1次。以4℃,10,000rpm,离心5min。

10、取上清,加入1/10倍体积的3MNaAc,2.5倍体积的无水乙醇,-70℃沉淀30min以上。

11、沉淀用75%乙醇漂洗,风干,溶于200ulTE中,-20℃保存备用。

DNA提取液:0.2MTris-HCl(pH7.5),0.5MNaCl,0.01MEDTA,1%SDS,3MNaAc。

第二种方法:

试验步骤:

1、真菌菌丝0.5-1g,在液氮中迅速研磨成粉。

2、加入3mL65℃预热的DNA提取缓冲液,快速振荡混匀65℃水浴30min,期间混匀2-3次。

3、加入1mL5MKAc,冰浴20min。

4、等体积的氯仿:异戊醇(24:1)抽提1次(10,000rpm,4℃离心5min)。

5、取上清,加入2/3倍体积的-20℃预冷异丙醇,混匀,静置约30min。

6、用毛细玻棒挑出絮状沉淀,用75%乙醇反复漂洗数次,再用无水乙醇漂洗1次,吹干,重悬于500ulTE中。

7、加入1ulRNaseA(10mg/mL),37℃处理1h。

8、用酚(pH8.0):氯仿:异戊醇(25:24:1)和氯仿:异戊醇(24:1)各抽提1次。以4℃,10,000rpm,离心5min。

9、取上清,1/10V3MNaAc,2.5V体积的无水乙醇,-70℃沉淀30min以上。

10、沉淀用75%乙醇漂洗,风干,溶于200ulTE中,-20℃保存备用。

植物基因组提取(CATB法)

作者:时间:2008-05-13 14:26:27 来源: 生物谷 浏览评论

一、实验目的

掌握植物总DNA的抽提方法和基本原理。学习根据不同的植物和实验要求设计和改良植物总DNA抽提方法。

二、实验原理

通常采用机械研磨的方法破碎植物的组织和细胞,由于植物细胞匀浆含有多种酶类(尤其是氧化酶类)对DNA的抽提产生不利的影响,在抽提缓冲液中需加入抗氧化剂或强还原剂(如巯基乙醇)以降低这些酶类的活性。在液氮中研磨,材料易于破碎,并减少研磨过程中各种酶类的作用。

十二烷基肌酸钠(sarkosyl)、十六烷基三甲基溴化铵(hexadyltrimethyl ammomum bromide,简称为CTAB)、十二烷基硫酸钠(sodium dodecyl sulfate,简称SDS)等离子型表面活性剂,能溶解细胞膜和核膜蛋白,使核蛋白解聚,从而使DNA得以游离出来。再加入苯酚和氯仿等有机溶剂,能使蛋白质变性,并使抽提液分相,因核酸(DNA、RNA)水溶性很强,经离心后即可从抽提液中除去细胞碎片和大部分蛋白质。上清液中加入无水乙醇使DNA沉淀,沉淀DNA溶于TE溶液中,即得植物总DNA溶液。

三、实验材料

水稻幼叶

四、主要配方

2% CTAB抽提缓冲溶液: CTAB 4g NaCl 16.364 g 1M Tris-HCl 20ml( PH8.0) 0.5M EDTA 8ml,先用70ml ddH2O溶解, 再定容至200ml灭菌, 冷却后0.2-1% 2-巯基乙醇 (400ul) 氯仿-异戊醇(24:1):先加96ml氯仿,再加4ml异戊醇,摇匀即可。

五、实验步骤

1. DNA的提取

(1) 2%CTAB抽提缓冲液在65℃水浴中预热。

(2)取少量叶片(约1g)置于研钵中,用液氮磨至粉状;

(3) 加入700ul的2%CTAB抽提缓冲液,轻轻搅动;

(4) 将磨碎液分倒入1.5 ml的灭菌中,磨碎液的高度约占管的三分之二;

(5)置于65℃的水浴槽或恒温箱中,每隔10 min轻轻摇动,40 min后取出;

(6)冷却2 min后,加入氯仿-异戊醇(24:1)至满管,剧烈振荡2~3 min,使两者混合均匀;

(7)放入离心机中10 000 rpm离心10 min,与此同时,将600 µl的异丙醇加入另一新的灭菌中;

(8) 10 000 rpm离心1 min后,移液器轻轻地吸取上清夜,转入含有异丙醇的内,将离心管慢慢上下摇动30 sec,使异丙醇与水层充分混合至能见到DNA絮状物;

(9)10000 rpm离心1 min后,立即倒掉液体,注意勿将白色DNA沉淀倒出,将离心管倒立于铺开的纸巾上; (10)60 sec后,直立离心管,加入720 µl的75%乙醇及80 µl 5 M的醋酸钠,轻轻转动,用手指弹管尖,使沉淀与管底的DNA块状物浮游于液体中;

(11)放置30 min,使DNA块状物的不纯物溶解;

(12)10000 rpm离心1 min后,倒掉液体,再加入800 µl 75%的乙醇,将DNA再洗 30 min;

(13)10000 rpm离心30 sec后,立即倒掉液体,将离心管倒立于铺开的纸巾上;数分钟后,直立离心管,干燥DNA(自然风干或用风筒吹干);

(14)加入50 µl 0.5 × TE(含RNase)缓冲液,使DNA溶解,置于37℃恒温箱约15 h,使RNA消解;

(15)置于-20℃保存、备用。

2. DNA质量检测

琼脂糖电泳检测,原理和方法见实验二。

六、 注意事项

(1)叶片磨得越细越好。

(2)移液器的使用。

(3)由于植物细胞中含有大量的DNA酶,因此,除在抽提液中加入EDTA抑制酶的活性外,第一步的操作应迅速,以免组织解冻,导致细胞裂解,释放出DNA酶,使DNA降解。

潇洒的小甜瓜
默默的小蝴蝶
2026-02-03 17:54:34

1、酚抽提法:先用蛋酶K、SDS破碎细胞,消化蛋白,然后用酚和酚-氯萃取,高速离心后取上清,所得DNA大小为100-150kb

2、甲酰胺解聚法:破碎细胞同上,然后用高浓度甲酰胺解聚蛋白质与DNA的结合,再透析获得DNA可得DNA200kb左右。

3、玻璃棒缠绕法:用盐酸胍裂解细胞,将裂解物铺于乙醇上,然后用带钩或U型玻璃棒在界面轻搅,DNA沉淀液绕于玻棒。生成DNA约80kb。

4、异丙醇沉淀法:基本同1法,仅用二倍容积异丙醇替代乙醇,可去除小分子RNA(在异丙醇中可溶状态)

5、表面活性剂快速制备法:用Triton X-100A或NP40表面活性剂破碎细胞,然后用蛋白酶K或酚去除蛋白,乙醇沉淀或透析。

6、加热法快速制备:加热96℃-100℃,五分钟,然后离心后取上清,可用于PCR反应。

7、碱变性快速制备:先用NaOH作用20分钟,再加HCI中和,离心后取上清,含少量DNA。

扩展资料:

DNA提取原则:

1、保证核酸一级结构的完整性;

2、核酸样品中不应存在对酶有抑制作用的有机溶剂和过高浓度的金属离子;

3、其他生物大分子如蛋白质、多糖和脂类分子的污染应降低到最低程度;

4、其他核酸分子,如RNA,也应尽量去除。

参考资料来源:百度百科——DNA提取

个性的蓝天
背后的台灯
2026-02-03 17:54:34
可以的。

以下是方法 可以了解一下

一.DNA的提取方法简介

为了研究DNA分子在生命代谢中的作用,常常需要从不同的生物材料中提取DNA.由于DNA分子在生物体内的分布及含量不同,要选择适当的材料提取DNA。

动植物中,小牛胸腺۰动物肝脏۰鱼类精子,植物种子的胚中都含有丰富的DNA。

微生物中,谷氨酸菌体含7%~10%,面包酵母含4%,啤酒酵母含6%,大肠肝菌含9%~10%。

从各种材料中提取DNA方法不同,分离提取的难易程度也不同。

对于低等生物。如从病毒中提取DNA 比较容易,多数病毒DNA 分子量较小,提取时易保持其结构完整性。

从细菌及高等动植物中提取DNA难度大一些。细菌DNA 分子量较大,一般达2×10 道尔顿。因此易被机械张力剪断。细菌DNA,除核DNA 外,还有质粒DNA 等。

1、核酸的理化性质

RNA和核苷酸的纯品都呈白色粉末或结晶,DNA则为白色类似石棉样的纤维状物。除肌苷酸、鸟苷酸具有鲜味外,核酸和核苷酸大都呈酸味。

DNA、RNA和核苷酸都是极性化合物,一般都溶于水,不溶于乙醇、氯仿等有机溶剂,它们的钠盐比游离酸易溶于水,RNA钠盐在水中溶解度可达40g/L。DNA在水中为10g/L,呈黏性胶体溶液。在酸性溶液中,DNA、RNA易水解,在中性或弱碱性溶液中较稳定。

天然状态的DNA 是以脱氧核糖核蛋白(DNP)形式存在于细胞核中。要从细胞中提取DNA 时,先把DNP抽提出来,再把P除去,再除去细胞中的糖,RNA 及无机离子等,从中分离DNA 。

DNP和RNP在盐溶液中的溶解度受盐浓度的影响而不同。DNP在低浓度盐溶液中,几乎不溶解,如在0.14 mol/L的氯化钠溶解度最低,仅为在水中溶解度的1%,随着盐浓度的增加溶解度也增加,至1mol/L氯化钠中的溶解度很大,比纯水高2倍。

RNP在盐溶液中的溶解度受盐浓度的影响较小,在0.14mol/L氯化钠中溶解度较大。因此,在提取时,常用此法分离这两种核蛋白。

2.细胞的破碎

细菌有坚硬的细胞壁,首先要破碎经胞。方

法有三种:①机械方法:超声波处理法、研磨法、匀浆法;②化学试剂法:用SDS处理细胞; ③酶解法:加入溶菌酶或蜗牛酶,都可使细胞壁破碎。

由于高等动物DNA 主要存在于细胞核与线粒体中,所以提取时有两个困难(高等植物与此类似):

①破碎细胞难;从处死动物٠分离组织器宫到破碎细胞费时长。在此时期间DNA 可能会被DN ase降解,而动物组织:特别是肌肉组织很难破碎,即使是较易破碎的肝٠肾等组织也往往使用组织匀浆器,易造成DNA 断裂。

②分子量大,一般比细菌的大2—3个数量级,比病毒的大4—5个数量。对不同生物材料,要根据具体情况选择适当的分离提取方法。

3.DNA提取的几种方法

(1).浓盐法

利用RNP和DNP在电解溶液中溶解度不同,将二者分离,常用的方法是用1M 氯 纳提取化钠抽提,得到的DNP粘液与含有少量辛醇的 氯仿一起摇荡,使乳化,再离心除去蛋白质,此时蛋白质凝胶停留在水相及氯仿相中间,而DNA位于上层水相中,用2倍体积95%乙醇可将DNA 钠盐沉淀出来.

也可用0.15 MNaCL液反复洗涤细胞破碎液除去RNP,再以1MNaCL提取脱氧核糖蛋白,再按氯仿---异醇法除去蛋白.

两种方法比较,后种方法使核酸降解可能少一些.

以稀盐酸溶液提取DNA 时,加入适量去污剂,如SDS可有助于蛋白质与DNA 的分离。在提取过程中为抑制组织中的DNase对DNA 的降解作用,在氯化钠溶液中加入柠檬酸钠作为金属离子的烙合剂.通常用.15MNaCL,0.015M柠檬钠,并称SSC溶液,提取DNA.

(2).阴离子去污剂法:

用SDS或二甲苯酸钠等去污剂使蛋白质变性,可以直接从生物材料中提取DNA .由于细胞中DNA与蛋白质之间常借静电引力或配位键结合,因为阴离子去污剂能够破坏这种价键,所以常用阴离子去污剂提取DNA.

(3).苯酚抽提法:

苯酚作为蛋白变性剂,同时抑制了DNase的降解作用.用苯酚处理匀浆液时,由于蛋白与DNA 联结键已断,蛋白分子表面又含有很多极性基团与苯酚相似相溶。蛋白分子溶于酚相,而DNA溶于水相。离心分层后取出水层,多次重复操作,再合并含DNA 的水相,利用核酸不溶于醇的性质,用乙醇沉淀DNA 。此时DNA是十分粘稠的物质,可用玻璃漫漫绕成一团,取出。此法的特点是使提取的DNA保持天然状态 .

( 4).水抽提法:

利用核酸溶解于水的性质,将组织细胞破碎后,用低盐溶液除去RNA,然后将沉淀溶于水中,使DNA充分溶解于水中,离心后收集上清液.在上清中加入固体氯化钠调节至2.6M.加入2倍体积95%乙醇,立即用搅拌法搅出.然后分别用66% ٠80%和95%乙醇以及丙铜洗涤,最后在空气中干燥,既得DNA样品.此法提取的DNA中蛋白质含量较高,故一般不用.为除蛋白可将此法加以改良,在提取过程中加入SDS.

粗暴的故事
安静的紫菜
2026-02-03 17:54:34

获取一个基因CDS序列的方法如下:

打开NCBI( https://www.ncbi.nlm.nih.gov ),如下图,按照顺序,在1处选择Nucleotide,在2处输入“PDCD1”,点击3处的Search,等出来结果之后点击4处的“Homo Sapiens”进行进一步筛选(如果你要做鼠源的就选Mus musculus,其他种属选择相应的名称即可进一步筛选了)

然后第一条就是我们需要的序列信息,点击进去,往下拉,直到看到CDS(如下图)

点击CDS,就出现了下图中所示内容,其中加了底色的部分序列便是我们需要的序列了,可以看到这段序列开头是ATG起始密码子,最后三位是TGA终止密码子。选中这段序列复制即可。

由于需要PCR整个CDS区域,所以正反向引物并没有多少选择的余地,甚至可以参照上述原则简单粗暴的从正反向各选择22个碱基左右作为引物,例如:!

正向引物序列与CDS相同,反向引物序列与CDS互补。另外要注意的是写引物等序列都是要5’到3’的方向,一般不会从3’到5’,所以我们的CDS虽然没有注明方向,但是其实也是5’到3’。

虽然可以这么简单粗暴的设计引物,但是还是想借此教大家使用一下引物设计的经典软件Primer Premier 5。

Primer 5的使用

如下图,首先点击File->New->DNA Sequence,

然后点击空白处Ctrl+V粘贴我们的CDS序列,选择As is,即我们复制的是什么样的序列就粘贴的什么样的序列。

下面的依次是“反向序列粘贴”、“互补序列粘贴”“反向互补序列粘贴”。

点击左上角的Primer,如下图,S=Sense,A=Antisense

如果对现在的引物不满意,还可以点击Edit Primers编辑序列,如下图,我们删除掉末尾三个碱基,之后需要先点击Analyse,然后才能点击OK,我们可以看到正向引物已经从25个碱基变为22个碱基了。

最后点击Edit->Copy->Sense Primer,粘贴到Word中即可得到正向引物,反向引物Copy之后粘贴也会自动变为5’到3’的序列。所以非常方便。

这样我们PDCD1用于PCR的正反向引物就初步设计好了。如果你只是想P出PDCD1这个基因,现在的引物就可以送去合成了,但是如果你想将其构建到载体上,那么我们还要对其进行进一步的加工。

Primer 5的使用

根据不同的目的,可以选择不同的载体,如过表达(pcDNA 3.0)、敲减(pLKO.1-TRC)、原核纯化(pGEX-4T1、pET-28a)、病毒包装(pMSCV-puro)、敲除(lentiCRISPR v2)等。下面我们就以过表达载体pcDNA 3.0为例进行讲解。

从质粒图谱上可以看到多克隆位点有多个酶切位点可以选择,那是不是每个位点都可以用呢?当然不是!我们要 选择那些PDCD1(或其他目的基因)本身没有的酶切位点!

所以我们还需要用Primer 5来分析一下哪些是PDCD1所没有的。

还是打开Primer 5,然后粘贴CDS序列,点击Enzyme,2为所有的酶,我们比对质粒图谱选择多克隆位点的酶,双击即可到3的框中,选好之后点击OK,可以看到PDCD1中有ApaI和KpnI两个酶切位点,所以这两个不可以选,其他的都可以选。

不过一般选择常用好用的最好是实验室就有现成的那些酶了。比如我们选择EcoRI和XhoI,那么我们就可以在对引物加上相应的酶切位点了。

于是我们得到如下引物:

好了,我们现在就可以将这些引物送去相应公司合成了。

质粒构建

终于到正题了!

待引物合成之后,我们用ddH2O将其稀释到 100 μM 作为母液,取一些稀释到 10 μM 做下一步实验了。

首先我们P出目的基因,这一步建议用高保真PCR酶,我常用的是 Toyobo公司的KOD-PLUS-Neo酶 。反应体系及反应条件如下图:

模板的获取

PCR完成之后跑1%的胶回收目的片段,也可以直接用PCR Clean试剂盒回收。回收之后将其双酶切,同时需要酶切适量载体。如果你使用的是Fermentas (Thermo)的酶,还可以打开网址 http://t.cn/RVuwBVo 查询双酶切所用的最佳Buffer。

酶切回收之后的片段进行连接,我使用的是 Thermo公司的T4连接酶 ,体系如下:

现在的T4连接酶基本都是快酶,比如Thermo的这款声称10 min就可以连接完成,不过我保险起见,一般连接30 min, 切勿连接过夜!

连接完成之后便是转化,挑菌(单克隆),摇菌抽提质粒,送去测序就OK了!

TRIzol法抽提RNA

提取RNA比较成熟的方法便是TRIzol法抽提,Invitrogen的TRIzol是比较稳定且广泛应用的,当然现在一些国产的TRIzol类产品也能满足大部分情况下的RNA抽提。

ABOUT TRIzol

注意事项及原理

注意事项:

1、RNA酶(RNase)非常稳定,是导致RNA降解最主要的物质。它在一些极端的条件可以暂时失活,但限制因素去除后又会迅速复性。用常规的高温高压蒸汽灭菌法和蛋白抑制剂都不能使RNase完全失活。它广泛存在于人的皮肤上,因此,在与RNA制备有关的分子生物学实验时,必须戴手套。RNase的又一污染源是取液器,一般情况下采用用DEPC配制的70%乙醇擦洗取液器的内部和外部。提取RNA时使用专门的RNase-free的枪头和离心管。

2、TRIzol试剂具有较强毒性,如沾到皮肤立刻用大量的清洁剂和水冲洗!

溶液配方及原理:

1、TRIzol试剂:TRIzol能在破碎细胞、溶解细胞内含物的同时保持RNA的完整。其主要成分是苯酚和异硫氰酸胍。苯酚的主要作用是裂解细胞,使细胞中的蛋白、核酸物质解聚得到释放。异硫氰酸胍,是一种强力的蛋白质变性剂,可溶解蛋白质并使蛋白质二级结构消失,导致细胞结构降解,核蛋白迅速与核酸分离。

2、氯仿:氯仿可增强TRIzol中的8-羟基喹啉对RNase的抑制作用。另外氯仿作为有机溶剂,加入氯仿后离心可使溶液分层,上层为水相,下层为有机相。苯酚为弱酸性,酸性条件下(一般为Ph5.0)DNA和蛋白质进入有机相,而RNA留在水相;反之亦然,弱碱性(Ph8.0)时DNA留在水相。

3、异丙醇、无水乙醇、70%乙醇:异丙醇和乙醇能与水任意比例互溶,因此加入异丙醇能够夺取RNA周围的水分,使其脱水沉淀。

4、DEPC水:DEPC是RNase的化学修饰剂,它与RNase的活性基团组氨酸的咪唑环反应而抑制其活性。DEPC有毒性,操作时应小心。谁说是最优秀的;谁是最自由的,谁也就是最优秀的,在他们身上,才会有最大的美。

操作步骤

1、细胞破碎

A、组织:按1 mL/50~100 mg组织样品的比例向打散的组织块中加入TRIzol试剂,样品的体积不能超过TRIzol体积的10%。

B、贴壁细胞:按1 mL/10 cm2的比例直接加入TRIzol试剂,并用移液枪反复吹吸数次。TRIzol试剂过少会导致DNA污染。

C、悬浮细胞:悬浮细胞离心收集后,直接按1 mL/5~10×106个细胞(动物、植物或酵母)的比例加入TRIzol试剂。加入TRIzol前不要洗细胞,否则易造成mRNA的降解。

如果样品中含有较多的蛋白、脂肪、多糖或其他细胞外物质,如肌肉、脂肪组织或植物的块根等,可在2℃~8℃,12000×g离心10 min去除这些物质。

关于TRIzol的用量,Invitrogen官方说明书中有建议用量:

一般情况下,根据细胞量的多少我的用量是:2~3 mL/10 cm Dish、500μL~1 mL/6 cm Dish、200~500 μL/3.5 cm Dish(仅供参考)

2、氯仿抽提分层

加入TRIzol后,室温(15℃~30℃)孵育5 min保证核蛋白复合体充分解离。按0.2 mL/1 ml TRIzol的比例加入氯仿。盖紧管盖后剧烈摇晃15s,室温静置2 3分钟。12000×g,2℃ 8℃离心10 min,转速不可过高否则会导致RNA断裂。离心后液体分为三层,下层为红色的有机相(酚-氯仿),中间为白色的沉淀,上层为无色的水相。RNA在上层水相中,水相的体积约为加入的TRIzol体积的60%。

3、用异丙醇使RNA沉淀

将上层水相转移到一个干净的1.5 mL管中,如需提取DNA或蛋白质就保存下层有机相。

加入与水相等体积的异丙醇,室温孵育10 min。12000×g,2℃~8℃离心10 min。RNA沉淀一般附着在远离离心机轴心的管底,为无色胶状。

4、用乙醇洗涤去除残留的蛋白质和无机盐

去除上清后,用1 mL 75%乙醇(用Rnase-free的水配制)洗涤RNA沉淀。震荡混匀RNA后,7500×g 2℃~8℃离心5 min。

5、用DEPC水溶解RNA

去除上清后,将管子敞口晾5~10 min,使RNA沉淀呈现半透明状。不要让RNA沉淀变成完全不透明,那时RNA完全干燥将会大大影响RNA的溶解。根据后续实验要求加入适量的DEPC水,用移液枪反复吹吸数次后。

逆转录法合成cDNA

一般逆转录(也可称作反转录)都有现成的试剂盒,只要大家按照试剂盒的说明书来操作,问题都不大,在这里我就以TAKARA的逆转录试剂盒为例稍加说明。

Random 6 mers 为随机的6核苷酸引物,引物序列为5'-(P)NNNNNN-3',特点是产物量大,特异性差,适用于长的或具有Hairpin构造的RNA。包括rRNA、mRNA、tRNA等在内的所有RNA的反转录反应都可使用本引物。

Oligo dT Primer 适用于具有Poly(A)Tail的RNA,因而特异性好,但因其只结合Poly A尾巴,对于较长的mRNA,经常不能延伸到5'端。(原核生物的RNA、真核生物的rRNA、tRNA以及某些种类真核生物的mRNA等不具有Poly(A)Tail)。

两种引物可据实际情况使用一种,也可同时使用。还有一种情况,当只扩增一种目的基因时,也可以使用Specific Primer(PCR时的下游引物)作为反转录引物。

操作步骤

步骤简述如下:按照下图中1配制溶液,然后65℃处理后加入3中所配制溶液继续后续反应即可。

连接产物的转化

常用的感受态细胞有DH5α、BL21(DE3)、Rossetta等,而抽提质粒一般用DH5α,可以自己制备也可以购买商业化的感受态。

ABOUT Transformation

注意事项

1. 感受态细胞要现用现融,刚刚融化的感受态转化效率最高;

2. 避免反复冻融感受态细胞;

3. 整个操作过程要轻柔,不要用移液器猛烈吹吸;

4. 感受态和连接产物(或质粒)用量要适中,并不是越多越好。

操作步骤

1. 取50 μL感受态细胞置于冰上融化;

2. 加入5 μL连接产物(质粒一般只需用白色枪头沾取一下即可),混匀,置于冰上静置30 min(此时应该打开水浴锅并调温至42℃);

3. 42℃水浴中热激90 s,迅速置于冰上静置2 min;

4. 加入500 μL无菌的LB培养基(不含抗生素),混匀后置于37℃,200rpm的恒温摇床中培养1 h,使细胞复苏;

5. 连接产物:3000 rpm离心5 min,弃上清,留取少量LB(50 μL左右),重悬沉淀,全部均匀涂布于LB培养板(需含相应抗生素)上,37℃ 倒置培养 16 18h;质粒:直接取20 50 μL涂于LB培养板上培养即可。

质粒的小量提取

ABOUT 质粒抽提

实验原理:

较常用的质粒提取方法有三种:碱裂解法、煮沸法和去污剂(如Triton和SDS)裂解法。前两种方法比较剧烈,适用于较小的质粒(<15kb)。去污剂裂解法则比较温和,一般用于分离大质粒(>15kb)。

碱裂解法是一种应用最为广泛的制备质粒的方法,其原理为:当细菌暴露于高pH值的强阴离子洗涤剂中,会使细胞壁破裂,染色体DNA和蛋白质变性,将质粒DNA释放到上清中。

由于质粒DNA分子比染色体DNA大得多,且前者为共价闭合环状分子,后者为线状分子。只要碱处理的强度和时间不要太过,当pH值恢复到中性时,质粒DNA双链就会再次形成。

在裂解过程中,细菌蛋白质、破裂的细胞壁和变性的染色体DNA会互相缠绕成大型复合物,后者被十二烷基硫酸盐(SDS)包盖。

当用钾离子取代钠离子时,这些复合物会从溶液中有效地沉淀下来。离心除去沉淀之后,就可以从上清中回收复性的质粒DNA。

本方法采用Tiangen小提中量试剂盒进行提取,其纯化系统是硅基质吸附材料,其原理为在高盐环境下质粒DNA能够结合到硅基质上,再通过去蛋白液和漂洗液将杂质和其它细菌成分去除,最后用低盐缓冲液或水将质粒DNA从硅基质上洗脱下来。得到的质粒可以用于酶切、PCR、测序、细菌转化、转染等分子生物学实验。

实验试剂(试剂盒试剂配方不清楚,以下配方见《分子克隆实验指南》)

1、溶液P1:50 mM葡萄糖,25 mM Tris-Cl(pH 8.0),10 mM EDTA,100μg/ml RNase A

原理:Tris-Cl用于提供一个合适的缓冲体系;50 mM葡萄糖可以使悬浮后的大肠杆菌不会快速沉积到管子的底部;而EDTA 作为Ca2+和Mg2+等二价金属离子的螯合剂,起到了抑制DNase的作用;RNase作用为去除质粒中混有的RNA,其不受EDTA的影响。

2、溶液P2:0.2 N NaOH,1% SDS

原理:0.2 N NaOH的作用在于使细菌裂解,而SDS作用在于加入P3之后是被其包盖的细菌蛋白,染色体DNA一起作为沉淀析出。

3、溶液P3:3 M 醋酸钾,2 M 醋酸

原理:这一步的K+置换了SDS(十二烷基磺酸钠)中的Na+,得到PDS(十二烷基磺酸钾)沉淀;SDS易与蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质也沉淀了,同时染色体DNA也被PDS共沉淀。而醋酸用于中和碱,使溶液恢复中性,从而使质粒DNA复性。

操作步骤

1、将过夜培养的菌液(5-15ml)从摇床中取出,并拧紧盖子,9000 rpm离心10 min,用泵尽量吸除上清。若暂时不提取,可将沉淀保存于-20℃,也可直接将菌液保存于4℃(短时间)。

注意:如果菌液较多时可以通过几次离心将菌体沉淀收集到一个离心管中。

2、柱平衡步骤:向吸附柱中(吸附柱放入收集管中)加入500μl的平衡液BL, 12000 rpm(-13400g)离心1 min,倒掉收集管中的废液,将吸附柱重新放回收集管中(请使用当天处理过的柱子)。

注意:若柱子放置较久,需要进行这一步骤;否则,可省。

3、向留有菌体沉淀的离心管中加入500μl溶液P1(请先检查是否已加入RNaseA,并置于冰上 ) ,使用移液器或涡旋振荡器彻底悬浮细菌细胞沉淀,并移至2ml离心管中。如果沉淀的菌体较多,则相应增加P1的用量(之后P2和P3的用量也应成比例增加),并分到几个管子中分别进行步骤4和5的操作(不然P1+P2+P3的总体积超过2ml离心管容积),步骤6过上清时可过同一个吸附柱。

注意:菌体量以能够充分裂解为佳,过多的菌体裂解不充分会降低质粒的提取效率。另外,务必彻底悬浮细菌沉淀,如果有未彻底混匀的菌块会影响裂解,导致提取量和纯度偏低。

4、向离心管中加入500μl溶液P2 ,温和地上下翻转6-8 次使菌体充分裂解。由于P2裂解不应超过5 min,以免质粒受到破坏。故加入P2前将计时器定时4 min,以免超过时间。但是时间也不可过短,以免裂解不彻底。每管操作时间尽量一致。

注意:温和地混合不要剧烈震荡,以免污染基因组DNA 。此时菌液应变得清亮粘稠,如果未变得清亮,可能由于菌体过多,裂解不彻底,应减少菌体量。

5、向离心管中加入700μl溶液P3(记得冰上预冷),立即温和地上下翻转6-8 次,充分混匀,此时会出现白色絮状沉淀。放置冰上10min,之后12000rpm ( -13400g )离心10 min,此时在离心管底部形成沉淀。如果上清量较大,需要多次过柱,可将上清转移至新的离心管中,以免沉淀飘起。

注意:P3 加入后应立即混合,避免产生局部沉淀。如果上清中还有微小白色沉淀,可再次离心后取上清。

6、将上一步收集的上清液分次加入吸附柱中(吸附柱放入收集管中,其容量为750-800μl),注意尽量不要吸出沉淀。 12000rpm(-13400g )离心1min,倒掉收集管中的废液,将吸附柱放入收集管中。

7、可选步骤:向吸附柱中加入500ul去蛋白液PD,12000rpm(-13400g )离心1min,倒掉收集管中的废液,将吸附柱重新放回收集管中。

注意:如果宿主菌是end A+宿主菌(TG1,BL21,HB101,JM101,ET12567等),这些宿主菌含有大量的核酸酶,易降解质粒DNA,推荐采用此步。

如果宿主菌是endA-宿主菌(DH5α,TOP10等),这步省略。

8、向吸附柱中加入600μl漂洗液PW(请先检查是否已加入无水乙醇),12000rpm(-13400g)离心1 min,倒掉收集管中的废液,将吸附柱放入收集管中。

注意:加入漂洗液PW后,如果室温静置2-5 min,有助于更好地去除杂质。

9、重复操作步骤8。

10、将吸附柱重新放回收集管中置于12000rpm(-13400g )离心2 min,目的是将吸附柱中残余的漂洗液去除。

注意:漂洗液中乙醇的残留会影响后续的酶反应(酶切、PCR 等)实验。为确保下游实验不受残留乙醇的影响,建议将吸附柱开盖,置于室温放置数min,以彻底晾干吸附材料中残余的漂洗液。

11、将吸附柱置于一个干净的离心管中,向吸附膜的中间部位悬空滴加100-300μl洗脱缓冲液EB(65℃预热),室温放置或65℃水浴2 min,12000rpm(-13400g )离心2min将质粒溶液收集到离心管中。

注意:为了增加质粒的回收效率,可将得到的溶液重新加入离心吸附柱中.重复步骤

11、洗脱液的pH 值对于洗脱效率有很大影响。若用水做洗脱液,应保证其pH 值在7.0-8.5 范围内(可以用NaOH 将水的pH 值调到此范围), pH 值低于7.0 会降低洗脱效率。洗脱缓冲液体积不应少于100μl,体积过小影响回收效率,但也不应过大,以免所提质粒浓度过低,影响后面的使用。且DNA产物应保存在-20 ℃ ,以防DNA 降解。

结果判断

1、使用紫外分光光度计对质粒浓度及纯度进行测定

(1)检测波长为260nm和280nm,浓度看OD260,OD260值为1相当于大约50μg/ml;纯度看OD260/OD280,OD260/OD280比值应为1.7-1.9,偏低可能是蛋白质污染,偏高则可能是DNA降解或RNA污染,如果洗脱时不使用洗脱缓冲液,而使用去离子水,比值会偏低,但并不表示纯度低,因为pH值和离子存在会影响光吸收值。另外,测出来的OD260和OD280都应该在0.1-2.0之间,不然所得出的浓度和纯度不准确。

(2)应该注意的是作为空白对照的blank管稀释方法应该和所测样品管一样(如样品为2μl所提质粒+48μl ddH2O,则blank为2μl洗脱液+48μl ddH2O)。

2、酶切鉴定,并用琼脂糖凝胶电泳检测

(1)选用合适的内切酶对所提质粒进行酶切,并与未切质粒及转化用原质粒一起用琼脂糖凝胶电泳检测,根据酶切结果及所提质粒与原质粒位置是否一致,可以判定所提质粒是否为目的质粒。

(2)所提质粒(未酶切)的电泳条带可能为一条带,也可能为二到三条带,这是因为质粒提取过程中操作过于剧烈可能使环状超螺旋结构的质粒DNA单链出现缺口(保持环状,失去超螺旋),或双链断裂(变成线状),三种构型的质粒分子在琼脂糖凝胶电泳中的迁移速率是不一样的,因此会出现多条带,这也说明所得质粒不够理想。

测序结果的分析

构建好质粒之后我们一般先酶切鉴定,鉴定正确的可以直接拿去转染然后做WB检测表达即可。

可以正常表达的质粒我们需要送到测序公司测序,也可以直接送菌液测序,有些测序公司还提供质粒返还服务(即送菌液返还他们抽提的质粒)。

测序的引物一般使用通用引物,如果没有通用引物需要自行设计。常用的通用引物如下:

在公众号内回复“ 通用测序引物 ”获取此Excel!

测序结果返回之后我们就可以分析测序结果了。

一般常用的序列比对软件有DNAMAN和Chromas,当然,还有很多类似软件,大家可以根据个人习惯选择,在这里就不一一介绍了。

DNAMAN

1. 首先打开软件,左侧数字为各个通道的编号,每个通道只能载入一个序列:

2. 然后点击File->New,将我们目的基因的CDS序列粘贴进去,Ctrl+A全选,右键选择Load Selected Sequence,将序列载入通道1。

3. 选择通道2(点击数字2即可),点击File->Open打开测序回来的序列信息(后缀为.seq),同样全选右键载入通道2,之后点击Sequence->Multiple Sequence Alignment;

4. 在弹出窗口中,点击Channel,选中需要比对序列的通道,点击OK即可:

5. 后面基本是一直点击下一步,在如下图窗口中选中Try both strands:

6. 然后一直下一步,出来如下结果,即可比对测序结果和原CDS序列,如果有突变我们需要看一下是否是同义突变,如果是即质粒序列正确。

Chromas

1. 用Chromas软件打开测序返还的序列信息,然后点击File->Blast Search:

慈祥的冷风
踏实的巨人
2026-02-03 17:54:34

对羟基苯甲醛的生产有多条工艺路线,目前工业生产主要有苯酚;对甲酚;对硝基甲苯等原料路线。

1.苯酚法苯酚法又分为Reimer-Tiemann反应;Gattermann反应;苯酚-三氯乙醛路线;苯酚-乙醛酸路线;苯酚-甲醛路线等多种合成工艺路线。苯酚法的工艺特点是原料易得,制造工艺较简单,但收率偏低,成本较高。

(1)Reimer-Tiemann反应苯酚和三氯甲烷在碱水溶液中,于60-100℃下加热反应2-4h,同时生成对羟基苯甲醛和邻羟基苯甲醛(俗称水杨醛),总收率50%左右,对羟基苯甲醛收率最高仅17%。此工艺主要用来合成水杨醛,对羟基苯甲醛作为副产品,但却是现有的主要工艺生产方法之一。此工艺原料转化率和产品收率都很低,还有大量焦油产生。氯仿必需过量,未反应的苯酚不易回收,产品的分离和提纯困难。因此,必须大力开发新的高效催化剂,提高反应的选择性,开发简单高效的产品分离和提纯方法,才能降低成本,提高产品得率。

(2)Gattermann反应苯酚和HCN,在AlCl3存在下,通入干HCl,进行催化反应,并在冰水中分解,得到对羟基苯甲醛,产品收率较高。如采用氰化锌代替HCN,则收率几乎是理论量。此工艺产品选择性较高,但缺点一是氰化物毒性大,操作技术要求高;难度大;二是由于采用无水操作,反应设备要求严格;费用高;三是有少量水杨醛伴随产生,产品分离提纯困难,因而限制了大规模生产。

2.对硝基甲苯法对硝基甲苯法生产对羟基苯甲醛的工艺过程分氧化还原;重氮化和水解三步进行。

(1)对硝基甲苯氧化还原对硝基甲苯用多硫化钠同步氧化还原,得到对氨基苯甲醛。具体工艺过程为:将对硝基甲苯;乙醇溶剂与表面活性剂(如OP吐温等)按质量比1:5:0.02-0.04混合均匀,在80-85℃下滴加多硫化钠水溶液,反应2-3h。产物用水蒸汽蒸馏,除去对硝基甲苯和对氨基甲苯。在用乙醚萃取得对氨基苯甲醛。反应转化率和收率均在90%以上。多硫化钠可用硫氢化钠;烧碱和硫磺为原料制得。

(2)重氮化和水解将对氨基苯甲醛用40%硫酸处理,在0-3℃下加入30% 亚硝酸钠溶液,反应30min左右,用少量尿素分解过量的亚硝酸钠,得到对氨基苯甲醛重氮盐溶液。此溶液在硫酸存在下水解,温度80-85℃,时间30min左右。产物经提取;纯化;干燥得对羟基苯甲醛产品,收率90%以上。此工艺的优点是原料价格便宜,但缺点是工艺路线长,设备庞大,且中间产物对氨基苯甲醛有毒,重化 反应温度低,冷冻条件高。目前国内山西祁县精细化工厂采用此工艺生产对羟基苯甲醛。

3.对甲酚催化氧化法该工艺是在催化剂作用下,用空气或氧直接氧化对甲酚合成对羟基苯甲醛。20世纪80年代,日本;美国;德国等对此工艺路线进行了深入研究和报道。80年代末90年代初,国内江苏;上海;大连等地几家研究和生产单位也对此工艺进行了研究开发,并将其用于工业生产。其具体工艺流程为:将对甲酚;氢氧化钠;甲醇加入不锈钢压力釜,搅拌至完全溶解后,加入醋酸钴将反应釜密封,升温至55℃开始通入氧气,使釜内压力保持在1.5MPa条件反应8-10h,反应过程中严格控制通氧速率,在釜内配有盘管冷却系统,当反应时温度升高釜夹套可通冷却水,此时盘管内开始通冷却水,严格控制通氧总量,并保持釜内温度在60℃左右。反应结束时将物料放入初蒸釜,蒸去溶剂甲醇回收利用,加水溶解后加入盐酸进行盐析。将固液物料用离心机过滤,所得固体放入真空烘箱在60℃左右干燥3-5h,即可得到含量大于98%的对羟基苯甲醛。