中科院在钙钛矿太阳能电池领域连获进展,此类电池的应用前景如何?
首先钙钛矿太阳能电池前景是能够更清洁、更易于应用、制造成本低。虽然钙钛矿太阳能电池的研究如火如荼,但面临的问题也值得关注。首先,这种新型太阳能电池在组装过程中存在稳定性问题,包括材料的稳定性和高效电池器件的稳定性,有机-无机杂化钙钛矿材料含有重金属铅,更好的保障对于电池的保护和利用等各种功能。
其次是针对钙钛矿太阳能电池表面缺陷和水分侵蚀引起的稳定性问题,利用该系列卟啉小分子钝化钙钛矿表面缺陷。机理研究取得重要进展。研究发现,利用这一系列卟啉分子CS0、CS1、CS2处理钙钛矿表面,由于卟啉的疏水性,不仅可以有效钝化钙钛矿表面缺陷,从而抑制钙钛矿/HTM界面之间的非辐射复合。
再者可以通过在薄膜形成的两个不同阶段引入功能性氟化分子,探索了一种减少多晶钙钛矿薄膜缺陷的方法。基于DP策略的PSCs有效抑制了钙钛矿表面和GBs缺陷的形成,同时提高了器件性能和稳定性。新的DP策略通过缺陷钝化延长载流子寿命并抑制非辐射复合损失,从而将VOC从1.10V增加到1.18V,相应的VOC损失为0.39V。
要知道光生电子的提取和光生空穴的排斥力同时减弱,使界面处电子的转移效率急剧下降,导致载流子复合严重,器件的PCE降低。这一新认识提高了对钙钛矿光伏器件结构和异质结界面的理解,解释了无ETL器件PCE低的原因。因此,他们提出了一种新的解决方案,通过延长载流子寿命来解决无ETL钙钛矿光伏器件转换效率低的问题。
太阳能是一种能量丰富、清洁的能源,合理、有效地利用太阳能是解决人类能源和环境问题的重要途径。
近年来的研究发现,具有钙钛矿晶体结构的甲脒(FA)钙钛矿材料由于具有很高的光吸收系数、很长的载流子传输距离、非常少的缺陷态密度等优异性质,在太阳能电池、发光器件、光电探测器、激光器、光催化、光检测等领域应用前景巨大,成为国际上极为重要的研究热点材料之一。
目前,中国计量科学研究院认证的,300cm²的大尺寸钙钛矿光伏组件已经创造出18.2%的转换效率,创造新的世界纪录,进一步验证了钙钛矿光伏创新技术产业化的可行性。
全球范围内多家公司都不约而同提速了钙钛矿电池商业化量产的步伐,在科研方面,国内几乎所有的理工科院校都在开展与钙钛矿有关的课题研究。
钙钛矿电池的产业化时机已经逐渐成熟,其商业化发展速度很可能会刷新许多人的认知。
2019年6月, 科技 部发布国家重点研发计划“可再生能源与氢能技术”等重点专项2019年度项目申报指南的通知,其中在太阳能一项中,特别提出为 探索 大面积太阳能电池制备技术,开展高效稳定大面积钙钛矿电池关键技术及成套技术研发,解决大面积钙钛矿电池稳定性问题。
新技术的推广,首先要有一个成熟产业的技术作为支撑,正如晶硅电池的产业化有半导体产业技术为基础一样,钙钛矿电池的制造产完全可以采用液晶面板行业的设备和技术,而且对技术和工艺的要求同样也要更低一些。
同时,国内高等院校的理工科专业均开展与钙钛矿相关的研究课题组,为行业发展培养了一定基数的技术人才;大企业纷纷布局,不断提高钙钛矿电池的光电转换效率,加速推进钙钛矿电池的商业化进程。
钙钛矿是一种化合物电池,其原材料来源于基础化工材料,有多达几万种原材料可供选择,完美避开对有限原材料的资源依赖。
而相比晶硅电池对硅料的需求,钙钛矿电池对于原材料的需求要少得多。一块72片电池的晶硅组件对硅的消耗量约为1公斤,而同等面积的钙钛矿电池组件只需要钙钛矿材料2克左右。
稀缺问题之外,材料的可突破性对于技术的发展前景可能更为重要。只有依托于那些具有可设计性和可迭代性材料的技术,未来才有更大的发展空间。
钙钛矿的晶体结构,是不会被卡在某个数值(目前最高光电转换效率记录是29%),复杂的原理我就不赘述了,有一点要强调的是,钙钛矿并不是一种矿物,而是一种结构的统称,具备这种结构的人工合成材料,统称为钙钛矿。同时钙钛矿对杂质并不敏感,纯度只需要做到90%就足够了,甚至为了增加材料之间的强度,还可以在涂布时主动添加粘合剂、增强剂一类的“杂质”,综合各种优势,决定了钙钛矿作为太阳能电池具备的独特优异性能。
目前市面上的钙钛矿材料以粉末居多,能稳定合成钙钛矿单晶的研发生产机构屈指可数。其中,中山复元新材料有限公司旗下的珀优思品牌,专注研发与生产钙钛矿材料,具备几十种钙钛矿前驱体材料的合成与销售。
尤以甲脒(FA)钙钛矿单晶为拳头产品,实现稳定合成,平稳供货,与国内多所知名院校与企业建立深度合作关系;围绕合成钙钛矿所需的前驱体材料,形成完善的供应体系;在材料配方、制备工艺、产品结构设计方面构建钙钛矿技术领域的核心优势。
在“双碳”背景下,节能减排已成为各行业发展不可逆转的趋势,大力发展清洁能源已成为 社会 的一致共识。珀优思—钙钛矿材料首选提供商,期待共同开创与见证钙钛矿能源时代的来临。
钙钛矿太阳能电池由上到下分别为玻璃、FTO、电子传输层(ETM)、钙钛矿光敏层、空穴传输层(HTM)和金属电极。其中,电子传输层一般为致密的纳米颗粒,以阻止钙钛矿层的载流子与FTO中的载流子复合。通过调控的形貌、元素掺杂或使用其它的n型半导体材料如ZnO等手段来改善该层的导电能力,以提高电池的性能。目前报道的最高效率(~19.3%)的电池使用的即是钇掺杂的,钙钛矿光敏层,多数情况下就是一层有机金属卤化物半导体薄膜。也有人使用的是有机金属卤化物填充的介孔结构,或者两者都存在,但没有证据表明这种结构有助于电池性能的提高。空穴传输层,在染料敏化太阳能电池中,该层多为液态电解质。由于在液态电解质中不稳定,使得电池稳定性差,这也是早期的钙钛矿电池的主要问题。后来,Grätzel 等采用了如spiro-OMeTAD, PEDOT:PSS等固态空穴传输材料,电池效率得到了极大提高,并具有良好的稳定性。特别地,钙钛矿还可以同时作为吸光和电子传输材料或者同时作为吸光和空穴传输材料。这样,就可以制造不含HTM或ETM的钙钛矿太阳能电池。在接受太阳光照射时,钙钛矿层首先吸收光子产生电子-空穴对。
由于钙钛矿材激子束缚能的差异,这些载流子或者成为自由载流子,或者形成激子。而且,因为这些钙钛矿材料往往具有较低的载流子复合几率和较高的载流子迁移率,所以载流子的扩散距离和寿命较长。例如,的载流子扩散长度至少为100nm,而的扩散长度甚至大于。这就是钙钛矿太阳能电池优异性能的来源。然后,这些未复合的电子和空穴分别别电子传输层和空穴传输层收集,即电子从钙钛矿层传输到等电子传输层,最后被FTO收集;空穴从钙钛矿层传输到空穴传输层,最后被金属电极收集,如图2所示。当然,这些过程中总不免伴随着一些使载流子的损失,如电子传输层的电子与钙钛矿层空穴的可逆复合、电子传输层的电子与空穴传输层的空穴的复合(钙钛矿层不致密的情况)、钙钛矿层的电子与空穴传输层的空穴的复合。要提高电池的整体性能,这些载流子的损失应该降到最低。最后,通过连接FTO和金属电极的电路而产生光电流。
该项目总体规划5GW,总投资54.6亿元,总用地面积600亩。一期厂房11000方包含半导体车间、动力、合成、仓库、办公、宿舍等相关配套,今年计划年产20-25万平方米光伏发电玻璃。
纤纳光电钙钛矿电池技术的材料成本仅为传统晶硅光伏材料的1/20,大规模应用后,可降低至目前传统晶硅太阳能电池的一半左右,与当前煤电价格相当,有望实现光伏发电的平价上网。
仪式上,纤纳光电及合作方相关负责人为钙钛矿电池生产线剪彩。纤纳光电的全球首个钙钛矿产业园的建设,将加速推进第三代太阳能光伏薄膜技术的大规模工业化应用进程。
这些成就会使得我们以后研发一些东西更加容易以及快捷。钙钛矿太阳能电池以其制备简单、成本低和效率高的优势在新型光伏技术领域迅速崛起。钙钛矿太阳能电池按照器件结构可分为正式和反式两种结构,相比于正式结构,反式结构器件因制备工艺更加简单、可低温成膜、无明显回滞效应、适合与传统太阳能电池(硅基电池、铜铟镓硒等)结合制备叠层器件等优点,受到学术界和产业界的关注。但仍然存在开路电压与理论值差距较大、光电转换效率仍然偏低等应用瓶颈。
在纳米研究国家重大科学研究计划的支持下,北京大学朱瑞研究员、龚旗煌院士与合作者展开研究,针对反式结构钙钛矿太阳能电池在光电转换效率上存在的瓶颈,提出了“胍盐辅助二次生长”方法,开创性地实现了钙钛矿薄膜半导体特性的调控,显著降低了器件中非辐射复合的能量损失,在提升器件开路电压方面取得了突破,首次在反式结构器件中获得了超过1.21V的高开路电压。
同时,在不损失光电流和填充因子等性能参数的情况下,显著提高了反式结构钙钛矿电池的光电转换效率,实验室最高效率达到21.51%。经中国计量科学研究院认证,器件的光电转换效率高达20.90%,是目前反式结构钙钛矿太阳能电池器件效率的最高记录。
该结果为提升反式钙钛矿太阳能电池器件效率、推进该类新型光伏器件的应用化发展提供了新思路,可进一步拓展到钙钛矿叠层太阳能电池以及钙钛矿发光器件中,具有潜在的应用前景和商业价值。相关成果6月29日在线发表在《科学》杂志上。