下消化道出血怎么办?
-大多数,下消化道出血量少的患者一般不需要治疗,即可自行止血,而对于出血量大,不能自行止血的患者首先应该补液抗休克治疗维持生命体征的稳定,同时选用药物,内镜下止血,血管栓塞等,方,纸屑,仍不能止泻,者,行剖腹探查手术止血,并协助查找病因,然后再根据不同病因制定不同的治疗方案。
1.使能量持续高效的流向对人类最有意义的部分
2.能量在2个营养级上传递效率在10%—20%
3.单向流动逐级递减
4.真菌PH5.0—6.0细菌PH6.5—7.5放线菌PH7.5—8.5
5.物质作为能量的载体使能量沿食物链食物网流动
6.物质可以循环,能量不可以循环
7.河流受污染后,能够通过物理沉降化学分解 微生物分解,很快消除污染
8.生态系统的结构:生态系统的成分+食物链食物网
9.淋巴因子的成分是糖蛋白
病毒衣壳的是1—6多肽分子个
原核细胞的细胞壁:肽聚糖
10.过敏:抗体吸附在皮肤,黏膜,血液中的某些细胞表面,再次进入人体后使细胞释放组织胺等物质.
11.生产者所固定的太阳能总量为流入该食物链的总能量
12.效应B细胞没有识别功能
13.萌发时吸水多少看蛋白质多少
大豆油根瘤菌不用氮肥
脱氨基主要在肝脏但也可以在其他细胞内进行
14.水肿:组织液浓度高于血液
15.尿素是有机物,氨基酸完全氧化分解时产生有机物
16.是否需要转氨基是看身体需不需要
17.蓝藻:原核生物,无质粒
酵母菌:真核生物,有质粒
高尔基体合成纤维素等
tRNA含C H O N P S
18.生物导弹是单克隆抗体是蛋白质
19.淋巴因子:白细胞介素
20.原肠胚的形成与囊胚的分裂和分化有关
21.受精卵——卵裂——囊胚——原肠胚
(未分裂)(以分裂)
22.高度分化的细胞一般不增殖。例如:肾细胞
有分裂能力并不断增的: 干细胞、形成层细胞、生发层
无分裂能力的:红细胞、筛管细胞(无细胞核)、神经细胞、骨细胞
23.检测被标记的氨基酸,一般在有蛋白质的地方都能找到,但最先在核糖体处发现放射性
24.能进行光合作用的细胞不一定有叶绿体
自养生物不一定是植物
(例如:硝化细菌、绿硫细菌和蓝藻)
25.除基因突变外其他基因型的改变一般最可能发生在减数分裂时(象交叉互换在减数第一次分裂时,染色体自由组合)
26.在细胞有丝分裂过程中纺锤丝或星射线周围聚集着很多细胞器这种细胞器物理状态叫线粒体——提供能量
27.凝集原:红细胞表面的抗原
凝集素:在血清中的抗体
28.纺锤体分裂中能看见(是因为纺锤丝比较密集)而单个纺锤丝难于观察
29.培养基: 物理状态:固体、半固体、液体
化学组成:合成培养基、组成培养基
用途 :选择培养基、鉴别培养基
30.生物多样性:基因、物种、生态系统
31.基因自由组合时间:简数一次分裂、受精作用
32.试验中用到C2H5OH的情况
Ⅰ.脂肪的鉴定试验: 50%
Ⅱ.有丝分裂(解离时):95%+15%(HCl)
Ⅲ.DNA的粗提取:95%(脱氧核苷酸不溶)
Ⅴ.叶绿体色素提取:可替代**
33.手语是一钟镅裕揽渴泳踔惺嗪陀镅灾惺?/SPAN>
34.基因=编码区 +非骗码区
(上游 ) ( 下游)
(非编码序列包括非编码区和内含子)
等位基因举例:Aa AaAaAAAa
35.向培养液中通入一定量的气体是为了调节PH
36.物理诱导 :离心,震动,电刺激
化学诱导剂:聚乙二醇,PEG
生物诱导 :灭火的病毒
37.人工获得胚胎干细胞的方法是将核移到去核的卵细胞中经过一定的处理使其发育到某一时期从而获得胚胎干细胞,某一时期,这个时期最可能是囊胚
38.原核细胞较真核细胞简单细胞内仅具有一种细胞器——核糖体,细胞内具有两种核酸——脱氧核酸和核糖核酸
病毒仅具有一种遗传物质——DNA或RNA
阮病毒仅具蛋白质
39.秋水仙素既能诱导基因突变又能诱导染色体数量加倍(这跟剂量有关)
40.获得性免疫缺陷病——艾滋(AIDS)
41.已获得免疫的机体再次受到抗原的刺激可能发生过敏反应(过敏体质),可能不发生过敏反应(正常体质)
42.冬小麦在秋冬低温条件下细胞活动减慢物质消耗减少单细胞内可溶性还原糖的含量明显提高细胞自由水比结合水的比例减少活动减慢是适应环境的结果
43.用氧十八标记的水过了很长时间除氧气以外水蒸气以外二氧化碳和有机物中也有标记的氧十八
44.C3植物的叶片细胞排列疏松
C4植物的暗反应可在叶肉细胞内进行也可在维管束鞘细胞内进行
叶肉细胞CO2→C4 围管束鞘细胞C4→CO2→(CH2O)
45.光反应阶段电子的最终受体是辅酶二
46.蔗糖不能出入半透膜
47.水的光解不需要酶,光反应需要酶,暗反应也需要酶
48.脂肪肝的形成:摄入脂肪过多,不能及时运走;磷脂合成减少,脂蛋白合成受阻。
49.脂肪消化后大部分被吸收到小肠绒毛内的毛细淋巴管,再有毛细淋巴管注入血液
50.大病初愈后适宜进食蛋白质丰富的食物,但蛋白质不是最主要的供能物质。
51.谷氨酸发酵时
溶氧不足时产生乳酸或琥珀酸
发酵液PH呈酸性时有利于谷氨酸棒状杆菌产生乙酰谷氨酰胺。
52.尿素既能做氮源也能做碳源
53.细菌感染性其他生物最强的时期是细菌的对数期
54.红螺菌属于兼性营养型生物,既能自养也能异养
55.稳定期出现芽胞,可以产生大量的次级代谢产物
56组成酶和诱导酶都胞是胞内酶。
57.青霉菌产生青霉素青霉素能杀死细菌、放线菌杀不死真菌。
58.细菌:凡菌前加杆“杆”、“孤”、“球”、“螺旋”
真菌:酵母菌,青霉,根霉,曲霉
59.将运载体导入受体细胞时运用CaCl2目的是增大细胞壁的通透性
60.一切感觉产生于大脑皮层
61.生物的一切性状受基因和外界条件控制,人的肤色这种性状就是受一些基因控制酶的合成来调节的。
62.“京花一号”小麦新品种是用花药离体培养培育的
“黑农五号”大豆新品种是由杂交技术培育的。
67.分裂间期与蛋白质合成有关的细胞器有核糖体,线粒体,没有高尔基体和内质网。
68.注意:细胞内所有的酶(非分泌蛋白)的合成只与核糖体有关,分泌酶和高尔基体,内质网有关
69.叶绿体囊状结构上的能量转化途径是光能→电能→活跃的化学能→稳定的化学能
70.一种高等植物的细胞在不同新陈代谢状态下会发生变化的是哪些选项?
⑴液泡大小√吸水失水
⑵中心体数目×高等植物无此结构
⑶细胞质流动速度√代表新陈代谢强度
⑷自由水笔结合水√代表新陈代谢强度
72.高尔基体是蛋白质加工的场所
73.HIV病毒在寄主细胞内复制繁殖的过程
病毒RNA→DNA→蛋白质
RNA→DNA→ HIV病毒
RNA→ RNA
74.流感、烟草花叶病毒是RNA病毒
75.自身免疫病、过敏都是由于免疫功能过强造成
76.水平衡的调节中枢使大脑皮层,感受器是下丘脑
78.骨骼肌产热可形成ATP
79.皮肤烧伤后第一道防线受损
80.纯合的红花紫茉莉
82.自养需氧型生物的细胞结构中可能没有叶绿体可能没有线粒体(例如:蓝藻)
83.神经调节:迅速精确比较局限时间短暂
体液调节:比较缓慢比较广泛时间较长
84.合成谷安酸,谷氨酸↑抑制谷氨酸脱氢酶活性可以通过改变细胞膜的通透性来缓解
85.生产赖氨酸时加入少量的高丝氨酸是为了产生一些苏氨酸和甲硫氨酸使黄色短杆菌正常生活
86.生长激素:垂体分泌→促进生长主要促进蛋白质的合成和骨的生长
促激素:垂体分泌→促进腺体的生长发育调节腺体分泌激素
胰岛 :胰岛分泌→降糖
甲状腺激素:促进新陈代谢和生长发育,尤其是对中枢神经系统的发育和功能有重要影响
孕激素 :卵巢→促进子宫内膜的发育为精子着床和泌乳做准备
催乳素 :性腺→促进性器官的发育
性激素 :促进性器官的发育,激发维持第二性征,维持性周期
87.生态系统的成分包括非生物的物质和能量、生产者和分解者
88.植物的个体发育包括种子的形成和萌发(胚胎发育),植物的生长和发育(胚后发育)
89.有丝分裂后期有4个染色体组
90.所有生殖细胞不都是通过减数分裂产生的
91.受精卵不仅是个体发育的起点,同时是性别决定的时期
92.杂合子往往比纯合子具有更强的生命力
93.靶细胞感受激素受体的结构是糖被
靶细胞感受激素受体的物质是糖蛋白
94.光能利用率:光合作用时间 、 光合作用面积、 光合作用效率(水,光,矿质元素,温度,二氧化碳浓度)
95.离体植物组织或器官经脱分化到愈伤组织经在分化到根或芽等器官再到试管苗
96.16个细胞的球状胚体本应当分裂4次而实际分裂5次
基细胞
受精卵→
顶细胞→16个细胞的球状胚体
97.受精卵靠近珠孔
98.细胞融合细胞内有4个染色体组
99.内胚层由植物极发育其将发育成肝脏、心脏、胰脏
胚层、外胚层由动物极发育成
100.高等动物发育包括胚胎发育和胚后发育两个阶段前一个阶段中关键的时期是原肠胚时期其主要特点是具有内胚层、中胚层、外胚层并形成原肠胚和囊胚腔两个腔
101.生物体内的大量元素: C H O N P S K Ca Mg
102.生物群落不包括非生物的物质或能量
103.细胞免疫阶段靶细胞渗透压升高
104. C4植物
叶肉细胞仅进行二氧化碳→C4(正常)
仅光→活跃的化学能(NADP,ATP)
围管束鞘细胞 C4→CO2→三碳化合物
(无类囊状结构薄膜)
ATP + NADP―→ 辅酶二+ADP
供氢供能
105.关于基因组的下列哪些说法正确
A.有丝分裂可导致基因重组×
B、等位基因分离可以导致基因重组×
C.无性生殖可导致基因重组×
D.非等位基因自由组合可导致基因重组√
106.判断:西瓜的二倍体、三倍体、四倍体是3个不同的物种× (三倍体是一个品种,与物种无关)
107.生物可遗传变异一般认为有3种
(1)将转基因鲤鱼的四倍体与正常二倍体鲤鱼杂交产生三倍体鱼苗(染色体变异)
(2)血红蛋白氨基酸排列顺序发生改变导致血红蛋白病(基因突变)
(3)一对表现型正常的夫妇生出一个既白化又色盲的男孩(基因重组)
108.目的基因被误插到受体细胞的非编码区,受体细胞不能表达此性状,而不叫基因重组(插入编码区内叫基因重组)
109.判断(1)不同种群的生物肯定不属于同一物种×(例:上海动物园中的猿猴和峨眉山上的猿猴是同一物种不是同一群落)
(2)隔离是形成新物种的必要条件√
(3)在物种形成过程中必须有地理隔离和生殖隔离×(不一定有地理隔离,只需生殖隔离即可)
109.达尔文认为生命进化是由突变、淘汰、遗传造成的
110.生态系统的主要功能是物质循环和能量流动
111.水分过多或过少都会影响生物的生长和发育
112.种群的数量特征:出生率、死亡率 、性别组成 、年龄组成
113.基因分离定律:等位基因的分离
自由组合定律:非同源染色体非等位基因自由组合
连锁定律
114.河流生态系统的生物群落和无机自然界物由于质循环和能量流动能够
较长时间的保持动态平衡
115.乔木层↑
灌木层↑ 由上到下分布
草本层↑
而为了适应环境乔木耐受光照的能力最强,当光照强度渐强时叶片相对含水量变化不大
116.被捕食者一般营养级较低所含的能量较多且个体一般较小总个体数一般较多
117.生态系统碳循环是指碳元素在生物群落和无机自然界之间不断循环的过程
118.湿地是由于其特殊的水文及地理特征且具有防洪抗旱和净化水质等特点
119.效应B细胞没有识别靶细胞的能力
120.可以说在免疫过程中消灭了抗原而不能说杀死了抗原
121.第一道防线:皮肤、粘膜、汗液等
第二道防线:杀菌物质(例如:泪液)、白细胞(例如:伤口化脓)
122.胞内酶(例如:呼吸酶)组织酶(例如:消化酶)不在内环境中
123.醛固酮和抗利尿激素是协同作用
124.肾上腺素是蛋白质
125.低血糖:40~60mg正常:80~120mg\dL
高血糖:130mg\dL 尿糖160mgdL~180mgdL
126.淋巴因子——白细胞介素-2 有3层作用
⑴使效应T细胞的杀伤能力增强
⑵诱导产生更多的效应T细胞
⑶增强其他有关免疫细胞对靶细胞的杀伤能力
127.酿脓链球菌导致风湿性心脏病
128.HIV潜伏期10年
129.三碳植物和四碳植物的光合作用曲线
130. C4植物
光反应在叶肉细胞中进行ATP NADPH进入围管束鞘细胞中,叶肉细胞CO2固定形成C4,C4被运入维管束鞘细胞形成CO2生成C3后变成糖类物质
140.将豆科植物的种子沾上与该豆科植物相适应的根瘤菌这显然有利于该作物的结瘤固氮
141.高尔基体功能:加工分装蛋白质
142.植物的组织培养VS动物个体培养
143.细胞质遗传的特点:母系遗传出现性状分离不出现性状分离比
144.限制性内切酶大多数在微生物中
DNA连接酶连接磷酸二脂键
145.质粒的复制在宿主细胞内(包括自身细胞内)
146.mRNA→一条DNA单链→双链DNA分子
蛋白质→蛋白质的氨基酸序列→单链DNA→双链DNA
147.单克隆抗体是抗体(单一性强灵敏度高)
148.厌氧型:链球菌严格厌氧型:甲烷杆菌
兼性厌氧型:酵母菌
149.生长素促进扦插枝条的生根
150.植物培养时加入:蔗糖 生长素 有机添加物
动物培养时加入:葡萄糖
151灭活的病毒能诱导动物细胞融合
152.制备单克隆抗体需要两次筛选,筛选杂交瘤细胞,筛选产生单克隆抗体的细胞
153.细胞壁决定细菌的致病性
154.根瘤菌固氮的场所是细胞膜
155.放线菌产生抗生素,而青霉素多产生于真核生物
156.利用选择培养基可筛选:
酵母菌、青霉菌——运用的试剂是青霉素
金黄色葡萄球菌——运用的试剂是高浓度氯化钠
大肠杆菌 ——运用的试剂是依红美兰
157.研究微生物的生长规律用液体培养基
158.PH改变膜的稳定性(膜的带电情况)和酶的活性
159.发酵工程内容⑴选育
⑵培养基的配置:①目地要明确
②营养药协调
③PH要适宜
⑶灭菌
⑷扩大培养
⑸接种
160.发酵产品的分离和提纯⑴过滤和沉淀(菌体)
⑵蒸馏萃取离子交换(代谢产物)
161.判断:
× ⑴固氮微生物的种类繁多既有原核生物又有真核生物 (无真核生物)
×⑵自生固氮微生物异化作用类型全为需氧型
(反例:梭菌为厌氧性)
√⑶固氮微生物同化作用类型既有自养型,又有异样型 (蓝藻,园褐固氮菌)
× ⑷共生固氮微生物同化作用类型全为异养性
(蓝藻+红萍、蓝藻+真菌成为地衣)
163.诱变育种的优点提高突变频率创造对人类有力的突变化学诱变因素有硫酸二乙酯、亚硝酸、秋水仙素
164.胆汁的作用是物理消化脂类
165.酵母菌是兼性厌氧型
166.人体内糖类供应充足的情况下,可以大量转化成脂肪,而脂肪却不可能大量转化成糖类,说明营养物质之间的转化时是有条件的,且转化程度有差异。人体内主要是通过糖类氧化分解为生命提供能量,只有当糖类代谢发生障碍引起供能不足时,才由脂肪和蛋白质氧化供能。这说明三大营养物质相互转化相互制约
167.注射疫苗一般的目的是刺激机体产生记忆细胞+特定抗体
168.兴奋在神经细胞间的传递具有定向性化学递质需要穿过突触前膜突触间隙突触后膜
169.遗传规律基因分离定律和自由组合定律
170.中枢神经不包含神经中枢
171.单克隆抗体的制备是典型的动物细胞融合技术和动物细胞培养的综合应用
172.体现细胞膜的选择透过性的运输方式⑴主动运输⑵自有扩散
173.动物有丝分裂时细胞中含有4个中心粒
174.染色体除了含有DNA外还含有少量的RNA
175.蛋白质和DNA在加热时都会变性而当温度恢复常温时DNA恢复活性而蛋白质不恢复活性
176.离体的组织培养成完整的植株
⑴利用植物细胞的全能型 ⑵这种技术可用于培养新品种快速繁殖及植物的脱毒 ⑶属于细胞工程应用领域之一 ⑷利用这种技术将花粉粒培育成植株的方式
这是我那天找的 你可以参照下
问题二:临床上常用的泻药有哪些 临床上常用的泻药分为以下几类:
第一类为容积性泻药,又称植物性泻剂,包括甲基纤维素、琼脂、果胶等。这类泻药不被肠壁吸收,在肠管内吸收水分后膨胀,扩张肠道容积,引起排便反射;还能与粪便混合,软化粪便。这类药物作用不快,但经济实惠、不良反应少,一般便秘者均可使用。此类药物不能增加结肠张力,因此不适合于结肠无力、肠道运动功能差的患者。
第二类为 *** 性泻药,常在使用容积性泻药无效后应用。代表药物有番泻叶、大黄、酚酞(果导片)、比沙可啶(便塞停)、蓖麻油等。这类药本身或其代谢产物可以 *** 肠壁,增加肠道蠕动,而促进排便。特点是导泻作用快、效力强,大便嵌顿和需迅速通便者,优先使用。但因其大多含有蒽醌类物质,长期服用会引起药物依赖、结肠病变甚至诱发肠息肉,故使用不宜超过一周,孕妇及哺乳期妇女禁用。其中大黄、果导片等,作用较慢,应在睡前用。大黄易损脾胃,因气血虚弱所致便秘的病人,不宜使用。
第三类为润滑性泻药,代表药物有开塞露、液体石蜡、冬库酯钠等。该类药具有湿润、软化大便的功效,能帮助便秘者轻松排便,防止用力过度,适用于痔疮、肛裂、手术后、有高血压病史及长期卧床的患者。这类药见效快,但作用时间较短,经直肠使用时有灼痛感,且久用后会影响脂溶性维生素及钙、磷的吸收,故不宜长期使用。而且直肠被开塞露频繁 *** 后,敏感性会降低,导致排便更加困难。
最后一类为渗透性泻药,代表药物为硫酸镁(盐性泻剂)、乳果糖、甘露醇、山梨醇和聚乙二醇(福松)等。这类药在肠道内吸收缓慢,故可维持肠腔内高渗透压,阻止肠管内盐和水分被吸收,从而扩张肠腔、 *** 肠蠕动。该类药物大剂量、长期使用,可引起水电解质紊乱、腹泻与便秘交替出现,宜小剂量使用。其中硫酸镁一般用于驱虫和排除肠道毒素。乳果糖应慎用于糖尿病的患者,以免影响血糖水平。
其他常见的泻药还有肠动力药(开乐宁等),5D羟色胺受体激动剂(替加色罗等),可加强肠肌张力,加速肠运动,促进排便,但常导致轻微的腹痛、腹泻等症状。
问题三:用泻药的注意事项有哪些? 用泻药原则是暂时用于缓解症状,通常应该尽量避免。 Bulk-Forming) 唯一可长期使用的一类泻药。包括欧车前、聚卡波非钙、甲基纤维素 用于轻度型便秘,对传输试验正常者最好。服用12至24小时后慢慢起作用,数日后达到最佳疗效。使用这类药物一定要饮用大量的水份搭配。 剂量增加太快时易出现,通常数周后消失。可禁用于消化道梗阻性疾病。 包括乳果糖(杜秘克)、PEG4000(福松)等。 起效快,适用于急性便秘乳果糖分解产 乳果糖ubricating 用于不能费力排便的情况,如心肌梗死、中风、以及后腹部的手后病人。 期使用影响脂溶性维生素A、D、E、K的吸收。久用引起骨软化症。长期使用会影响到免疫功能,使用时间最好不要超过二周。 酚酞(果导)、甘油栓、开塞露、番泻叶、大黄、芦荟、 通常用于急性便秘, 小孩与青少年不建议使用。经常误用,导致肠道神经的损伤和造成传输型便秘。 Saline 起效快,适用于急性便秘。宜清晨空腹服用,并大量饮水。在排便反射减弱时,应禁用本品导泻。肠道出血、孕妇、急腹症患者、经期妇女禁用本品导泻。服用浓度过大的溶液,可导致组织脱水。中枢抑制药引起的中毒需导泻时,应避免使用硫酸镁,可用硫酸钠。
问题四:泻药可分为哪几类,临床有何应用价值? 泻药能使粪便中水分含量增加,加速肠内容物的运行,排出软便根据泻药作用方式,可分容积性、渗透性、接触性和润滑性泻药四。(1)容积性泻药:食物性纤维素是植物性食物中未被消化的纤维素、半纤维素、果胶及其他糖类物质,属于容积性泻药。半合成的多糖及纤维素衍生物,如甲基纤维素等也属于容积性泻药。未被消化的食物性纤维素以及不能被人类消化的半合成多糖、纤维素衍生物都有亲水性,在肠道内吸水膨胀后,增加肠内容物的容积,促进推进性肠蠕动,排出软便。 (2)渗透性泻药:渗透性泻药包括盐类(如各种镁盐、硫酸盐和磷酸盐等)、双糖类(如乳果糖)、甘油和山梨醇等。类药物在肠道内很难吸收或吸收缓慢,故在肠腔维持高渗透压,阻止肠内盐和水分的吸收,致使肠容积增,肠腔扩张, *** 肠壁,促进肠蠕动。此外,镁盐还可 *** 十二指肠分泌缩胆囊肽,促进肠分泌肠液和蠕动。 (3) 接触性泻药:曾称为 *** 性泻药。本类药物与粘膜直接接触后,使粘膜通透性增加,使电解质和水向肠腔渗透,从而使肠内液体增加,引起导泻。因本类药物对肠道活动的影响有兴奋和抑制两种作用,同时,本类药物对肠粘膜中水分和电解质吸收也有原发性影响,故改称为接触性泻药。 本类药物包括蒽醌类(如大黄、番泻叶和芦荟等植物性泻药)和二苯甲烷类(如酚酞,即果导),他们对小肠功能影响较小,主要作用于大肠,既能减少其分节运动,又能增加周期性蠕动,从而加速大肠内容物的运行。此外,本类药物也能降低肠粘膜对水分和电解质的吸收。 (4)润滑性泻药:又称大便软化剂,主要起润滑作用,有利于排便。如液状石蜡、蜂蜜等。此外甘油也具有局部润滑作用。 泻药的临床应用价值主要有以下几方面: (1)治疗便秘:对于习惯性便秘,应首先从调节饮食着手,多吃富含食物性纤维素的食品,如绿色蔬菜、粗面粉等,养成良好的排便习惯。必须使用泻药时,应根据各药的特点,合理选用。对偶发的急性便秘,可用50%的甘油或开塞露注入 *** 内,成人20ml,小儿1 0ml或酌减。 (2)排除肠内毒物:对于食物中毒或药物中毒,宜口服盐类泻药,如硫酸钠或硫酸镁,其作用快而强,且因肠内渗透压增高,能阻滞或延缓毒物进步吸收。 (3)协助驱虫:服抗蠕虫药后若排便不畅,可服用硫酸镁,以促进虫体的排出。 必须注意,腹痛患者诊断尚未明确时,不可滥用泻药。
问题五:还有什么东西和泻药有一样的功效 没有什么食物和泻药一样。但是润肠的食物有香蕉、蜂蜜,芝麻(油)。
问题六:吃泻药有什么好处? 肚子涨可以吃少量泻药缓解,但是长时间、大量吃会引起便秘
问题七:泻药最有效的是什么药 急用 果导片 果导片 果导片
1.生物体具有共同的物质基础和结构基础。
2. 从结构上说,除病毒以外,生物体都是由细胞构成的。细胞是生物体的结构和功能的基本单位。
3.新陈代谢是活细胞中全部的序的化学变化总称,是生物体进行一切生命活动的基础。
4.生物体具应激性,因而能适应周围环境。
5.生物体都有生长、发育和生殖的现象。
6.生物遗传和变异的特征,使各物种既能基本上保持稳定,又能不断地进化。
7.生物体都能适应一定的环境,也能影响环境。
第一章 生命的物质基础
8.组成生物体的化学元素,在无机自然界都可以找到,没有一种化学元素是生物界所特有的,这个事实说明生物界和非生物界具统一性。
9.组成生物体的化学元素,在生物体内和在无机自然界中的含量相差很大,这个事实说明生物界与非生物界还具有差异性。
10.各种生物体的一切生命活动,绝对不能离开水。
11.糖类是构成生物体的重要成分,是细胞的主要能源物质,是生物体进行生命活动的主要能源物质。
12.脂类包括脂肪、类脂和固醇等,这些物质普遍存在于生物体内。
13.蛋白质是细胞中重要的有机化合物,一切生命活动都离不开蛋白质。
14.核酸是一切生物的遗传物质,对于生物体的遗传变异和蛋白质的生物合成有极重要作用。
15.组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,而只有按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。细胞就是这些物质最基本的结构形式。
第二章 生命的基本单位——细胞
16.活细胞中的各种代谢活动,都与细胞膜的结构和功能有密切关系。细胞膜具一定的流动性这一结构特点,具选择透过性这一功能特性。
17.细胞壁对植物细胞有支持和保护作用。
18.细胞质基质是活细胞进行新陈代谢的主要场所,为新陈代谢的进行,提供所需要的物质和一定的环境条件。
19.线粒体是活细胞进行有氧呼吸的主要场所。
20.叶绿体是绿色植物叶肉细胞中进行光合作用的细胞器。
21.内质网与蛋白质、脂类和糖类的合成有关,也是蛋白质等的运输通道。
22.核糖体是细胞内合成为蛋白质的场所。
23.细胞中的高尔基体与细胞分泌物的形成有关,主要是对蛋白质进行加工和转运;植物细胞分裂时,高尔基体与细胞壁的形成有关。
24.染色质和染色体是细胞中同一种物质在不同时期的两种形态。
25.细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。
26.构成细胞的各部分结构并不是彼此孤立的,而是互相紧密联系、协调一致的,一个细胞是一个有机的统一整体,细胞只有保持完整性,才能够正常地完成各项生命活动。
27.细胞以分裂是方式进行增殖,细胞增殖是生物体生长、发育、繁殖和遗传的基础。
28.细胞有丝分裂的重要意义(特征),是将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。
29.细胞分化是一种持久性的变化,它发生在生物体的整个生命进程中,但在胚胎时期达到最大限度。
30.高度分化的植物细胞仍然具有发育成完整植株的能力,也就是保持着细胞全能性。
第三章 生物的新陈代谢
31.新陈代谢是生物最基本的特征,是生物与非生物的最本质的区别。
32.酶是活细胞产生的一类具有生物催化作用的有机物,其中绝大多数酶是蛋白质,少数酶是RNA。
33.酶的催化作用具有高效性和专一性;并且需要适宜的温度和pH值等条件。
34.ATP是新陈代谢所需能量的直接来源。
35.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并且释放出氧的过程。光合作用释放的氧全部来自水。
36.渗透作用的产生必须具备两个条件:一是具有一层半透膜,二是这层半透膜两侧的溶液具有浓度差。
37.植物根的成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。
38.糖类、脂类和蛋白质之间是可以转化的,并且是有条件的、互相制约着的。
39.高等多细胞动物的体细胞只有通过内环境,才能与外界环境进行物质交换。
40.正常机体在神经系统和体液的调节下,通过各个器官、系统的协调活动,共同维持内环境的相对稳定状态,叫稳态。稳态是机体进行正常生命活动的必要条件。
41.对生物体来说,呼吸作用的生理意义表现在两个方面:一是为生物体的生命活动提供能量,二是为体内其它化合物的合成提供原料。
第四章 生命活动的调节
42.向光性实验发现:感受光刺激的部位在胚芽鞘尖端,而向光弯曲的部位在尖端下面的一段。
43.生长素对植物生长的影响往往具有两重性。这与生长素的浓度高低和植物器官的种类等有关。一般来说,低浓度促进生长,高浓度抑制生长。
44.在没有受粉的番茄(黄瓜、辣椒等)雌蕊柱头上涂上一定浓度的生长素溶液可获得无子果实。
45.植物的生长发育过程,不是受单一激素的调节,而是由多种激素相互协调、共同调节的。
46.下丘脑是机体调节内分泌活动的枢纽。
47.相关激素间具有协同作用和拮抗作用。
48.神经系统调节动物体各种活动的基本方式是反射。反射活动的结构基础是反射弧。
49.神经元受到刺激后能够产生兴奋并传导兴奋;兴奋在神经元与神经元之间是通过突触来传递的,神经元之间兴奋的传递只能是单方向的。
50.在中枢神经系统中,调节人和高等动物生理活动的高级中枢是大脑皮层。
51.动物建立后天性行为的主要方式是条件反射。
52.判断和推理是动物后天性行为发展的最高级形式,是大脑皮层的功能活动,也是通过学习获得的。
53.动物行为中,激素调节与神经调节是相互协调作用的,但神经调节仍处于主导的地位。
54.动物行为是在神经系统、内分泌系统和运动器官共同协调下形成的。
第五章 生物的生殖和发育
55.有性生殖产生的后代具双亲的遗传特性,具有更大的生活能力和变异性,因此对生物的生存和进化具重要意义。
56.营养生殖能使后代保持亲本的性状。
57.减数分裂的结果是,新产生的生殖细胞中的染色体数目比原始的生殖细胞的减少了一半。
58.减数分裂过程中联会的同源染色体彼此分开,说明染色体具一定的独立性;同源的两个染色体移向哪一极是随机的,则不同对的染色体(非同源染色体)间可进行自由组合。
59.减数分裂过程中染色体数目的减半发生在减数第一次分裂中。
60.一个精原细胞经过减数分裂,形成四个精细胞,精细胞再经过复杂的变化形成精子。
61. 一个卵原细胞经过减数分裂,只形成一个卵细胞。
62. 对于进行有性生殖的生物来说,减数分裂和受精作用对于维持每种生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异,都是十分重要的
63. 对于进行有性生殖的生物来说,个体发育的起点是受精卵。
64. 很多双子叶植物成熟种子中无胚乳,是因为在胚和胚乳发育的过程中胚乳被胚吸收,营养物质贮存在子叶里,供以后种子萌发时所需。
65. 植物花芽的形成标志着生殖生长的开始。
66.高等动物的个体发育,可以分为胚胎发育和胚后发育两个阶段。胚胎发育是指受精卵发育成为幼体。胚后发育是指幼体从卵膜孵化出来或从母体内生出来以后,发育成为性成熟的个体。
第六章 遗传和变异
67.DNA是使R型细菌产生稳定的遗传变化的物质,而噬菌体的各种性状也是通过DNA传递给后代的,这两个实验证明了DNA 是遗传物质。
68.现代科学研究证明,遗传物质除DNA以外还有RNA。因为绝大多数生物的遗传物质是DNA,所以说DNA是主要的遗传物质。
69.碱基对排列顺序的千变万化,构成了DNA分子的多样性,而碱基对的特定的排列顺序,又构成了每一个DNA分子的特异性。这从分子水平说明了生物体具有多样性和特异性的原因。
70.遗传信息的传递是通过DNA分子的复制来完成的。
71.DNA分子独特的双螺旋结构为复制提供了精确的模板;通过碱基互补配对,保证了复制能够准确地进行。
72.子代与亲代在性状上相似,是由于子代获得了亲代复制的一份DNA的缘故。
73.基因是有遗传效应的DNA片段,基因在染色体上呈直线排列,染色体是基因的载体。
74.基因的表达是通过DNA控制蛋白质的合成来实现的。
75.由于不同基因的脱氧核苷酸的排列顺序(碱基顺序)不同,因此,不同的基因含有不同的遗传信息。(即:基因的脱氧核苷酸的排列顺序就代表遗传信息)。
76.DNA分子的脱氧核苷酸的排列顺序决定了信使RNA中核糖核苷酸的排列顺序,信使RNA中核糖核苷酸的排列顺序又决定了氨基酸的排列顺序,氨基酸的排列顺序最终决定了蛋白质的结构和功能的特异性,从而使生物体表现出各种遗传特性。
77.生物的一切遗传性状都是受基因控制的。一些基因是通过控制酶的合成来控制代谢过程;基因控制性状的另一种情况,是通过控制蛋白质分子的结构来直接影响性状。
78.基因分离定律:具有一对相对性状的两个生物纯本杂交时,子一代只表现出显性性状;子二代出现了性状分离现象,并且显性性状与隐性性状的数量比接近于3:1。
79.基因分离定律的实质是:在杂合子的细胞中,位于一对同源染色体,具有一定的独立性,生物体在进行减数分裂形成配子时,等位基因会随着的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代。
80.基因型是性状表现的内存因素,而表现型则是基因型的表现形式。
81.基因自由组合定律的实质是:位于非同源染色体上的非等位基因的分离或组合是互不干扰的。在进行减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离,同时非同源染色体上的非等位基因自由组合。
82.基因的连锁和交换定律的实质是:在进行减数分裂形成配子时,位于同一条染色体上的不同基因,常常连在一起进入配子;在减数分裂形成四分体时,位于同源染色体上的等位基因有时会随着非姐妹染色单体的交换而发生交换,因而产生了基因的重组。
83.生物的性别决定方式主要有两种:一种是XY型,另一种是ZW型。
84.可遗传的变异有三种来源:基因突变,基因重组,染色体变异。
85.基因突变在生物进化中具有重要意义。它是生物变异的根本来源,为生物进化提供了最初的原材料。
86.通过有性生殖过程实现的基因重组,为生物变异提供了极其丰富的来源。这是形成生物多样性的重要原因之一,对于生物进化具有十分重要的意义。
第七章 生物的进化
87.生物进化的过程实质上就是种群基因频率发生变化的过程。
88.以自然选择学说为核心的现代生物进化理论,其基本观点是:种群是生物进化的基本单位,生物进化的实质在于种群基因频率的改变。突变和基因重组、自然选择及隔离是物种形成过程的三个基本环节,通过它们的综合作用,种群产生分化,最终导致新物种的形成。
第八章 生物与环境
89.光对植物的生理和分布起着决定性的作用。
90.生物的生存受到很多种生态因素的影响,这些生态因素共同构成了生物的生存环境。生物只有适应环境才能生存。
91.保护色、警戒色和拟态等,都是生物在进化过程中,通过长期的自然选择而逐渐形成的适应性特征。
92.适应的相对性是遗传物质的稳定性与环境条件的变化相互作用的结果。
93.生物与环境之间是相互依赖、相互制约的,也是相互影响、相互作用的。生物与环境是一个不可分割的统一整体。
94.在一定区域内的生物,同种的个体形成种群,不同的种群形成群落。种群的各种特征、种群数量的变化和生物群落的结构,都与环境中的各种生态因素有着密切的关系。
95.在各种类型的生态系统中,生活着各种类型的生物群落。在不同的生态系统中,生物的种类和群落的结构都有差别。但是,各种类型的生态系统在结构和功能上都是统一的整体。
96.生态系统中能量的源头是阳光。生产者固定的太阳能的总量便是流经这个生态系统的总能量。这些能量是沿着食物链(网)逐级流动的。
97.对一个生态系统来说,抵抗力稳定性与恢复力稳定性之间往往存在着相反的关系。
高中生物复习归纳
一、常现生物:
1.细菌:原核类:具细胞结构,但细胞内无核膜和核仁的分化,也无复杂的细胞器,包括:细菌(杆状、球状、螺旋状)、放线菌、蓝细菌、支原体、衣原体、立克次氏体、螺旋体。
①细菌:三册书中所涉及的所有细菌的种类:
乳酸菌、硝化细菌(代谢类型);
肺炎双球菌S型、R型(遗传的物质基础);
结核杆菌和麻风杆菌(胞内寄生菌);
根瘤菌、圆褐固氮菌(固氮菌);
大肠杆菌、枯草杆菌、土壤农杆菌(为基因工程提供运载体,也可作为基因工程的受体细胞);
苏云金芽孢杆菌(为抗虫棉提供抗虫基因);
假单孢杆菌(分解石油的超级细菌);
甲基营养细菌、谷氨酸棒状杆菌、黄色短杆菌(微生物的代谢);
链球菌(一般厌氧型);
产甲烷杆菌(严格厌氧型)等
②放线菌:是主要的抗生素产生菌。它们产生链霉素、庆大霉素、红霉素、四环素、环丝氨酸、多氧霉素、环已酰胺、氯霉素和磷霉素等种类繁多的抗生素(85%)。繁殖方式为分生孢子繁殖。
③衣原体:砂眼衣原体。
2.病毒:病毒类:无细胞结构,主要由蛋白质和核酸组成,包括病毒和亚病毒(类病毒、拟病毒、朊病毒)① 动物病毒:RNA类(脊髓灰质炎病毒、狂犬病毒、麻疹病毒、腮腺炎病毒、流感病毒、艾滋病病毒、口蹄疫病毒、脑膜炎病毒、SARS病毒)
DNA类(痘病毒、腺病毒、疱疹病毒、虹彩病毒、乙肝病毒)
②植物病毒:RNA类(烟草花叶病毒、马铃薯X病毒、黄瓜花叶病毒、大麦黄化病毒等)
③微生物病毒:噬菌体。
3.真核类:具有复杂的细胞器和成形的细胞核,包括:酵母菌、霉菌(丝状真菌)、蕈菌(大型真菌)等真菌及单细胞藻类、原生动物(大草履虫、小草履虫、变形虫、间日疟原虫等)等真核微生物。
① 霉菌:可用于发酵上工业,广泛的用于生产酒精、柠檬酸、甘油、酶制剂(如蛋白酶、淀粉酶、纤维素酶等)、固醇、维生素等。在农业上可用于饲料发酵、生产植物生长素(如赤酶霉素)、杀虫农药(如白僵菌剂)、除草剂等。危害如可使食物霉变、产生毒素(如黄曲霉毒素具致癌作用、镰孢菌毒素可能与克山病有关)。常见霉菌主要有毛霉、根霉、曲霉、青霉、赤霉菌、白僵菌、脉胞菌、木霉等。
4.微生物代谢类型:
① 光能自养:光合细菌、蓝细菌(水作为氢供体)紫硫细菌、绿硫细菌(H2S作为氢供体,严格厌氧)2H2S+CO2 [CH2O]+H2O+2S
② 光能异养:以光为能源,以有机物(甲酸、乙酸、丁酸、甲醇、异丙醇、丙酮酸、和乳酸)为碳源与氢供体营光合生长。阳光细菌利用丙酮酸与乳酸用为唯一碳源光合生长。
③ 化能自养:硫细菌、铁细菌、氢细菌、硝化细菌、产甲烷菌(厌氧化能自养细菌)CO2+4H2 CH4+2H2O
④ 化能异养:寄生、腐生细菌。
⑤ 好氧细菌:硝化细菌、谷氨酸棒状杆菌、黄色短杆菌等
⑥ 厌氧细菌:乳酸菌、破伤风杆菌等
⑦ 中间类型:红螺菌(光能自养、化能异养、厌氧[兼性光能营养型])、氢单胞菌(化能自养、化能异养[兼性自养])、酵母菌(需氧、厌氧[兼性厌氧型])
⑧ 固氮细菌:共生固氮微生物(根瘤菌等)、自生固氮微生物(圆褐固氮菌)
5.植物:C3和C4植物、阳生和阴生植物、豌豆、荠菜、玉米、水稻(2×12)、洋葱(2×8)、香蕉(3n)、普通小麦(六倍体)、八倍体小黑麦、无籽西瓜(3n)、无籽番茄、抗虫棉、豆科植物等。
6.动物:人(2×23)、果蝇(2×4)、马(2×32)、驴(2×31)、骡子(63)等。
二、常用物质和试剂:
1.常用物质:
ATP、PEP(磷酸烯醇式丙酮酸)、PEG(聚乙二醇)、灭活的病毒、NADPH(还原型辅酶Ⅱ)、过敏原、植物激素、生长素、生长素类似物、动物激素、丙酮酸、少数特殊状态的叶绿素a分子、质粒、限制性内切酶、DNA连接酶等。
2.常用试剂:
斐林试剂、苏丹Ⅲ、苏丹Ⅳ、双缩脲试剂、二苯胺、50%的酒精溶液、15%的盐酸、95%的酒精溶液、龙胆紫溶液、醋酸洋红、20%的肝脏、3%的过氧化氢、3.5%的氯化铁、3%的可溶性淀粉溶液、3%的蔗糖溶液、2%的新鲜淀粉酶溶液、5%的盐酸、5%的氢氧化钠、碘液、丙酮、层析液、二氧化硅、碳酸钙、0.3g/mL的蔗糖溶液、硝酸钾溶液、0.1g/mL的柠檬酸钠溶液、2mol/L和0.015mol/L的氯化钠溶液、95%的冷酒精溶液、75%的酒精溶液、胰蛋白酶、秋水仙素、氯化钙等。
三、重要的名词、观点、结论
(一)重要的名词:
1.应激性、细胞、自由水、结合水、肽键、多肽、真核细胞、原核细胞、自由扩散、协助扩散、主动运输、细胞的分化、细胞的癌变、细胞的衰老、致癌因子、有丝分裂、细胞周期、无丝分裂
2.酶、ATP、高能磷酸化合物、高能磷酸键、渗透作用、原生质、原生质层、质壁分离、质壁分离复原、选择性吸收、光反应、暗反应、光合作用效率、有氧呼吸、无氧呼吸、内环境、稳态、脱氨基作用、氨基转换作用、化能合成作用
3.向性运动、神经调节、体液调节、激素调节、顶端优势、反馈调节、协同作用、拮抗作用、反射、反射弧、非条件反射、条件反射、突触、高级神经中枢、先天性行为、后天性行为
4.有性生殖、无性生殖、营养生殖、双受精、受精作用、减数分裂、性原细胞、初级性母细胞、次级性母细胞、染色体、染色单体、同源染色体、非同源染色体、四分体、染色体组、性染色体、常染色体、个体发育、胚的发育、胚乳的发育、顶细胞、基细胞、胚胎发育、胚后发育、卵裂、囊胚期、原肠胚、动物极、植物极
5.DNA、RNA、碱基互补配对、半保留复制、基因、转录、翻译、显性性状、隐性性状、相对形状、基因型、表现型、等位基因、基因的分离定律、基因的自由组合定律、正交、反交、伴性遗传、交*遗传、基因突变、基因重组、染色体变异、杂交育种、人工诱变育种、单倍体育种、多倍体育种、花药离体培养、单基因遗传病、多基因遗传病、染色体异常遗传病、优生学
6.自然选择学说、基因库、基因频率、隔离、地理隔离、生殖隔离
7.生物圈、生态学、生态因素、互利共生、寄生、竞争、捕食、种群、种群密度、种群数量增长曲线、生物群落、生态系统(森林、海洋、草原、农业、湿地、城市)、食物链、食物网、营养级、物质循环、能量流动、生态系统稳定性、生物多样性、生物圈的稳态、碳循环、氮循环、硫循环、生态农业
8.人体的稳态、人体的平衡及调节、糖尿病、营养物质、营养、特异性免疫、免疫系统、抗原、抗体、抗原决定簇、体液免疫、细胞免疫、过敏反应、自身免疫病、免疫缺陷病
9.生物固氮、共生固氮微生物、自生固氮微生物
10.细胞核遗传、细胞质遗传、母系遗传、编码区、非编码区、RNA聚合酶结合位点、外显子、内含子、人类基因组计划、基因工程、质粒
11.生物膜、细胞的生物膜系统、细胞工程、植物组织培养、植物体细胞杂交、细胞的全能性、愈伤组织、脱分化、再分化、动物细胞培养液、原代培养、传代培养、细胞株、细胞系、单克隆抗体
12.微生物、菌落、衣壳、核衣壳、囊膜、刺突、碳源、氮源、生长因子、选择培养基、鉴别培养基、初级代谢产物、次级代谢产物、组成酶、诱导酶、微生物的生长曲线、接种、发酵罐、发酵工程、单细胞蛋白
(二)重要的观点、结论:
1.生物体具有共同的物质基础和结构基础。细胞是一切动植物结构的基本单位。病毒没有细胞结构。细胞是生物体的结构和功能的基本单位。
2.新陈代谢是生物体进行一切生命活动的基础,是生物最基本的特征,是生物与非生物的最
本质的区别。
3.生物遗传和变异的特征,使各物种既能基本上保持稳定,又能不断地进化。生物的遗传特
性,使生物物种保持相对稳定。生物的变异特性,使生物物种能够产生新的性状,以致形
成新的物种,向前进化发展。
4.生物体具应激性,因而能适应周围环境。生物体都能适应一定的环境,也能影响环境。
5.组成生物体的化学元素,在无机自然界都可以找到,没有一种化学元素是生物界所特有 的,这个事实说明生物界和非生物界具统一性。生物界与非生物界还具有差异性。组成生物体的化学元素和化合物是生物体生命活动的物质基础。
6.糖类是细胞的主要能源物质,葡萄糖是细胞的重要能源物质。淀粉和糖元是植物、动物细胞内的储能物质。蛋白质是一切生命活动的体现者。 脂肪是生物体的储能物质。核酸是一切生物的遗传物质。
7.组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,只有这些化合物按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。细胞就是这些物质最基本的结构形式。
8.细胞膜具一定的流动性这一结构特点,具选择透过性这一功能特性。
9.细胞壁对植物细胞有支持和保护作用。 线粒体是活细胞进行有氧呼吸的主要场所。 叶绿体是绿色植物光合作用的场所。核糖体是细胞内将氨基酸合成为蛋白质的场所。 染色质和染色体是细胞中同一种物质在不同时期的两种形态。 细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。
10.构成细胞的各部分结构并不是彼此孤立的,而是互相紧密联系、协调一致的,一个细胞是 一个有机的统一整体,细胞只有保持完整性,才能够正常地完成各项生命活动。
11.原核细胞最主要的特点是没有由核膜包围的典型的细胞核。
12.细胞以分裂的方式进行增殖,细胞增殖是生物体生长、发育、繁殖和遗传的基础。
13.细胞有丝分裂的重要意义(特征),是将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。
14.高度分化的植物细胞仍然具有发育成完整植株的能力,也就是保持着细胞全能性。
15.酶的催化作用具有高效性和专一性,需要适宜的温度和pH值等条件。
16.ATP是新陈代谢所需要能量的直接来源。
17.光合作用释放的氧全部来自水。一部分氨基酸和脂肪也是光合作用的直接产物。所以确切 地说,光合作用的产物是有机物和氧。 光能在叶绿体中的转换,包括三个步骤:光能转换成电能;电能转换成活跃的化学能;活跃的化学能转换成稳定的化学能。
18.植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。
19.C4植物的叶片中,围绕着维管束的是呈“花环型”的两圈细胞:里面的一圈是维管束鞘细胞,外面的一圈是一部分叶肉细胞。
20.高等的多细胞动物,它们的体细胞只有通过内环境,才能与外界环境进行物质交换。
21.糖类、脂类和蛋白质之间是可以转化的,并且是有条件的、互相制约着的。
22.植物生命活动调节的基本形式是激素调节。人和高等动物生命活动调节的基本形式包括神 经调节和体液调节,其中神经调节的作用处于主导地位。激素调节是体液调节的主要内容。
23.向光性实验发现:感受光刺激的部位在胚芽鞘尖端,而向光弯曲的部位在尖端下面的一段,向光的一侧生长素分布的少,生长得慢;背光的一侧生长素分布的多,生长得快。 生长素对植物生长的影响往往具有两重性。这与生长素的浓度高低和植物器官的种类等有关。一般说,低浓度促进生长,高浓度抑制生长。 在没有受粉的番茄(黄瓜、辣椒等)雌蕊柱头上涂一定浓度的生长素溶液可获得无籽果实。
24.垂体除了分泌生长激素促进动物体的生长外,还能分泌促激素调节、管理其他内分泌腺的分泌活动。下丘脑是机体调节内分泌活动的枢纽。 通过反馈调节作用,血液中的激素经常维持在正常的相对稳定的水平。相关激素间具有协同作用和拮抗作用。
25.(多细胞)动物神经活动的基本方式是反射,基本结构是反射弧(即:反射活动的结构基础是反射弧)。在中枢神经系统中,调节人和高等动物生理活动的高级中枢是大脑皮层。
26.神经冲动在神经纤维上的传导是双向的。在神经元之间的传递是单方向的,只能从一个神 经元的轴突传递给另一个神经元的细胞体或树突,而不能向相反的方向传递。
27.有性生殖产生的后代具双亲的遗传特性,具有更大的生活能力和变异性,因此对生物的 生存和进化具重要意义。 营养生殖能使后代保持亲本的性状。
28.减数分裂的结果是,产生的生殖细胞中的染色体数目比精(卵)原细胞减少了一半。减数分裂过程中染色体数目的减半发生在减数第一次分裂中。 减数分裂过程中联会的同源染色体彼此分开,说明染色体具一定的独立性;同源的两条染色体移向哪极是随机的,不同源的染色体(非同源染色体)间可进行自由组合。
29.一个卵原细胞经过减数分裂,只形成一个卵细胞(一种基因型)。一个精原细胞经过减数分裂,形成四个精子(两种基因型)。
30.对于有性生殖的生物来说,减数分裂和受精作用对于维持每种生物前后代体细胞染色体数目的恒定,对于生物的遗传和变异,都是十分重要的。
31.对于有性生殖的生物来说,个体发育的起点是受精卵。
32.很多双子叶植物成熟种子中无胚乳(如豆科植物、花生、油菜、荠菜等),是因为在胚和胚乳发育的过程中胚乳被子叶吸收了,营养贮藏在子叶里,供以后种子萌发时所需。单子叶植物一般有胚乳(如水稻、小麦、玉米等)。 植物花芽的形成标志
第二章 生物制药工艺技术基础
第一节 生物材料与生物活性物质
一、生物材料的来源
供生产生物药物的生物资源主要有动物、植物、微生物的组织、器官、细胞与代谢产物。应用动植物细胞培养与微生物发酵技术也是获得生物制药原料的重要途径。基因工程技术与细胞工程技术和酶工程技术更是开发生物制药资源的新途径。
(一)动物脏器
(1)胰脏 (激素、酶、多肽、核酸、多糖、氨基酸等)
(2)脑 (脑磷脂、肌醇磷脂、神经磷脂、神经肽等)
(3)胃粘膜(胃蛋白酶、胶原蛋白酶、胃泌素、胃膜素)
(4)肝脏(维生素、磷脂类、胆固醇)
(5)脾脏(免疫器官)
(6)小肠(糖蛋白、核苷酸酶、溶菌酶、胃肠道激素)
(7)脑垂体(各种激素)
(8) 心脏(细胞色素C、辅酶Q10)
其它等
(二)血液、分泌物和其它代谢物
血液制品:人血制剂、抗凝血酶Ⅲ,凝血因子Ⅷ,纤维蛋白原,免疫球蛋白、人血浆、干扰素、白介素等。
尿液、胆汁、蛇毒、蜂毒也是重要的生物材料,尿激酶,表皮生长因子、HCG
(三)海洋生物
(1)海藻
(2)腔肠动物 海葵毒素
(3)节肢动物 甲壳素
(4) 软体动物 多糖、多肽、毒素
(5)棘皮动物 海星、海胆、海参 海参素抗癌
(6)鱼类 鱼油、多种激素、毒素,硫酸软骨素
(7)爬行动物 龟 滋阴养肾 抗肿瘤
(8)海洋哺乳动物 鲸鱼鱼肝油
(四)植物
生物碱、强心甙、黄酮、皂甙、挥发油、树脂、鞣质等。
(五)微生物
1.细菌
常用细菌发酵法生产乳酸、醋酸、丙酮、丁醇。主要有:
(1)氨基酸
利用微生物酶可转化对应的α酮酸或羟基酸作用产生氨基酸。
(2)有机酸 柠檬酸、苹果酸、乳酸
(3)糖类 利用细菌可制取葡聚糖、聚果糖、聚甘露糖、脂多糖。
(4)核苷酸类 用细菌可生产5‘-AMP,5’-肌苷酸
(5)维生素 VB1,VB2,VB6, Vc
(6)酶 淀粉酶、蛋白酶、脂肪酶、弹性蛋白酶
2.放线菌
放线菌是最重要的抗生素产生菌,已有1000多种抗生素约2/3产自放线菌。
(1)氨基酸 发酵法
(2)核苷酸 5-脱氧肌苷酸
(3)维生素
(4) 酶
3.真菌
(1)酶
(2)有机酸
(3)氨基酸
(4)核酸及有关物质
(5)维生素
(6)促生素
(7)多糖
4.酵母菌
(1)维生素
(2)蛋白质与多肽
(3)核酸
(六)开发生物新资源
(1)动植物细胞的大规模培养
(2)应用基因工程技术建立工程菌或工程细胞
二、生物活性物质的存在方式
(一)生物活性物质的存在方式与其生物功能
根据生物活性物质的生物功能推断其存在部分和分布方式。生物活性物质分为胞内与胞外两种存在部位。
(二)生物分子间的作用力
三、生物活性物质的存在特点
(一)生物材料组成的复杂性
(二)生物活性物质存在地特点
生物活性物质在生物材料中含量较低,杂质含量很高,而且生理活性愈高,含量愈低。
生物材料中的生化组成数量大,种类多,分离纯化比较困难。
四、生物材料的准备
生物材料的制造主要包括以下工艺过程:
1)生物材料的选取与预处理;
2)从生物材料中提取有效活性物质;
3)有效成分的分离,纯化
4)后处理及制剂
(一)生物材料的选取
1.有效成分的含量
(1)生物品种
根据目的物的分布,选择富含有效成分的生物品种是选材的关键。(催乳素,哺乳动物)
(2)合适的组织器官(胃蛋白酶,胃)
(3)生物的生长期
生物的生长期对生理活性物质含量影响很大。
2.杂质情况
难于分离的杂质会增加工艺的复杂性,严重影响收率、质量和经济效益。
3.来源
应选用来源丰富的材料,尽量不与其他产品争原料,最好能一物多用,综合利用。
胰脏 制备弹性蛋白酶和激肽释放酶,胰岛素与胰酶等。
(二)生物材料的采集与保存
生理活性物质易失活与降解,采集时必须保持材料的新鲜。防止腐败、变质与微生物污染。如胰脏采摘后要立即速冻,防止胰岛素活力下降。
保存生物材料的主要方法有速冻、冻干、有机溶剂脱水,制成丙酮粉,或浸存于丙酮与甘油中等。
(三)动物细胞的培养与保存
(四)微生物菌种的选育与保存
1.菌种的分离
微生物种类繁多,易于培养,是工业化生产各种生物药物的主要材料。
(1)含菌样品的收集
根据微生物的生态特点,从自然界取样,分离所需要菌种,如到堆积和腐烂纤维素的地方去取样分离纤维素酶产生菌。
到温泉附近取样分离高温蛋白酶产生菌。
一般可以从土壤中分离所需微生物,取样时先将表土刮去2~3cm,在同一条件下选好2~5点土样混在一起包好,表明采样地点及日期备用。
(2)富集培养
收集到的样品若含所需要的菌较多,可直接分离。如含所需要的菌很少,就需要经过富集培养,使所需要的菌大量生长,以利于筛选。再配合控制温度,pH或营养成分即可达到目的。有时用能分解的底物作为生长和诱导产生所须成分的培养基成分,以使所需要的菌种得到快速生长,有利于进一步分离。
(3)菌种纯化
在自然条件下,各种类型的菌混杂在一起生活,所以要进行分离,以获得纯种。菌种纯化的方法一般采用稀释分离或划线分离法。
2.菌种的筛选
(1)筛选对象的选择
筛选前,先要考虑哪些微生物是筛选的对象。如有报道,则根据文献收集可能性最大的的微生物进行筛选。
(2)培养方式的确定
微生物的培养方式,有固体培养与液体培养。
3.菌株的选育
从自然界直接分离得到的菌种,都不能立即适应实际生产需要。只有通过诱变,选育才能使产量成倍,成百倍地提高。选育方法基本上可以分成两类:随机选择突变体;根据代谢的调节机制选择各种突变体。
(1)随机选择法
一般程序是采用诱变剂诱变处理微生物,增殖培养,经过稀释涂布,随机选择部分或全部单菌落,逐个测定它们的生物活性。最后挑选出产量或其它性能比亲代菌株优秀的突变株。
(2)根据代谢的调节机理选择高产突变体
根据代谢的调节机理选择高产突变体。(抗性基因)
4.菌种的保藏
(1)菌种的退化与防止
生产菌种本来在自然环境下生长,所以在人工培养条件下,任何菌株通过一系列的转接传代都可能发生退化。
退化—一般把菌株的生活力,产孢子能力的衰退和特殊产物产量的下降,成为退化。
菌种退化现象:①单位容积中发酵液的活性物质含量;②琼脂平皿上的单菌落形态;③不同培养时期菌体细胞的形态和主要遗传特征。如形成孢子能力;④发酵过程pH变动情况;⑤发酵液的气味、色泽。
菌种退化防止措施:①防止基因突变,基因突变是菌种退化的一个主要原因,低温保藏法可以减少突变得产生。②采用双重缺陷型 采用双营养缺陷标志可间接而有效地防止突变。③制定科学管理制度 制作平行菌种斜面;④分离单菌落;认真进行单菌落分离工作,再多做平行的菌种斜面;⑤选择培养条件 选择有利于高产菌株而不利于低产菌株的培养条件。
(2)常用的菌种保藏方法
斜面保存法—将菌种转接到新鲜的琼脂斜面上,待生长良好后,于4℃保存。根据具体情况,间隔一定时间后转接。
矿油法—在菌种斜面上覆盖矿物油以隔绝空气防止蒸发。
索氏法—将小试管斜面的菌种放在大试管内,大试管内装几粒氢氧化钾,管口加橡皮套,然后用石蜡包封。
干硅胶法—试管内装硅胶约半满,180℃加热灭菌1.5小时,置密封干燥器内冷却,接种菌液约1ml,塞好棉花,放入预置有色硅胶的大瓶中,蜡封瓶口,于低温处保存。
砂土管法—取普通黄沙,洗净过60目筛,晒干,另取普通圆土研碎,过筛,晒干。两者以6:4混合。分装于安醅瓶或小试管中,然后在60℃干热灭菌2小时,连续灭菌三次后即可使用。装管时可吸取少许孢子悬浮液加入,待干燥后抽真空封口或用棉花塞紧后蜡封,低温保藏。
冷冻干燥法:将菌种悬浮于脱脂消毒牛奶中,快速冷冻,真空干燥。
甘油冷冻保存法:将对数期菌体悬浮于新鲜培养基中,加入15%消毒甘油,混匀速冻,冻存于-70~-80℃.
(五)组织与细胞的破碎
组织与细胞的破碎方法有物理法、化学法与生物法。
1.物理法
(1)磨切法
工业上常用的有绞肉机,刨胰机,球磨机、磨粉机。实验室常用的有匀浆机,研钵,高速组织捣碎机。
(2)压力法
有压榨法、高压法和减压法,渗透压法。
(3)超声波法
(4)反复冻融法
2.化学法
用稀酸、稀碱、浓盐、有机溶剂或表面活性剂处理细胞,可破坏细胞结构释放出内容物。
3.生物法
(1)组织自溶法
利用组织中自身溶解酶的作用改变、破坏细胞结构,释放出目的物称为组织自溶法。
(2) 酶解法
用外来酶处理生物材料,如用溶菌酶处理某些细菌,蜗牛酶等
(3)噬菌体法
用噬菌体感染细胞、裂解细胞,释放出内容物。
(六)细胞器的分离
为获得结合在细胞器上的一些生化成分或酶系,常常要先得到细胞器再进一步分离有效成分。方法是匀浆破碎细胞,差速离心。
第二节 生物活性物质的提取
提取是利用制备目的物的溶解特性,将目的物与细胞的固形物成分或其它结合成分分离,使其由固相转入液相或从细胞生理状态转入特定溶液环境的过程。
一、物质性质与提取
(一)物质的性质与提取方法的选择
要取得好的提取效果,最重要的是要针对生物材料和目的物的性质选择合适的溶剂系统与提取条件。
生物材料及其目的物与提取有关的一些性状包括溶解性质、分子量、等电点、存在方式、稳定性、比重、粒度、粘度,目的物含量,主要杂质种类及溶解性质,有关酶的特征等。其中最主要的是目的物与主要杂质在溶解度方面的差异以及它们的稳定性。操作者可根据文献资料及本人的试验摸索获得的有关信息,在提取过程中增加目的物的溶出度,尽可能减少杂质的溶出度。
(二)活性物质的保护措施
(1)采用缓冲盐系统
在生物药物制备中,常用的缓冲盐有磷酸缓冲盐,柠檬酸缓冲盐,Tris缓冲液,醋酸缓冲盐,碳酸缓冲盐,硼酸缓冲盐和巴比妥缓冲盐等。
(2)添加保护剂
防止某些生理活性物质的活性基团及酶的活性中心受到破坏,如巯基是许多活性蛋白质和酶催化活性基团,极易被氧化,故提取时,常添加某些还原剂如半胱氨酸,-巯基乙醇。对易受重金属影响的,可添加EDTA。
(3)抑制水解酶的作用
二、物质的性质与溶解度
(一)物质溶解度的一般规律
相似相溶
(二)水在生化物质提取中的作用
水是提取生化物质的常用溶剂。水分子的存在可使其它生物分子之间的氢键减弱,而与水分子形成氢键,水分子还能使溶质分子的离子键解离,这就是所谓的水合作用。水合作用促使蛋白质、核酸、多糖等生物大分子与水形成了水合分子或水合离子从而促使它们溶解于水或水溶液中。
三、提取效率
(4)其它保护措施(冷、热、酸、碱)
四、影响提取的因素
(一)温度
多数物质的溶解度随提取温度的升高而增加。另外较高的温度可以降低物料的粘度,有利于分子扩散和机械搅拌,所以对耐热成分的提取可以用加热的方法。对不耐热的生物活性物质的提取,一般在0~10℃进行提取。
(二)酸碱度
多数生化物质在中性条件下较稳定,pH值一般应控制在4~9范围内,为了增加目的物的溶解度,往往要避免目的物的等电点附近进行提取。
巧妙地选择溶剂系统的pH值不但直接影响目的物与杂质溶解度,还可以抑制有害酶类的水解破坏作用,防止降解,提高收率。
(三)盐浓度
盐溶作用
盐析作用
五、提取方法
(一)用酸、碱、盐水溶液提取
(二)表面活性剂提取
表面活性剂分子兼有亲水与疏水基团,分布于油水界面时,有分散、乳化和增溶作用。表面活性剂分阴离子型、阳离子型与非离子型。离子型表面活性剂作用强,但是易引起蛋白质等生物大分子的变性,非离子表面活性剂变性作用小,适合于用水、盐系统无法提取的提取的蛋白质或酶的提取。
(三)有机溶剂提取
1.固-液提取
丙酮从动物脑中提取胆固醇,
溶剂分级提取:如先用丙酮,再用乙醇,最后用乙醚提取。石油醚,氯仿,乙酸乙酯,正丁醇,甲醇。
丙酮粉
2.液-液萃取
液-液萃取是利用溶质在两个互不混溶的溶剂中溶解度的差异,将溶质从一个溶剂相向另一个溶剂相转移的操作。分配系数和溶剂用量
溶剂萃取的注意事项:
(1)pH
在萃取操作中正确选择pH值很重要。因为在水溶液中某些酸、碱物质会解离,在萃取时改变了分配系数,直接影响提取效率。
(2)盐析
加入中性盐如硫酸铵,氯化钠等可以使一些生化物质的溶解度减少,这种现象成为盐析。在提取液中加入中性盐,可以促使生化物质转入有机相从而提高萃取率。
(3)温度
一般在室温下或低温下进行萃取操作。
(4)乳化
在液液萃取时,常发生乳化作用,使有机溶剂与水相分层困难。去乳化的常用方法有:过滤与离心,轻轻搅动,改变两相的比例;加热,加电解质,加吸附剂。
液液萃取时溶剂的选择:
(1)选用的溶剂必须具有较高的选择性,各种溶质在所选的溶剂之间分配系数差异愈大愈好。
(2)选用的溶剂,在萃取后,溶质与溶剂要容易分离与回收。
(3)两种溶剂的密度相差不大时容易形成乳化,不利于萃取液的分离。
(4)要选用无毒,不易燃烧的价廉易的溶剂。
第三节 生物活性物质的浓缩与干燥
一、生物活性物质的浓缩
(一)盐析浓缩
硫酸铵沉淀蛋白质
(二)有机溶剂沉淀浓缩
在生物大分子的水溶液中,逐渐加入乙醇,丙酮等有机溶剂,可以使生化物质的溶解度明显降低,从溶液中沉淀出来。
(三)用葡聚糖凝胶(Sephadex)浓缩
(四)用聚乙二醇透析浓缩
(五)超滤浓缩
(六)真空减压浓缩与薄膜浓缩
真空减压浓缩在药物生产中使用较为普遍,具有生产规模较大,蒸发温度较低,蒸发速度较快等优点。
薄膜浓缩器的加速蒸发的原理是增加汽化表面积。使液体形成薄膜而蒸发,成膜的液体具有较大的表面积,热传播快而均匀,没有液体静压的影响,能较好地防止物料的过热现象。
二、干燥
干燥的目的:提高药物或药剂的稳定性,以利于保存和运输;达到规格标准;便于进一步处理。
表面水,毛细管中的水,细胞内的水
(一)减压干燥
(二)喷雾干燥
(三)冷冻干燥
第四节 生化物质的分离纯化方法
一、生物制药中分离制备方法的特点
生物制药中分离、制备方法有以下特点:
(1)生物材料组成非常复杂。一种生物材料常含成千上万成分,各种化合物的形状、大小、分子量和理化性质都各不相同。没有固定操作方法。
(2)有些化合物在生物材料中含量极微,只达万分之一,甚至百万分之一。因此,分离操作步骤多,不易获得高收率。
(3)生物活性物质离开生物体后,易变性,破坏,分离进程必须十分小心的保护这些化合物的生理活性。(难点)
(4)生物制药的分离方法几乎都在溶液中进行,各种参数(温度,pH,离子强度)对溶液中各种组分的综合影响常常无法固定,以致许多实验设计理论性不强。
(5)为了保护目的物的生理活性及结构上的完整性,生物制药中的分离方法多采用温和的逐级分离方法。亲和层析分离具有分离的专一性,高效性。
(6)生物产品最后均一性的证明与化学纯度的概念不完全相同,因生物分子对环境反应十分敏感,结构与功能关系比较复杂。
二、生物制药中分离制备方法的基本原理
生物大分子分离纯化的主要原因:
(1)根据分子形状和大小不同进行分离。如差速离心与超离心、膜分离(透析,电渗析)与超滤,凝胶过滤法。
(2)根据分子电离性质的差异性进行分离。如离子交换法,电泳法,等电聚焦法。
(3)根据分子极性大小及溶解度不同进行分离。如溶剂提取法,逆流分配法,分配层析法,盐析法,等电点沉淀法,及有机溶剂分级沉淀法。
(4)根据物质吸附性质的不同进行分离。如选择性吸附法与吸附层析法。
(5)根据配体特异性进行分离—亲和层析法。
三、分离纯化的基本程序和实验设计
生物体内某一组分,特别是未知结构的组分的分离制备设计大致上分为五个基本阶段。
(1)确定制备物的研究目的及建立相应的分析鉴定方法。
(2)制备物理化性质稳定性的预备试验。
(3)材料处理及抽提方法的选择。
(4)分离纯化方法的摸索。
(5)产物均一性测定。
提取是分离纯化目的物的第一步,所选的溶剂应对目的物具有最大的溶解度,并尽量减少杂质进入提取液。
分离纯化是生化制备的核心操作。分离策略:
1.分离纯化早期使用方法的选择
分离纯化的早期,由于提取液中的成分复杂,目的物浓度较稀,与目的物理化性质相似的杂质多,所以不宜选择分辨能力较高的纯化方法。早期分离纯化用萃取,沉淀,吸附等一些分辨力低的方法较为有利,这些方法负荷能力大,分离量多兼有分离提纯和浓缩的作用,为进一步分离纯化创造良好的基础。
一个特异性方法的分辨力愈高,便意味着提纯步骤愈简化,收率愈高。
2.各种分离纯化方法的使用程序
生化物质的分离都是在液相中进行,故分离方法主要依据物质的分配系数,分子量大小,离子电荷性质及数量和外加环境条件的差别等因素为基础。而每一种方法又都是在特定条件下发挥作用。因此,在相同或相似条件下连续使用同一种分离方法就不太适宜。
在安排纯化方法顺序时,还要考虑到有利于减少工序,提高效率。(盐析-吸附,吸附-盐析)
对于一未知物通过各种方法的交叉应用,有助于进一步了解目的物的性质。
3.分离后期的保护性措施
在分离操作的后期必须注意避免产品的损失,主要损失途径是器皿的吸附,操作过程样品液体的残留,空气氧化和某些事先无法了解的因素。
四、分离纯化方法步骤优劣的综合评价
每一个分离纯化步骤的好坏,除了从分辨能力和重现性两方面考虑,还要注意方法本身的回收率,特别是制备某些含量很少的物质时,回收率的高低十分重要。
对每一步骤方法的优劣,体现在所得产品重量与活性平衡关系上。例如酶的分离纯化,每一步骤产物重量与活性关系,通过测定酶的比活力及溶液中蛋白质浓度的比例。
五、制备物均一性的鉴定
均一性是指所获得的制备物只有一种完全相同的成分。(纯度鉴定)
生物分子纯度的鉴定方法很多,常用的有溶解度法、化学组成分析法,电泳法,免疫学方法,离心沉降分析法,各种色谱法,生物功能测定法,以及质谱法。
第五节 生物制药中试放大工艺设计
一、生物制药中试放大工艺特点
中试放大是由小试转入工业化生产的过渡性研究工作,对小试工艺能否成功地进入规模生产至关重要。这些研究工作都是围绕如何提高收率,改进操作,提高质量,形成批量生产等方面进行。中试放大,验证实验室工艺路线的可行性以及在实验室阶段难以解决或尚未发现的问题。
在考查工艺条件的研究阶段中,必须注意和解决:
(1)原辅材料规格的过渡试验
在小试时,一般采用的原辅材料(如原料,试剂,溶剂,纯化载体)规格较高,目的是为了排除原料中所含杂质的不良影响,从而保证实验结果的准确性。但是当工艺路线确定之后,在进一步考察工艺条件时,应尽量改用大规模生产时容易得到的原辅材料。过渡试验
2.设备选型与材质质量试验
在小试阶段,大部分实验是在小型玻璃仪器中进行,但在工业生产中,物料要接触到各种设备材料,如微生物发酵罐,细胞培养罐,固定化生物反应器,多种层析材料以及产品后处理的过滤浓缩、结晶、干燥设备等。
3.反应条件限度试验
反应条件限度试验可以找到最适宜的工艺条件(如培养基种类,反应温度,压力,pH等),一般均有一个许可范围。有些反应对工艺条件要求很严,超过一定限度后,就会造成重大损失。进行工艺条件限度试验,全面掌握反应规律。
4.原辅材料、中间体及产品质量分析方法研究
5.下游工艺的研究
尽量简化下游工艺操作,采用新工艺,新技术,新设备等。
二、中试放大方法与内容
中试放大的方法有经验放大法,相似放大法和数学模型放大法。经验放大法主要凭借经验通过逐级放大(实验装置,中间装置,中型装置和大型装置)来摸索反应器的特征。
中试放大程序可采用步步为营或一竿子到底策略。
中试放大的研究内容主要有:
(1)工艺路线与各步反应方法的最后确定
(2)设备材质与型号的选择
(3)反应器的规模选择及反应搅拌器型式与搅拌速度的考查。
(4)生产反应条件的研究
(5)工艺流程与操作方法的确定
(6)物料衡算
(7)安全生产与三废防治措施研究
(8)原辅材料,中间体的物理性质和化工常数的测定
(9)原辅材料、中间体质量标准的制定。
(10)消耗定额,原料成本,操作工时与生产周期计算。
生产工艺规程的制订
受精卵分动植极,胚胎发育四时期,
卵裂囊胚原肠胚,组织器官分化期。
外胚表皮附神感,内胚腺体呼消皮,
中胚循环真脊骨,内脏外膜排生肌。
植物有丝分裂
一
仁膜消失现两体,
赤道板上排整齐,
一分为二向两极,
两消两现建新壁.
(膜仁重现失两体)
二
膜仁消,两体现
点排中央赤道板
点裂体分去两极
两消两现新壁建
三
膜仁消失显两体,
形数清晰赤道齐,
点裂数增均两极,
两消三现重开始。
四
有丝分裂分五段,间前中后末相连,
间期首先作准备,染体复制在其间,
膜仁消失现两体,赤道板上排整齐,
均分牵引到两极,两消两现新壁建。
五
细胞周期分五段
间前中后末相连
间期首先做准备
两消两现貌巨变
着丝点聚赤道面
纺牵染体分两组
两现两消新壁现
六
前:两失两现一散乱
中:着丝点一平面,数目形态清晰见
后:着丝点一分二,数目加倍两移开
末:两现两失一重建.
微量元素
一
新 铁 臂 阿 童 木 , 猛!
Zn Fe B () Cu Mo Mn
二
铁 猛 碰 新 木 桶
Fe Mn B Zn Mo Cu
三
铁 门 碰 醒 铜 母[驴]
Fe Mn B Zn Cu Mo
大量元素
洋 人 探 亲,丹 留 人 盖 美 家
O P C H N S P Ca Mg K
People=人
组成蛋白质的微量元素
佟铁鑫猛点头
铜铁锌锰碘
八种必须氨基酸
甲硫氨酸 缬氨酸 赖氨酸 异亮氨酸 苯丙氨酸 亮氨酸 色氨酸 苏氨酸
一
甲携来一本亮色书.
二
假设来借一两本书
三
携一两本单色书来
四
协议两本,带情书来
缬异亮苯,蛋色苏赖
五
苏缬色,欲赖帐,家留把柄亮一亮
六
甲来借一本蓝色书
七
苯赖色亮,异苏甲缬
又笨,又赖,但颜色比较亮,容易酥裂,是双假鞋。
植物矿质元素中的微量元素
木 驴 碰 裂 新 铁 桶,猛!
Mo Cl B Ni Zn Fe Cu Mn
光合作用歌诀
光合作用两反应,光暗交替同进行,
光暗各分两步走,光为暗还供氢能,
色素吸光两用途,解水释氧暗供氢,
A D P 变 A T P,光变不稳化学能;
光完成行暗反应,后还原来先固定,
二氧化碳气孔入,C 5 结合C 3 生,
C 3 多步被还原,需酶需能还需氢,
还原产物有机物,能量贮存在其中,
C 5 离出再反应,循环往复永不停。
组织器官分化
内消呼肝胰,外表感神仙
减数分裂口诀
性原细胞作准备
初母细胞先联会
排板以后同源分
从此染色不成对
次母似与有丝同
排板接着点裂匆
姐妹道别分极去
再次质缢各西东
染色一复胞二裂
数目减半同源别
精质平分卵相异
往后把题迎刃解
食物的消化与吸收
淀粉消化始口腔,
唾液肠胰葡萄糖;
蛋白消化从胃始,
胃胰肠液变氨基;
脂肪消化在小肠,
胆汁乳化先帮忙,
颗粒混进胰和肠,
化成甘油脂肪酸;
口腔食道不吸收,
胃吸酒水是少量,
小肠吸收六营养,
水无维生进大肠。
原核生物的种类
蓝色细线支毛衣
蓝藻、细菌、放线菌、支原体、衣原体
12对脑神经
一嗅二视三动眼,四滑五叉六外展
七听八面九舌咽,迷走副神舌下全
色素层析(上到下)
胡也(叶),ab也。
伴X隐性遗传病
母患子必患,
子常父必常;
父常女必常,
女患父必患。
DNA的粗提取和鉴定
鸡血加水细胞裂,一次过滤取滤液,
促溶解用浓盐水,加水析出D N A,
再次过滤弃滤液,D 从粘稠物中得,
再溶再用浓盐水,三次过滤除蛋白,
滤液加入冷酒精,纯后二苯胺鉴别.
=========减数分裂口诀=========
性原细胞作准备
初母细胞先联会
排板以后同源分
从此染色不成对
次母似与有丝同
排板接着点裂匆
姐妹道别分极去
再次质缢各西东
染色一复胞二裂
数目减半同源别
精质平分卵相异
往后把题迎刃解
遗传图谱的判断再加一句:
无中生有为隐性,隐性伴性看女病,父女都病是伴性;
有中生无为显性,显性伴性看男病,母女都病是伴性.
DNA结构特点口诀:
双链螺旋结构
极性反向平行
碱基互补配对
排列顺序无穷
2006高考综合科生物知识点归纳
生命的物质基础
一、 组成生物体的化学元素:
1、大量元素C、H、O、N、P、S、K、Ca、Mg
微量元素Fe、Mn、Zn、Cu、B、Mo、Cl
2、化学元素的重要作用:组成化合物,如蛋白质、核酸等;影响生物体的生命活动,如缺少B时,花药花丝萎缩,花粉发育不良。
3、生物界与非生物界的统一性和差异性
二、组成生物体的化合物
1、 水:自由水和结合水的功能
2、 无机盐:以离子形式存在;是细胞内某些重要化合物的重要组成部分,如Mg组成叶绿素,Fe组成血红蛋白,碳酸钙组成骨和牙齿的成分;维持生物体的生命活动,如Ca。
3、 糖类、蛋白质、脂质、核酸:组成元素及该化合物的功能。
4、 氨基酸的结构通式及蛋白质分子量的计算。
生命活动的基本单位——细胞
一、 细胞的结构和功能
1、 细胞膜的分子结构:由双层磷脂分子和蛋白质分子构成,结构特点是流动性。
2、 细胞膜的主要功能:自由扩散和主动运输的区别,例子;生理特性是选择透过性。
3、 细胞质基质:活细胞进行新陈代谢的主要场所。
4、 细胞器:各种细胞器的结构和功能。
5、 细胞核的结构和功能:核膜由双层膜构成;核仁在细胞有丝分裂过程中,周期性地消失和重建;染色质的定义和组成成分,染色质与染色体的区别与联系;细胞核的功能。
6、 原核细胞的基本结构:没有由核膜包围的细胞核,主要类型有细菌、蓝藻、支原体、放线菌、衣原体等;原核细胞只有核糖体一种细胞器;细胞壁成分是糖类和蛋白质。
二、细胞增殖
1、 细胞周期定义:必须是连续分裂的细胞才有细胞周期;分裂间期占的时间长。
2、 分裂间期;进行了DNA的复制和有关蛋白质的合成。
3、 分裂期:分四个阶段,要知道每一个阶段的细胞变化特点和DNA、染色体、染色单体的数量变化规律。动植物有丝分裂的不同。
4、 无丝分裂:定义。蛙的红细胞。
三、细胞的分化、衰老和癌变:这三个的特点
生物的新陈代谢
一、酶
1、 酶的发现:三位科学家的发现
2、 酶的特性:高效性、专一性
二、ATP
1、 高能磷酸化合物:水解时释放的能量在20.92kj/mol以上的磷酸化合物。
2、 ATP与ADP的相互转化:
3、 ATP的形成途径:对于动物和人来说能量来自呼吸作用,植物来自呼吸作用和光合作用。
三、植物对水分的吸收和利用
1、 渗透作用的原理:有半透膜和膜的两侧有浓度差
2、 植物细胞的吸水和失水:
细胞液浓度>外界溶液浓度,细胞吸水, 可能发生质壁分离复原
细胞液浓度<外界溶液浓度,细胞失水,质壁分离
3、 水分的运输、利用和散失:大部分水分以蒸腾作用散失
4、 合理灌溉。
四、植物的矿质营养
1、 植物必需的矿质元素:除C、H、O以外其他的大量元素和微量元素。
2、 根对矿质元素的吸收:主动运输的过程,抑制呼吸作用就能抑制矿质元素的吸收。
3、 矿质元素的运输和利用:随着水分运输,受蒸腾作用影响;利用可以分为三种类型。
4、 合理施肥
五、光合作用
1、 光合作用的发现:科学家的四个实验
2、 叶绿体中的色素:分类和各自的颜色
3、 光合作用的过程:①光反应和暗反应发生的场所②光反应和暗反应为对方提供了什么③光合作用的反应式④光反应和暗反应的产物。
4、 光合作用的重要意义
六、人和动物体内糖、脂质和蛋白质的代谢
1、 三大营养物质代谢的过程
2、 三大营养物质代谢的关系
3、 三大营养物质代谢与人体健康的关系
七、细胞呼吸
1、 有氧呼吸和无氧呼吸的反应式,两者的不同点,反应的不同场所
2、 呼吸作用的意义
八、新陈代谢的基本类型
1、 新陈代谢的概念:
2、 新陈代谢的基本类型:同化作用(1)自养型:绿色植物、硝化细菌、光合细菌;(2)异养型:人和动物、营腐生或寄生生活的真菌、大多数的细菌。
异化作用:(1)需氧型:绝大多数动植物;(2)厌氧型:破伤风杆菌、寄生虫、乳酸菌等。
生命活动的调节
一、 植物的激素调节
1、 植物的向性运动:是植物体对外界环境的适应性
2、 生长素的发现和生理作用:(1)三位科学家的实验;(2)植物向光性的原理、生长素的双重性、顶端优势。
3、 生长素在农业生产中的应用:无子果实的栽培
4、 其他植物激素
二、 人与高等动物生命活动的调节
1、 体液调节的概念:
2、 动物激素的种类、产生部位及生理作用(生长激素、促甲状腺激素、促性腺激素、甲状腺激素、胰岛素、雄激素、雌激素和孕激素)
3、 激素分泌的调节:课本P86的调节示意图
4、 相关激素间的协同作用和拮抗作用:(1)协同作用:生长激素和甲状腺激素对生长发育的作用;(2)拮抗作用:胰岛素与胰高血糖素对血糖含量的调节。
5、 二氧化碳的调节作用:可以调节呼吸,属于体液调节的一种。
6、 神经调节的基本方式:反射(反射的结构基础是反射弧,反射弧的五个组成部分)
7、 兴奋的传导:神经纤维上的传导和细胞间的传递,兴奋传导是单方向的
8、 高级神经中枢的调节:人和高等动物神经中枢是大脑皮层;第一运动区的作用;言语区的S区与H区的功能。
9、 神经调节与体液调节的区别与联系
10、 激素调节与行为
11、 神经调节与行为
生物的生殖与发育
一、 生物的生殖
1、 无性生殖及其意义:(1)无性生殖的类型;(2)无性生殖的意义:新个体所含的遗传达物质与母体相同,因而新个体基本上能够保持母体的一切性状。
2、 有性生殖及其意义:(1)双受精现象;(2)有性生殖的意义:有基因重组的过程,具备了双亲的遗传特性,有更强的生活能力和变异性。
3、 减数分裂的概念:
4、 精子和卵细胞的形成过程:减数分裂过程中细胞形态的变化;染色体、DNA和染色单体的数量变化;动物细胞和植物细胞减数分裂的不同。
5、 受精作用
二、生物的个体发育
1、 种子的形成和萌发、植株的生长和发育:(1)胚由受精卵发育而来,胚的结构;(2)胚乳由受精极核发育而来,有胚乳的种子和无胚乳的种子。(3)植株的营养器官
2、 高等动物的胚胎发育和胚后发育:(1)胚胎发育的卵裂、囊胚、原肠胚时期的特点;(2)羊水和羊膜;(3)变态发育:两栖类、昆虫类等。
遗传、变异和进化
一、 遗传的物质和基础
1、 DNA是主要的遗传物质:肺炎双球菌的转化实验和噬菌体侵染细菌的实验
2、 DNA的分子结构和复制:碱基的种类、DNA结构的特点、复制的过程及复制所需的条件以及相关的计算。
3、 基因的概念:有遗传效应的DNA片段。
4、 基因控制蛋白质的合成:转录和翻译的过程;密码子的决定。
5、 基因对性状的控制:(1)控制酶的合成控制代谢过程;(2)控制蛋白质分子的结构
二、 基因的分离定律
1、 孟德尔的豌豆杂交试验:(1)孟德尔选用豌豆的原因;(2)定义:相对性状
2、 一对相对性状的遗传试验:(1)试验的结果;(2)定义:父本、母本、正交、反交、隐性性状、显性性状、性状分离。
3、 对分离现象的解释:(1)解释的内容;(2)显性基因、隐性基因;(3)纯合子、杂合子的定义;纯合子能稳定遗传,杂合子不能稳定遗传。
4、 对分离现象解释的验证:测交的定义及结果
5、 基因分离定律的实质:(1)等位基因的定义;(2)基因分离定律的实质
6、 基因型和表现型:定义及两者间的关系
7、 基因分离定律在实践中的应用:相关的计算
三、 基因的自由组合定律
1、 对自由组合现实的解释:(1)9种基因型4种表现型;纯合子和杂合子的比例。
2、 对自由组合现象解释的验证:测交的结果
3、 基因自由组合定律的实质:
4、 基因自由组合定律在实践中的应用:相关的计算
5、 孟德尔获得成功的原因:
四、 性别决定与伴性遗传
1、 性别决定(XY型):
2、 伴性遗传:红绿色盲、血友病、果蝇眼色等的遗传特点
五、 生物的变异
1、 基因突变:定义和特点,基因突变是生物变异的根本来源
2、 染色体结构的变异:四种结构变异
3、 染色体数目的变异:染色体组、二倍体和多倍体的概念、人工诱导多倍体的方法、单倍体的概念。
六、 人类遗传病与优生
1、 人类遗传病的概念和类型;
2、 遗传病对人类的危害
3、 优生的概念
4、 优生的措施
七、 进化
1、 自然选择学说的主要内容
2、 现代生物进化理论简介:
生物与环境
一、 生态因素:
1、 非生物因素:光、温度、水的影响(例子)
2、 生物因素:种内关系和种间关系
3、 生物因素的综合作用:
二、 种群和生物群落
1、 种群的特征:
2、 种群数量的变化:J型曲线和S型曲线
3、 研究种群数量变化的意义:
4、 生物群落的概念
三、 生态系统
1、 生态系统的概念:
2、 生态系统的类型:
3、 生态系统的结构(生态系统的成分、食物链和食物网)
4、 生态系统的能量流动:流动的过程和特点
5、 生态系统的物质循环
6、 生态系统的稳定性
四、 人与生物圈
1、 生物圈的概念
2、 生物圈稳态的自我维持
3、 酸雨等全球性环境问题
4、 生物多样性的概念
5、 生物多样性的价值
6、 中国生物多样性的特点
7、 生物多样性的保护
物体把外界的某些物质吸到内部,正常人体所需要的营养物质和水都是经过消化道吸收进入人体的2、接纳;接受3、机体从环境中摄取营养物质到体内的过程4、物质从一种介质相进入另一种介质相的现象。在物理学上是光子的能量由另一个物体,通常是原子的电子,拥有的过程,因此电磁能会转换成为其它的形式,例如热能。波传导的过程中,光线的吸收通常称为衰减。例如,一个原子的价电子在两个不同能阶之间转换,在这个过程中光子将被摧毁,被吸收的能量会以辐射能或热能的形式再释放出来。虽然在某些情况下 (通常是光学中),介质会因为穿过的波强度和饱和吸收(或非线性吸收)发生时会改变它透明度,但通常情况下,波的吸收与强度无关 (线性吸收)。
代谢是生物体内所发生的用于维持生命的一系列有序的化学反应的总称。这些反应进程使得生物体能够生长和繁殖、保持它们的结构以及对外界环境做出反应。代谢通常被分为两类:分解代谢可以对大的分子进行分解以获得能量(如细胞呼吸);合成代谢则可以利用能量来合成细胞中的各个组分,如蛋白质和核酸等。代谢可以被认为是生物体不断进行物质和能量交换的过程,一旦物质和能量的交换停止,生物体的结构和系统就会解体。代谢又称细胞代谢。
吸收是指各种营养物质进入什么的过程()A.血液B.小肠C.消化道D.以上都
在消化道内将食物分解成可以吸收的营养物质的过程叫做消化,营养物质通过消化道壁进入循环系统的过程叫做吸收.故选:A
食物在人体内消化和吸收主要经历哪些过程
(一)口腔内的消化 口腔对食物的消化作用是接受食物并进行咀嚼,将食物研磨、撕碎、并掺和唾液.唾液对食物起著润滑作用,同时唾液中的淀粉酶开始降解淀粉,使其分解成为麦芽糖.但在唾液中不含消化蛋白质和脂肪的酶,所以脂肪和蛋白质等不能在口腔中被消化.
(二)食道 亦称食管,是一个又长又直的肌肉管,食物借助于地心引力和食道肌肉的收缩从咽部输送到胃中.食道长约25cm,有三个狭窄处,食物通过食道约需7s.
(三)胃内的消化 胃是膨胀能力最强的消化器官,有三个部分:向左鼓出的L形部分叫胃底;中间部分叫胃体;位于小肠入口之前的收缩部分叫幽门,食道入口叫贲门.胃每天分泌约1.5~2.5L胃液,胃液中主要含有三种成分,即胃蛋白酶原、盐酸(胃酸)和粘液.其中,胃底区的细胞分泌盐酸,胃中的胃液素细胞分泌胃蛋白酶原,当胃蛋白酶原处于酸性环境时(pH1.6~3.2),胃蛋白酶被激活,可以水解一部分蛋白质.另外,胃还分泌凝乳酶,这种酶能凝结乳中蛋白,对于婴儿营养很重要.成人若长期不食用乳及其制品时,胃液分泌物中会缺少凝乳酶. 食物通过胃的速度主要取决于饮食的营养成分.碳水化合物通过胃的速度要比蛋白质和脂肪快些,而脂肪速度最慢.水可以直接通过胃到达小肠,在胃中几乎不停留.各种食物通过胃的速度不同,使食物具有不同的饱腹感.正常成人食物通过胃的速度为4~5h.
(四)肠内的消化 小肠与胃的幽门末端相连,长约5.5m,分为十二指肠、空肠和回肠三部分,是食物消化和吸收的主要场所.在正常人中,90%~95%的营养素吸收在小肠的上半部完成. 肠黏膜具有环状皱褶,并拥有大量绒毛,表面上的细胞又具有大量微绒毛,这样便构成了巨大的吸收面积(200~400m2),使食物停留时间较长.这些微绒毛形成了粗糙的界面,上面含有高浓度的消化酶.小肠的不断运动可以使食物和分泌物混合在一起,以便小肠绒毛吸收营养.
(五)胰脏 胰脏是一个大的小叶状腺体,位于小肠的十二指肠处.胰脏分泌的消化液呈碱性,通过胰脏管直接进入小肠.胰液富含碳酸氢盐,能够中和胃中产生的高酸性食糜.胰脏分泌的酶的成分有蛋白水解酶、脂肪酶、淀粉水解酶、核酸水解酶,以及一些化学缓冲剂,胰淀粉水解酶能够将淀粉分解成为麦芽糖,在麦芽糖酶的作用下进一步分解成为葡萄糖;胰蛋白酶、胰凝乳蛋白酶和羧肽酶,可将蛋白质消化为胨、肽和氨基酸;胰脂肪酶将脂肪消化分解为脂肪酸和甘油.
(六)肝与胆 肝脏包括肝、胆囊和胆管.肝的主要消化功能之一是分泌胆汁,然后储存在胆囊中,胆汁能溶解和吸收膳食脂肪,并帮助排泄一些废物,如胆固醇和血红蛋白降解产物.肝脏消化吸收的作用还表现在储藏和释放葡萄糖,储存维生素A、维生素D、维生素E、维生素K和维生素B1等,以及对已被消化吸收的营养素进行化学转化. 除此之外,肝脏还有许多生理功能,包括有害化合物的解毒作用、产能营养素的代谢、血浆蛋白的形成、尿素的形成、多肽激素的钝化等.
(七)结肠与直肠 大肠长约1.5m,分盲肠、结肠、直肠三部分.食物从胃到小肠末端的移动需30~90min,而通过大肠则需1~7天. 在大肠中含有以大肠杆菌为主的大量细菌.这些细菌影响粪便的颜色和气味.在消化过程中没有起反应的食物可以通过细菌进行改变和消化.这样某些复杂的多糖和少量简单的碳水化合物,如木苏糖(四碳糖)或棉籽糖(三碳糖)被转化为氢、二氧化碳和短链脂肪酸.没能消化的蛋白质残渣被细菌转化为有气味化合物.此外,大肠内细菌还可以合成维生素K、生物素和叶酸等营养素.
三、营养素的吸收 食物经过消化,将大分子物质变成低分子物质,其中多糖分解成单糖,蛋白......
食物在人体内消化和吸收主要经历哪些过程
一、口腔
食物在口腔经过咀嚼被磨碎,对食物进行机械消化,食物在口腔中被唾液酶把淀粉初步分解成麦芽糖(白馒头越嚼越甜就是这个道理),并把食物弄碎并与唾液混合形成食团,便于吞咽。口腔消化时间很短,一般为15~20秒。
二、食道
食道是口腔和贲门的中间通道,食物通过食管的蠕动进入胃内。
三、胃(1-4小时)
胃的的运动由胃壁平滑肌舒缩来实现,胃具有内分泌功能和容纳食物,分泌胃液,初步消化食物的功能。胃通过运动对食物进行机械性消化。胃的运动使胃液与食物充分混合并进一步把块状食物磨碎,有利于化学消化。胃蛋白酶分解蛋白质产生胨以及少量的多肽和氨基酸,完成对食物的化学性消化。因此胃对食物进行初步消化的作用。并通过胃的排空,使食物从胃进入十二指肠。
1、贲门
贲门是胃与食管相连的部分,食管中的食物通过贲门进入胃内,贲门处有有一“括约肌”,吞咽使松弛,让食物顺利通过,平常呈紧张性收缩能防止进入胃的食物和胃酸等反流入食管。
2、幽门
幽门是胃和十二指肠的连接口,食物从这个口进十二指肠。幽门是消化道最狭窄的部位,正常的直径约1.5cm,因此容易发生梗阻。由于幽门通过障碍,胃内容物不能顺利入肠,而在胃内大量潴留,导致胃壁肌层肥厚,胃腔扩大及胃黏膜层的炎症,水肿及糜烂。临床常有上腹部胀痛、胀满、嗳气和返酸,尤其在饭后更明显;吐出物通常为数小时以前所进的饮食,不含胆汁,有腐败酸味。逐渐呕吐频繁,病人因惧腹胀,故晚间不敢进食,但每晚仍将白天所进饮食全都吐出,然后才觉舒适。胃逐渐扩张,上腹部饱满并诉有移动性包块,病人自己和家属都能看出,由于呕吐次数增加,脱水日见严重,体重下降。病人觉头痛、乏力、口渴,但又畏食,重者可出现虚脱。再加上吃进的一点也多吐了出来,常很快就出现消瘦、脱水、尿少、便秘,尿量日渐减少。最后可发生昏迷。体征:病人消瘦,倦怠,皮肤干燥、丧失弹性,而且可出现维生素缺乏征象,口唇乾,舌干有苔,眼球内陷。上腹膨胀显著,能看见胃型和自左向右移动之胃蠕动波。叩诊上腹鼓音,振水音明显。能听到气过水声,但很稀少。
四、小肠(3~8小时)
小肠在对胃初步消化的饮食物进行进一步消化的同时,随之进行的分清别浊的功能。食物在小肠内停留的时间较长,肠是消化管中最长的部份,小肠是主要的吸收器官,小肠绒毛是吸收营养物质的主要部位。小肠壁有肠腺,分泌肠液进入小肠腔内。胰腺分泌的胰液,肝脏分泌的胆汁,也通过导管进入肠腔内。这些消化液使食糜变成乳状,再经消化液中各种酶的作用,使食物中的淀粉最终分解为葡萄糖,蛋白质最终分解为氨基酸,脂肪最终分解为甘油和脂肪酸。小肠内的营养物质和水通过肠粘膜上皮细胞即毛细血管吸收,最后进入血液,食物残渣、部分水分和无机盐等借助小肠的蠕动被推入大肠。
1、十二指肠:
十二指肠介于幽门与空肠之间,是小肠中长度最短、管径最大、位置最深且最为固定的小肠段.全长25厘米。是溃疡的好发部位。肝脏分泌的胆汗和胰腺分泌的胰液,通过胆总管和胰腺管在十二指肠上的开口,排泄到十二指肠内以消化食物,消化功能十分重要。
2、、空肠再加上吃进的一点也多吐了出来,常很快就出现消瘦、脱水、尿少、便秘等,
空肠和回肠之间是没有明显界线的。人的空肠位于腹腔的左上侧,空肠稍粗,由于有很多血管分布而微带红色。空肠始于十二指肠空肠曲,占空回肠全长的2/5,占据腹腔的左上部;因为空肠的消化和吸收力强,蠕动快,肠内常呈排空状态,所以叫空肠。
3、回肠:回肠占空回肠全长远侧3/5,在右髂窝续盲肠。回肠位于腹腔右下部,部分位于盆腔内。其特点是色淡红,管壁薄管径小,粘膜面环形皱襞稀疏,
主......
人体吸收食物中的营养的顺序是什么在吃下
消化系统由消化道和消化腺两部分组成。
消化道是一条起自口腔延续为咽、食管、胃、小肠、大肠、终于 *** 的很长的肌性管道,包括口腔、咽、食管、胃、小肠(十二指肠、空肠、回肠)和大肠(盲肠、结肠、直肠)等部。
消化腺有小消化腺和大消化腺两种。小消化腺散在于消化管各部的管壁内,大消化腺有三对唾液腺(腮腺、下颌下腺、舌下腺)、肝和胰,它们均借导管,将分泌物排入消化管内。
消化系统的基本功能是食物的消化和吸收,供机体所需的物质和能量,食物中的营养物质除维生素、水和无机盐可以被直接吸收利用外,蛋白质、脂肪和糖类等物质均不能被机体直接吸收利用,需在消化管内被分解为结构简单的小分子物质,才能被吸收利用。食物在消化管内被分解成结构简单、可被吸收的小分子物质的过程就称为消化。这种小分子物质透过消化管粘膜上皮细胞进入血液和淋巴液的过程就是吸收。对于未被吸收的残渣部分,消化道则通过大肠以粪便形式排出体外。
在消化过程中包括机械性消化和化学性消化两种形式。
食物经过口腔的咀嚼,牙齿的磨碎,舌的搅拌、吞咽,胃肠肌肉的活动,将大块的食物变成碎小的,使消化液充分与食物混合,并推动食团或食糜下移,从口腔推移到 *** ,这种消化过程叫机械性消化,或物理性消化。
化学性消化是指消化腺分泌的消化液对食物进行化学分解而言。由消化腺所分泌的种消化液,将复杂的各种营养物质分解为肠壁可以吸收的简单的化合物,如糖类分解为单糖,蛋白质分解为氨基酸,脂类分解为甘油及脂肪酸。然后这些分解后的营养物质被小肠(主要是空肠)吸收进入体内,进入血液和淋巴液。这种消化过程叫化学性消化。
机械性消化和化学性消化两功能同时进行,共同完成消化过程。
你觉得还不够的话,可以看一下“消化系统”的词条解释。
一个完整的吸附过程包括哪几个步骤
萃取利用系统组溶剂同溶解度离混合物单元操作利用相似相溶原理萃取两种式:液-液萃取用选定溶剂离液体混合物某种组溶剂必须与萃取混合物液体相溶具选择性溶解能力且必须热稳定性化稳定性并毒性腐蚀性用苯离煤焦油酚;用机溶剂离石油馏烯烃;用CCl4萃取水Br2.固-液萃取叫浸取用溶剂离固体混合物组用水浸取甜菜糖类;用酒精浸取黄豆豆油提高油产量;用水药浸取效制取流浸膏叫渗沥或浸沥虽萃取经用化试验操作程并造萃取物质化改变(或说化反应)所萃取操作物理程萃取机化实验室用提纯纯化化合物手段通萃取能固体或液体混合物提取所需要化合物介绍用液-液萃取利用化合物两种互相溶(或微溶)溶剂溶解度或配系数同使化合物种溶剂内转移另外种溶剂经反复萃取绝部化合物提取配定律萃取理论主要依据物质同溶剂著同溶解度同两种互相溶溶剂加入某种溶性物质能别溶解于两种溶剂实验证明定温度该化合物与两种溶剂发解、电解、缔合溶剂化等作用化合物两液层比定值论所加物质量少都属于物理变化用公式表示CA/CB=KCA.CB别表示种化合物两种互相溶溶剂量浓度K数称配系数机化合物机溶剂般比水溶解度用机溶剂提取溶解于水化合物萃取典型实例萃取若水溶液加入定量电解质(氯化钠)利用盐析效应降低机物萃取溶剂水溶液溶解度提高萃取效要所需要化合物溶液完全萃取通萃取够必须重复萃取数利用配定律关系算经萃取化合物剩余量设:V原溶液体积w0萃取前化合物总量w1萃取化合物剩余量w2萃取二化合物剩余量w3萃取n化合物剩余量S萃取溶液体积经萃取原溶液该化合物浓度w1/V;萃取溶剂该化合物浓度(w0-w1)/S;两者比等于K即:w1/V=Kw1=w0KV(w0-w1)/SKV+S同理经二萃取则w2/V=K即(w1-w2)/Sw2=w1KV=w0KVKV+SKV+S经n提取:wn=w0(KV)KV+S用定量溶剂希望水剩余量越少越式KV/(KV+S)总于1所n越wn越说溶剂数作萃取比用全部量溶剂作萃取应该注意面公式适用于几乎水相溶溶剂例苯四氯化碳等与水少量互溶溶剂乙醚等面公式近似定性指预期结萃取几种:、双水相萃取双水相萃取技术((Two-aqueousphaseextraction,简称ATPS)指亲水性聚合物水溶液定条件形双水相,由于离物两相配同,便实现离"广泛用于物化细胞物物化工等领域产品离提取"双水相萃取技术设备投资少,操作简单"该类双水相体系聚乙二醇-葡萄糖聚乙二醇-机盐两种"由于水溶性高聚物难挥发,使反萃取必少,且盐进入反萃取剂,随析测定带影响"另外水溶性高聚物黏度较,易定量操作,给续研究带麻烦"事实,普通能与水互溶机溶剂机盐存双水相体系,并已用于血清铜血浆铬形态析"基于与水互溶机溶剂盐水相双水相萃取体系具价廉!低毒!较易挥发需反萃取避免使用黏稠水溶性高聚物等特点二、机溶剂萃取水洗液用水机相溶于水杂质离达纯化机相目机溶剂萃取说萃取即用机溶剂水相、固相(或其溶于该溶剂相)溶于该溶剂组离理论部见Afeastforeye内容般萃取实验萃取机相(含所需化合物)要用水或饱食盐水洗进步纯化机相两种都需要液漏斗操作程基本相同需确定哪层(相)需要保留三、超临界萃取超临界萃取所用萃取剂超临界流体超临界流体介于气液间种既非气态非液态物态种物质能其温度压力超临界点才能存超临界流体密度较与液体相仿粘度较接近于气体超临界流体种十理......
0引言
常规剂型的药物经静脉、口服或局部注射后,药物分布于全身,真正到达治疗靶区的药物量仅为给药量的小部分,而大部分药物在非靶区的分布不仅无治疗作用,还会带来毒副作用. 因此,药物新剂型的开发已成为现代药剂学发展的一个方向,其中靶向给药系统(Targeted drug delivery system, TDDS)的研究已经成为药剂学研究热点〔1〕. TDDS指一类能使药物浓集定位于病变组织、器官、细胞或细胞内的新型给药系统. 靶向制剂具有疗效高、药物用量少. 毒副作用小等优点. 理想的TDDS应在靶器官或作用部位释药,同时全身摄取很少,这样,既可提高疗效,又可降低药物的毒副作用. TDDS要求药物能到达靶器官、靶细胞,甚至细胞内的结构,并要求有一定浓度的药物停留相当长的时间,以便发挥药效. 成功的TDDS应具备3个要素:定位蓄积、控制释药、无毒可生物降解. 靶向制剂包括被动靶向制剂、主动靶向制剂和物理化学靶向制剂3大类. 目前,实现靶向给药的主要方法有载体介导、受体介导、前药、化学传递系统等. 现就靶向给药方法研究进展作一介绍.
1载体介导的靶向给药
常用的靶向给药载体是各种微粒. 微粒给药系统具有被动靶向的性能. 有机药物经微粒化可提高其生物利用度及制剂的均匀性、分散性和吸收性,改变其体内分布. 微粒给药系统包括脂质体(LS),纳米粒(NP)或纳米囊(NC),微球(MS)或微囊(MC),细胞和乳剂等. 微粒靶向于各器官的机制在于网状内皮系统(RES)具有丰富的吞噬细胞,可将一定大小的微粒(0.1~3.0 μm)作为异物摄取于肝、脾;较大的微粒(7~30 μm)不能滤过毛细血管床,被机械截留于肺部;而小于50 nm的微粒可通过毛细血管末梢进入骨髓.
肝癌、肝炎等肝脏疾病是常见病和多发病,但目前药物治疗效果很不理想,其原因除药物本身药理作用尚不够理想外,不能将药物有效地输送至肝脏的病变部位也是一重要原因. 将一些抗肿瘤、抗肝炎药物制备成微粒,给药后可增加药物的肝靶向性. 米托蒽醌白蛋白微球(DHAQ BSA MS)的体内分布研究发现,给药20 min时,DHAQ BSA MS和米托蒽醌(DHAQ)在小鼠体内分布有显著差异,DHAQ BSA MS约有80%的药物集中在肝脏,而85.9%以上的DHAQ存在于血液中〔2〕. 张莉等〔3〕考察去甲斑蝥素(NCTD)微乳的形态、粒径分布及生物安全性,研究NCTD微乳及其注射液在小鼠体内的组织分布,结果表明,NCTD微乳较NCTD注射液增强了药物的肝靶向性,降低了肾脏分布,在一定程度上延长药物在小鼠体内的循环时间. 纳米粒和纳米囊肝靶向制剂的研究报道较多,如氟尿嘧啶、阿霉素、羟基喜树碱、狼毒乙素、环孢素等抗癌药物都被制成了纳米靶向制剂〔4〕. 王剑红等〔5〕采用二步法制备米托蒽醌明胶微球,粒径在5.1~25.0 μm范围的占总数87.36%,体外释药与原药相比延长了4倍. 经小鼠体内分布试验表明具有明显的肺靶向性,靶向效率增加了3~35倍,肺中药代动力学行为可用一室开放模型描述,平均滞留时间延长10 h. 在纳米粒表面上包封亲水性表面活性剂,或通过化学方法连接上聚乙二醇或其衍生物,可以减少与网状内皮细胞膜的亲和性,从而避免网状内皮细胞的吞噬,提高毫微粒对脑组织的靶向性. Gulyaev等〔6〕以生物降解材料聚氰基丙烯酸丁酯为载体,以吐温80为包封材料制备了阿霉素毫微粒,研究结果表明脑中阿霉素浓度是对照组的60倍. 一些易于分解的多肽或不能通过血脑屏障的药物(如达拉根、洛哌丁胺、筒箭毒碱)通过制成包有吐温80的生物降解毫微粒在动物身上已取得一定的靶向治疗效果〔7〕. 研究表明粒径是影响微粒进入骨髓的关键因素,粒径越小越容易进入骨髓. 彭应旭等〔8〕制得不同粒径的柔红霉素聚氰基丙烯酸正丁酯毫微粒,小鼠尾静脉给药,小粒径组(70±24) nm骨髓内柔红霉素浓度是大粒径组(425±75) nm的1.58倍. 骨髓会因肿瘤浸润、化疗药物或严重感染受到抑制. 研究表明,多种生长因子,如人粒细胞集落刺激因子(GCSF),粒细胞巨噬细胞集落刺激因子(GMCSF)可促使骨髓细胞自我更新、分裂增殖,并提高其活性. 利用骨髓靶向载体可提高药物在骨髓内分布,并避免血象中的不良反应. Gibaud等〔9〕以聚氰基丙烯酸异丁酯、异己酯毫微粒为载体携带GCSF,提高了其在骨髓内的分布.
基因治疗是一种专一性的靶向治疗. 基因治疗就是利用基因转移技术将外源重组基因或核酸导入人体靶细胞内,以纠正基因缺陷或其表达异常. 纳米颗粒作为基因载体具有一些显著的优点. 纳米颗粒能包裹、浓缩、保护核苷酸,使其免遭核酸酶的降解;比表面积大,具有生物亲和性,易于在其表面耦联特异性的靶向分子,实现基因治疗的特异性;在循环系统中的循环时间较普通颗粒明显延长,在一定时间内不会像普通颗粒那样迅速地被吞噬细胞清除;让核苷酸缓慢释放,有效地延长作用时间,并维持有效的产物浓度,提高转染效率和转染产物的生物利用度;代谢产物少,副作用小,无免疫排斥反应等.
2受体介导的靶向给药
利用细胞表面的受体设计靶向给药系统是最常见的主动靶向给药系统. 去唾液酸糖蛋白受体(ASGPR)是一种跨膜糖蛋白,它存在于哺乳动物的肝实质细胞上. 其主要功能是去除唾液酸糖蛋白和凋亡细胞、清除脂蛋白. 研究发现,ASGPR能特异性地识别N乙酰氨基半乳糖、半乳糖和乳糖,利用这些特性可以将一些外源的功能性物质经过半乳糖等修饰后,定向地转入到肝细胞中发挥作用. Lee等合成了三分枝N乙酰氨基半乳糖糖簇YEE,它与肝细胞的结合能力为乙酰氨基半乳糖单糖的1万倍. 我们考察了半乳糖苷修饰的十六酸拉米夫定酯固体脂质纳米粒(LAPGSLN)的肝靶向性,其靶向效率为4.66,比未修饰纳米粒的靶向效率高3.7倍〔10〕. 药物通过与大分子载体连接,再对载体进行半乳糖化,可以产生较好的肝靶向效果. 若能使药物直接半乳糖化,则可以简化耦联环节,提高靶向效率. 这一思路对蛋白类药物而言,较易实现. 蛋白质或多肽(分子质量在一定范围)在连接上半乳糖后,都有可能成为受体结合的肝靶向性物质. 小分子物质经类似途径能否靶向于肝,取决于糖和药物密度、分子质量、摄取屏障等多方面因素. 小分子药物共价连接乳糖或半乳糖,初步揭示其靶向性并不好,有关机制和可行性尚待进一步探讨.
半乳糖基化壳聚糖(GC)与质粒pEGFPN1混和制备成纳米微囊复合物,体外转染SMMC7721细胞. 将含1 mg质粒的纳米微囊经肝动脉和门静脉注射入犬体内,实验结果表明半乳糖基化壳聚糖在体外有较高的转染率,在犬体内有肝靶向性,可用作肝靶向基因治疗的载体〔11〕. 大多数肿瘤细胞表面的叶酸受体数目和活性明显高于正常细胞. 以叶酸作为导向淋巴系统或肿瘤细胞的放射性核素的载体,同时将叶酸作为靶向肿瘤细胞的抗肿瘤药物的载体已做了广泛的研究〔12〕.
表皮生长因子受体(EGFR)是一种跨膜糖蛋白,由原癌基因cerbB1所编码,是erbB受体家族之一,在多种肿瘤中观察到EGFR高水平的表达,如神经胶质细胞瘤、前列腺癌、乳腺癌、胃癌、结直肠癌、卵巢癌和胸腺上皮癌等. 针对富集EGFR的恶性肿瘤,方华圣等〔13〕成功地建立了EGFR富集的恶性肿瘤的靶向基因治疗方法.
3抗体介导的靶向给药
mAb是药物良好的靶向性载体, 将其通过共价交联或吸附到药物载体(如脂质体、毫微粒、微球、磁性载体等)或药物具有自身抗体(如红细胞)或抗体与细胞毒分子形成结合物,避免其对正常组织毒性,选择性发挥抗肿瘤作用. 徐凤华等〔14〕利用己二酰肼制备腙键连接的聚谷氨酸表阿霉素,然后使其与单抗交联制得偶合物. 偶合物较好地保留了抗体活性,体外细胞毒性较游离药物略有下降,但表现出单抗介导的靶细胞选择性杀伤作用,为其进一步制备细胞靶向的肿瘤化疗药物奠定了基础.
用于治疗白血病的CMA676是由一种人源化的mAb hp 67.6与新型的抗肿瘤抗生素calicheamicin的N乙酰γ衍生物偶联而成的〔15〕,当CMA676与CD33抗原相结合,抗原抗体复合物迅速内在化,进入胞内后,calicheamicin衍生物被水解释放,通过序列特异性方式与DNA双螺旋的小沟结合,使脱氧核糖环中的氢原子发生转移,从而使DNA双链断裂,诱导细胞死亡〔16〕. EGFR mAb可直接作用于EGFR的细胞外配体结合区,阻滞配体的结合,如IMCC225, ABXEGFR和EMD55900等,能抑制细胞生长和存活率,诱导细胞凋亡和抑制血管生成,曲妥珠单抗(Trasruzumab)作用于erbB2的细胞外区域,该药已获美国FDA批准用于转移性的乳腺癌的治疗〔17〕. IMCC225具有增强细胞毒性药物和放射治疗效应的作用,IMCC225与拓扑特肯(TPT)的联合用于荷有人类结肠癌移植体的裸鼠,能提高其生存率〔18〕. 由第四军医大学和成都华神集团股份有限公司联合研制的治疗肝癌新药碘〔13lI〕美妥昔单抗注射液,日前获得国家食品药品监督管理局颁发的生产文号,即将上市. 这是全球第一个专门用于治疗原发性肝癌的单抗导向同位素药物.
4制成前体药物
一些药物与适当的载体反应制备成前体药物,给药后药物就会在特定部位释放,达到靶向给药的目的. 脑是人高级神经活动的指挥中枢,也是神经系统最复杂的部分. 但由于血脑屏障(bloodbrain barrier, BBB)的存在,使得大部分治疗药物不能有效透过BBB. 含OH, NH2, COOH结构的脂溶性差的药物可通过酯化、酰胺化、氨甲基化、醚化、环化等化学反应制成脂溶性大的前体药物,进入CNS后,其亲脂性基团通过生物转化而释放出活性药物. 张志荣等〔19〕合成了3′, 5′二辛酰基氟苷,并制备了其药质体,给小鼠静脉注射后用HPLC法测定药物在体内各组织的分布,结果表明,氟苷酯化后的前体药物的药质体有良好的脑靶向性.
结肠内有大量的细菌,能产生许多独特的酶系,许多高分子材料在结肠被这些酶所降解,而这些高分子材料作为药物载体在胃、小肠由于相应酶的缺乏不能被降解,这就保证药物在胃和小肠不释放. 如多糖、果胶、瓜耳胶、偶氮类聚合物和α, β, γ环糊精均可成为结肠给药体系的载体材料. 常利用结肠内厌氧环境,使偶氮键还原的特点制成偶氮前体药物. 柳氮磺胺吡啶是由5氨基水杨酸(5ASA)与磺胺吡啶用偶氮键连接而成. 口服后在结肠释药,发挥5ASA治疗溃疡性结肠炎的作用,减少其胃肠吸收产生的全身不良反应. 5ASA也与非生理活性的高分子聚合物通过偶氮双键制成前体药物〔20〕. 糖皮质激素共价连接于多糖〔21〕,环糊精〔22〕制成的前药,口服后在结肠部位可释放出药物,可用于结肠炎的治疗. 我们〔23,24〕合成了果胶酮洛芬(PTKP)前药,进行了体内外评价. 结果表明,此前药在不同pH环境下结构稳定,只能被结肠果胶酶特异性降解,释放出KP,发挥治疗作用. 也可以利用结肠pH差异和时滞效应设计结肠靶向给药系统〔25〕.
5化学传递系统
化学传递系统(chemical delivery system, CDS)是一种输送药物透过生理屏障到达靶部位,再经生物转化释放药物的药物传递系统. CDS通常是将含OH, NH2, COOH结构的药物共价连接于二氢吡啶载体(Q),药物(D)与靶向剂二氢吡啶结合为DQ结合物,建立了二氢吡啶―二氢吡啶钅翁盐氧化还原脑内定向转释递药系统. Chen等〔26〕设计了Tyr Lys的脑靶向CDS,并评价它的药效. Lys的C末端接亲脂性胆甾烯酯,N末端通过一种L氨基酸桥接靶向剂1,4二氢葫芦巴碱(含吡啶结构)制成Tyr Lys CDS,全身给药后,通过被动扩散机制透过BBB,且经酶催化1,4二氢葫芦巴碱变为季铵盐型使其存留于脑内. 通过小鼠甩尾间隔期实验证明,Tyr Lys CDS作用时间明显延长. Mahmoud等〔27〕将吸电子羧甲基连接到氮原子构建了一种新的二氢吡啶载体介导的脑定向转释系统(N羧甲基1,4二氢吡啶3,5二酰胺),该载体稳定,具有良好的脑定向转释能力.
靶向给药的研究还面临许多实质性的挑战. 提高药物在靶组织的生物利用度;提高TDDS对靶组织、靶细胞作用的特异性;使生物大分子更有效地在作用靶点释放,并进入靶细胞内;体内代谢动力学模型;质量评价项目和标准,体内生理作用等问题都是研究的重点. 随着靶向给药系统研究的深入,新的靶向给药途径、新的载药方法将会不断出现,遇到的问题会逐步解决. 靶向给药的研究不仅具有理论意义,而且会产生明显的经济和社会效益.
【参考文献】
〔1〕 Theresa MA, Pieter RC. Drug delivery systems: Entering the mainstream 〔J〕. Science, 2004;303(5665):1818-1822.
〔2〕 张志荣,钱文. 肝靶向米托蒽醌白蛋白微球的研究〔J〕. 药学学报,1997;32(1):72-78.
Zhang ZR, Qian WJ. Study on mitoxantrone albumin microspheres for liver targeting 〔J〕. Acta Pharm Sin, 1997;32(1):72-78.
〔3〕 张莉,向东,洪诤,等. 肝靶向去甲斑蝥素微乳的研究〔J〕. 药学学报,2004;39(8):650-655.
Zhang L, Xiang D, Hong Z, et al. Studies on the liver targeting of norcantharindin microemulsion 〔J〕. Acta Pharm Sin, 2004;39(8):650-655.
〔4〕 韩勇,易以木. 纳米粒肝靶向作用机制的研究进展〔J〕. 中国药师,2002;5(12):751-752.
Han Y, Yi YM. Studies on the liver targeting mechanism of nanoparticles 〔J〕. Chin Pharm, 2002;5(12):751-752.
〔5〕 王剑红,陆彬,胥佩菱,等. 肺靶向米托蒽醌明胶微球的研究〔J〕. 药学学报,1995;30(7):549-555.
Wang JH, Lu B, Xu PL, et al. Studies on lung targeting gelatin microspheres of mitoxantrone 〔J〕. Acta Pharm Sin, 1995;30(7):549-555.
〔6〕 Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 8Ocoated nanoparticles 〔J〕. Pharm Res, 1999;16(10):1564-1569.
〔7〕 Ramge P, Unger RE, Oltrogge JB, et al. Polysor bate 80coating enhances uptake of polybutylcyanoacrylate(PBCA)nanoparticles by human and bovine primary brain capillary endothelial cells 〔J〕. Eur J Neurosci,2000;12(6):1931-1940.
一、幼儿小便遇到的问题及措施
(一)面对不会使用蹲便幼儿的帮助措施
幼儿入园前,尤其是女孩,小便或大便的时候都是采取坐便,还有一少部分的幼儿是由大人抱在怀里蹲着把便的,为此幼儿很少能接触到蹲便。在幼儿园由于班级设施的特点,幼儿不得不开始适应蹲便这样的如厕方式,初步接触时就会遇到问题:
由于有的幼儿在家中长时间使用坐便,没有蹲过小便,面对蹲式的小便器有恐惧心理,不敢自己踏上去,甚至老师帮助也拒绝使用,面对这样坚决拒绝的幼儿,我们采取这样的措施,首先,带领幼儿一同参观幼儿园的卫生间,观察墙壁上的小动物开心如厕,温馨、整洁的环境能够舒缓幼儿如厕的紧张感。利用故事时间渗透如厕的好处及如厕技能,使在付诸实践时做铺垫。接着,当幼儿要如厕的时候,随时有老师陪同幼儿去卫生间,在踏上厕所台阶的时候牵着幼儿的小手,或帮助幼儿脱裤子、塞裤子,还有年龄更小或能力稍弱的幼儿可先像妈妈一样把着幼儿小便。在老师的细心照料下,大部分的幼儿能够适应这样的如厕方式。但由于幼儿的个体差异可能还会有无法接受的幼儿,面对这样的幼儿时,可以先使用“小尿盆”进行过渡,但由于女孩的生理结构比较特殊,所以,需在尿盆的清洗、消毒上多加注意。
(二)因人而异,帮助幼儿解决尿裤难题
由于近几年班级内设施的优化,大部分男孩小便池都已改成感应式冲水装置,幼儿在小便前、小便后,小便器都会自动冲一次水,有些胆小的小男孩就会害怕这种装置,为此不敢去小便。
小玉就是一个这样的小朋友,幼儿在幼儿园的饮水量较大,所以需要上厕所的次数就很多,但经常会尿湿裤子,有时明明已经进了卫生间,还是会把裤子尿湿,所以在很长的一段时间里观察他,到底是什么原因导致他经常尿裤子,
有一次我看到小玉跟小朋友们一起进到了卫生间,开始在男孩小便池那里排队,可是轮到他的时候就开始往后面走,让他后面的小朋友先去,往后推了几个小朋友后,小玉憋不住了,尿了裤子,之后我在睡眠室给他换裤子的时候问他,为什么排队了但不去小便,小玉说:“因为我一过去那个灯就亮了,就会冲水,我怕水流到我的身上”。知道了原因之后问题就比较好解决了,首先,我带小玉在别的小朋友上厕所时观察冲水装置的水流,是否能冲到身上,接着,我陪在他身边去小便,有了一次、两次的体验后,他觉得这也没什么,就不再恐惧男孩的自动冲水小便池了,尿裤子的问题也就迎刃而解。
还有个小女孩,小朵总是把自己的左裤腿尿湿,因为性格较腼腆、敏感,有几次早上入园的时候小朵都是哭着说不想来幼儿园,在跟家长交谈后,了解到原来是因为小朵最近总是尿湿裤腿,经常换裤子,让她感觉到非常自卑。面对这样的问题,我们班级的三位老师进行了协商,再给小朵换裤子的时候去到没有其他幼儿的睡眠室,尊重幼儿。接着我开始寻找小朵尿裤子的原因,在她去小便的时候我观察到小朵蹲下、把裤子的姿势十分标准,那为什么还是会尿到裤腿上呢?经过一段时间的观察,我发现原来是小朵在冬天的时候还穿了小内裤、秋裤、三保暖、外裤,因为小内裤不好提上去,又卡在腿上,所以,小朵尿出来就比较歪,特别容易把裤腿尿湿。我把我获取的信息告诉了小朵的妈妈,第二天小朵就不穿内裤了,这样一试果然没有再尿到裤子上,这样的结果让小朵很高兴,让小朵的妈妈也松了一口气。所以,在工作中遇到问题时就要不断的观察,问题总会解决。
二、针对幼儿大便遇到问题的教育措施
小班的幼儿,尤其是小班初期,较少的幼儿能够建立良好的排便习惯,全班的幼儿也仅有几个能够每天早晨或晚上进行排便,所以,在幼儿园的一日生活当中,幼儿随时都会有大便的可能性,相对于小便来说,大便不仅多了需要擦屁股这一环节,还出于男孩的生理特点,特别容易把裤子尿湿,甚至还有心理成熟较早的幼儿因为羞涩而不敢在幼儿园大便的一些问题,面对这些问题我们一一做出解决的办法,首先,我们通过讲故事,告知幼儿,大便是每个人都必须的做的事情,如果你在幼儿园有大便了就告诉老师,大便之后告知老师,老师会及时的帮助。同时我们班级里的老师也相互达成共识,随喊随到。对于男生生理原因,会尿湿裤子这样的问题,老师会让男孩在拉大便之前先去小便,这样就大大的减少了男孩尿裤的几率。
面对较羞涩不敢大便的幼儿,我们通过讲故事、让他无意中看别人在幼儿园大便,及通过家长跟他做工作,慢慢地,幼儿也接受了在幼儿园排便的习惯。
因为大便可以判断幼儿最近的基本饮食、健康状况,所以家长对幼儿是否排便也高度关注。我们在班级主题墙上设计了“我拉臭臭啦!”的小猫喂鱼的记录表,谁拉大便了就在自己的小猫筐里插一条小鱼,小猫可爱的卡通形象特别受幼儿喜爱,所以,对幼儿在幼儿园大便有了积极的促进作用。晚上家长来接幼儿的时候还会用游戏的口吻询问:“今天有没有得到小鱼呢?”
刚开始的时候每天有八九个幼儿在幼儿园大便,可是后来人数渐渐减少,一般为五个左右,而且出现了固定化的趋向,是哪名幼儿,在哪个时间排便,教师心里就更有数了。
如厕对幼儿的智力、情感、独立性的发展都有重要意义,教师与家长都要重视。培养小班幼儿如厕习惯的过程中出现各种问题,但我愿意做一名善于发现问题、积极解决问题的老师,在培养幼儿良好如厕习惯的同时,促进幼儿心理的健康发展。