TDI固化剂能和哪些基团反应?能和C-O-C或C=O反应吗?
TDI固化剂一般是TDI的三聚体或TDI与多元醇(如三羟甲基丙烷、丙二醇、新戊二醇之类的)的加成物,主要活性基团是NCO,一般NCO都可以和含有活泼氢的基团反应,如羟基、氨基等,你说的醚键和羰基一般是不会反应的。
TDI、MDI是芳香族多异氰酸酯类固化剂,这类固化剂的异氰酸根是直接和苯环相连的,是易黄变类固化剂。
H12MDI 、HDI、IPDI是脂肪族多异氰酸酯类固化剂,它们的异氰酸根不和苯环直接相连,属于耐黄变或不黄变类固化剂。
pu涂料发生黄变的主要机理是苯环与氨基甲酸酯共轭,在紫外光的作用下发生氧化重排,形成具有发色基团的醌式结构,这样你就知道为什么芳香族固化剂易黄变,而脂肪族类的不易黄变了吧。
它们的反应活性和分子结构中的电子效应和位阻效应有关。这个你自己查一下吧,三言两语不容易说清楚。
生产TDI的原料,主要是光气和甲苯,也很毒,国内就几家而已。你提到的那个岗位,其实就是生产那东西,虽然现在全是自动化控制,DCS系统什么的,但是你毕竟还是长期呆在那个环境中。
哥们听我说:我工作中跟这东西打交道时间比较长,我是衷心的希望你不要去做这个工作,我亲眼见到同事吸了TDI蒸汽后的惨状,类似于肺炎,一直咳嗽,持续了大概半年左右,带苯环的化学品,几乎全部会致癌,别去,这是我给你的忠告!
TDI:甲苯二异氰酸酯的英文缩写
Cas号:584-84-9
Beilstein 号: 744602
分子式: C9H6N2O2
分子量 :174.16
别名 :甲苯二异氰酸酯,2,4-二异氰酸甲苯酯(甲苯-2,4-二异氰酸酯),甲代亚苯基, 2,4-二异氰酸酯,4-甲基-1,3-亚苯基二异氰酸酯
2,4-Diisocyanatotoluene
4-Methyl-m-phenylene diisocyanate
生产方法: 由甲苯硝化生成二硝基甲苯,再经还原得到甲苯二胺。甲苯二胺与光气反应即得TDI(以2,4-异构体为主)。
性状 无色液体。有刺鼻气味。日光下色变深。氢氧化钠或叔安能引起聚合作用。与水反应产生二氧化碳。能与乙醇(分解)、乙醚、丙酮、四氯化碳、苯、氯苯、煤油、橄榄油和二乙二醇甲醚混溶。有毒。有致癌可能性。有刺激性。
相对密度(20/4℃ :1.2244
凝固点 TDI-65,3.5~5.5℃ TDI-80,11.5~13.5℃ TDI-100,19.5~21.5℃
蒸气压(20℃), 0.01mmHg
闪点(开杯), 132℃
沸点251℃
蒸发热(120~180℃) 337.04 KJ/kg(kcal/kg) (80.5)
折光率(20℃) 1.569
有害限度,ppm 0.1
贮存 充氩气或氮气等密封阴凉干燥避光保存。
用途 制备聚氨酯类和大环冠醚类化合物。蛋白质共价交联剂。将抗体固定于塑料表面用于放射免疫测定。
危险性质(?) 第6.1类毒害品。
危规编码 61111
联合国编号 2078
其他相关:
[/font]TDI(甲苯二异氢酸酯)是常用的多异氢酯的一种,而多异氢酸酯是聚氨酯(PU)材料和重要基础原料。聚氨酯工业常用的TDI是2,4-TDI和2,6-TDI两种异构体的混合物,包括3种常用的牌号:TDI-80/20,TDI-100和TDI-65/35。前面的数字表示组成中2,4-TDI的含量。比如T-80/20中的80表示其组成为80%的2,4-TDI和20%的2,6-TDI;TDI-100中的100表示基本上都是2,4体的TDI(约98% ),2,6-TDI的异构体很少。主要用于生产软质聚氨酯泡沫及聚氨酯弹性体、涂料、胶黏剂等。
TDI的主要危害:TDI在装修中主要存在于油漆之中,超出标准的游离TDI会对人体造成伤害,主要是致敏和刺激作用,出现眼睛疼痛、流泪、结膜充血、咳嗽、胸闷、气急、哮喘、红色丘疹、斑丘疹、接触性过敏性等症状。国际上对游离TDI的限制标准是0.5%以下。
甲苯二异氰酸酯为无色或淡黄色有刺激性臭味的透明液体,在紫外线照射下变黄;在合金钢容器中加热易聚合;能与羟基化合物中的羟基、水、胺及具有活泼氢的化合物反应生成氨基甲酸酯、脲、氨基脲及双缩脲等。
产品使用与管理
PUWORLD(2007/06/14)―― TDI是一种无色液体,具有辛辣、刺鼻的气味,沸点是247℃,倾点12.5-14.5℃。它在室温环境中性质稳定,50摄氏度时会聚合,另外TDI不溶于水但能与水起快速反应,所以储存TDI时要注意容器和环境的低温干燥。TDI易与碱、胺、多元醇起反应,这也是储存和运输TDI过程中需要考虑的因素。高温会加速反应,反应中会放出热量和二氧化碳,具有烫伤和压力的危险。
一、TDI对人体的影响及急救措施
TDI蒸气高浓度时会刺激眼睛,吸入之后会严重刺激鼻子和喉咙,可能产生胸闷,进而引发哮喘,甚至支气管痉挛。液态TDI也可对皮肤、眼睛产生严重刺激,食入有低毒性更能刺激肠胃。那么如果有人不慎接触或吞食了TDI,我们应该采取怎样的急救措施呢?
对于皮肤污染者应该立即用肥皂和清水冲洗;对于眼睛污染的患者应立即用清水冲洗眼睛至少15分钟,如戴隐形眼镜要除下,然后求医;对于食入TDI患者其症状一般会于食入数小时滞后出现,不要催吐,须让患者休息并求医。 目前对TDI中毒并无特效解毒剂,一般当作初步刺激或支气管痉挛处理,必要时应及时做人工呼吸。
二、关于TDI产品的管理
对于TDI产品的管理主要有以下几个重要的步骤:签发MSDS、正确标签、紧急回应能力、供销前审核、审核方法和资格、符合法规的执行等。其中签发安全数据表(MSDS)的目的主要有以下几个:对危险品的法规要求,向用户提供产品危险性的资料,帮助用户建立安全的工作场所,保护环境,为产品正确标签,提供推广用资料,为各类读者编制一套全面易懂的技术说明书。
对于危险品必须有标签:危险品桶上要有安全标签,运输车辆上必须有运输标签,而对未制订危险品运输法规的国家,建议采用国际标准。对于危险品要用危险警语(R)表示产品的危险性,用安全警语(S)提供安全处理和紧急建议。
另外处置和储存TDI时应该采取预防措施,确保产品(桶)的安全处置,搬运和储存,相容/不相容的包装材料。
三、对于TDI的特殊情况处理
首先对于特殊情况处理时均要穿防护服,另外我们可以从以下几种情况来举例说明:
当桶因被水污染后释放二氧化碳而膨胀时,首先应将桶退回供应商,然后用长锥或铁勾刺破桶顶,注意要将破损的桶放置在专门的管理区内,并注意排气通风。
当桶翻倒入水时,首先应检查桶是否有泄漏,若无泄漏,将桶重新盖上并擦干;若有泄漏,将桶在水下密封,或送至陆上后再密封,在此过程中应该密切注意水污染引起的任何桶的压力上升。
当桶翻倒和爆裂时,应将干沙或化学品吸收剂铺在受污染区(大面积),并将损坏的桶放入(过)大桶内,将用过的沙或化学品吸收剂收集在开口桶内做适当处理,并通过(过)大桶的排气盖排放气体。另外还要用二异氰酸酯中和液彻底清洗污染区。
常用的中和液主要有湿沙和湿土、优先选用非可燃慢反应液、非可燃慢反应液、可燃快速反应液(仅适用于TDI)、中和(洗手)肥皂(如果没有中和肥皂,可用热皂水代替)等等。
四、废物的处置及桶的清洗
对于TDI及废桶的处置应该严格按照全国、省和地方法规进行,可先与多元醇反应,产生泡沫,然后弃置或焚化。或者与液态除污剂的反应生成尿素衍生物。
对于盛装过TDI的桶可以先向桶内注入2至5公升除污液,用喷洒或滚动方法将其清洗干净,然后将桶打开4至6小时,使之充分反应,最后用水冲洗。
[编辑本段]TDI 涡轮直喷增压发动机
TDI是英文Turbo Direct Injection的缩写,意为涡轮增压直接喷射(柴油发动机)。 为了解决SDI的先天不足,人们在柴油机上加装了涡轮增压装置,使得进气压力大大增加,压缩比一般都到10以上,这样就可以在转速很低的情况下达到很大的扭矩,而且由于燃烧更加充分,排放物中的有害颗粒含量也大大降低
tdiTDI技术使燃油经由一个高压喷射器直接喷射入气缸,因为活塞顶地造型是一个凹陷式的碗状设计,燃油会在气缸内形成一股螺旋状的混合气。tdi
宝来TDI装备的大众集团首创的直喷式涡轮增压柴油发动机(TDI)技术十分先进,而且采用了多项先进技术,例如泵喷射系统、可调叶片式涡轮增压器等等都是首次在国产轿车上应用。宝来TDI采用了最新的高压燃油喷射技术———泵喷射系统。此系统使柴油与空气混合更充分,燃烧更彻底;同时采用氧化型催化反应器,大大降低了CO、HC、颗粒的排放,其中CO2排放与同排量汽油车比可降低30%。另外,采用EGR系统,大大降低了NOx产生,其排放指标满足欧3标准。
TDI标志
Volkswagen柴油引擎的「TDI标志」,正是目前世界公认最成功的柴油引擎。
拜欧洲日渐严苛的环保法规所赐,柴油引擎的科技已一日千里,现今的技术不但能将污染减至最低,柴油引擎更已悄悄地利用其傲人的优势,成为人类移动科技的新主流;因此,不但在欧洲已有高达43.7%的新车车主会选购柴油车款,而且甚至每两部Volkswagen 出厂制造的车辆中,就有一部是TDI柴油车,而这也正说明了Volkswagen柴油引擎除了具有极高的市场接受度,也已俨然成为未来购车的趋势。
tdi高效能、低污染双效合一
自1930年首具柴油引擎问世以来,至今已经历70馀年汽车工业的洗礼。而Volkswagen 集团在这场柴油动力的科技竞赛中,一直处於领先的地位,因为Volkswagen在柴油引擎科技发展上,不仅已大幅改善了过去柴油车特有的吵杂噪音与废气,更在环境保育的表现上有了长足的进步,成功扮演革新推手的角色。
柴油引擎之所以会成为目前能源危机中最佳的替代品,便是因为其具有低油耗的优势,因为柴油引擎在进行燃烧、喷射与供油的动作时,汽缸体内将会处於高压缩比的情况,所以喷射的油量会藉由高度压力产生雾化的效果,并完美地与空气接合、燃烧;同时,也正因为高压的关系,同样的爆发动作,柴油引擎所消耗的油量不但明显低於汽油引擎,所产生的扭力,也明显地优於汽油引擎。
举例来说,Volkswagen的TDI柴油引擎精准地燃油量计算与增压技术,便能更有助於燃油效率的提升,同时降低环境污染,以Passat 2.0 TDI为例,这具2.0升TDI柴油引擎的燃油消耗及燃烧所产生的二氧化碳量,就比汽油引擎少了22%,甚至如果再加上燃油开采与运送过程中所产生的二氧化碳量,这具TDI柴油引擎比起汽油引擎对於温室效应的影响,更减少了高达33%!
而在维修与养方面,不同於汽油引擎需要藉由火星塞来点火燃烧,由於柴油引擎是以高压方式让空气产生自燃,长久下来,还将可省下不少更换火星塞的费用;但有一点必须格外注意的是,柴油引擎对於机油的清洁性有著更严格的标准,所以务必使用专为柴油引擎设计的机油,才能延长柴油引擎的使命寿命。
不可思议的超低油耗
至於Volkswagen柴油引擎的「TDI标志」,不但已成为世界公认最成功的柴油引擎,所生产的三、四、五、六及十汽缸柴油引擎,更均能以优异的动力与超低油耗表现,颠覆世人的既有印象,并成为替代能源出现前的最佳选择。而这个杰出的成就,得要归功於TDI引擎里新配置的「整合帮浦式喷油嘴」(pump-injector),这项设计的特点,就是藉用高压将油料喷射进入引擎的燃烧室,使得油料与空气的混合更完全,精准的高压喷射压力甚至高达2,050bar,相当於两辆Lupo(约1,906公斤)的重量集中在指尖单点的压力,比传统柴油引擎高出50%,喷油嘴并精密配置有5孔喷口,可以确保油料喷射时极佳的雾化效果,已达成更完全的燃烧。
Volkswagen总代理太古标达汽车首款引进国内的柴油车-Lupo 3L TDI,车名中的「3L」,代表它每100公里仅需消耗3公升柴油,无疑地成为了VolkswagenTDI柴油科技高经济性的最佳诠释;同时,Lupo 3L TDI也因此刷新了金氏世界的省油纪录,成为英国皇家汽车协会(RAC)的年度最省油汽车,并荣获【Autoexpress】杂志评选为年度最具经济效益的好车,以及德国伍柏塔「TheOKO-TREND」环境保护局所颁发的年度环保汽车冠军殊荣。
全世界的一致肯定
Volkswagen的引擎之所以能在世界各地都深受各方肯定,不单只是因为其极低的油耗及优异的废气排放,更因为它能提供优异的扭力及加速表现,而Volkswagen在柴油动力科技方面的杰出表现,就连MercedesBenz所属的DaimlerChrysler集团也佩服不已,甚至日前该集团还已经与Volkswagen集团签定了一项合约,计划自今年开始至2013年为止,每年向Volkswagen采购120,000具2.0升TDI四汽门柴油引擎,而这也就是全球车坛对Volkswagen在柴油动力领域的至高评价与赞赏!
而Volkswagen目前除了已率先在台引进打破金氏世界纪录的省油车-Lupo 3L TDI、Golf 1.9 TDI、Golf Plus 1.9 TDI、Passat 2.0 TDI,以及搭载史上最强柴油引擎V10 TDI的Touareg V10 TDI外,未来,Volkswagen也仍将继续扮演替环境保育把关的领航者角色,并继续结合不同领域的科技,开创出令人惊艳、更具有驾驶乐趣、污染更低、油耗也更低的TDI柴油引擎!
[编辑本段]TDI(传输驱动程序接口)
TDI全称Transport Driver Interface,它指的是WindowsNT操作系统中各种运输层协议(如SPX、TCP等)与接收软件(或重定向软件接口)之间的接口层。
[编辑本段]TDI(时间延迟积分)
TDI(Time Delay and Integration ) CCD时间延迟积分CCD器件通常适用于对一些高速移动的物体来成像.
HO-(PEG1000)-OH + OCN-C7H6-NCO -------- > --(PEG1000)-OOCNH- C7H6-NHCOO-(PEG1000)--
其芳香族NCO 反应温度在(120—150) ℃ ,脂肪族NCO 反应温度在(150—200) ℃。它的最大优点是无黄变, 水白透明, 较适用于羧酸型等水性聚氨酯的常温交联剂。为增强综合性能, 需采用两个NCO 基团活性不同的二异氰酸酯,并要将反应中产生的端NCO 用多元醇- 羧酸反应掉, 以利于胺中和及产物的水溶性。由于其熔点高,反应需分阶段在有机溶剂中进行, 有机膦催化剂及120 ℃ 以上温度, 异氰酸酯可发生自缩聚反应,生成三聚体化合物。其催化剂中戊杂环膦化氢是最有效的, 反应温度低, 收率可达90 % , 再用三聚催化法促进反应完全, 并对残基进行封闭。
产品配方:NCO :多元醇羧酸( 物质的量比) 为6:1:1.43。
工艺步骤: 多元醇- 羧酸溶液制备, 按配方将新戊二醇、苯偏三甲酸酐、DMPA 、二甲苯、甲苯加入反应釜搅拌,升温至80 ℃ , 完成溶解后, 升温至148 ℃ 回流脱水至透明后, 过滤出料备用。亚胺预聚体的制备: 按配方将二甲苯、甲苯加入反应釜, 升温至148 ℃ 回流脱水后, 加入10 % 磷酸( 甲苯) 液降温至120 ℃ , 通入氮气, 将TD I 、IPDI 加入单体滴加釜, 在2 . 5h 内完成滴加后, 升温至130 ℃ 反应1h , 将10 % 戊杂环膦化氢液加入滴加釜, 开始缓慢滴加, 不断观察物料反应情况, 防止爆聚, 滴完在130℃ 反应2h 、140 ℃ 1h 、145 ℃ 30min , 降温至70 ℃ , 将多元醇- 羧酸液加入滴加釜开始滴加,滴完在70 ℃ 反应(2—3) h , 检测NCO 转化率达96 % , 加入10 % 醋酸锂液, 此时有两种工艺: 一是降温至25 ℃ , 静置7d 二是升温至(80—90) ℃ 反应(2—3) h , 测游离TD I 在0.3% 以下, 加入10 % 对甲苯磺酸甲酯液、10 % 二甲基吡唑液升温至85 ℃ 反应20min , 抽真空脱出2/3量的有机溶剂, 再加入亲水溶剂调节固含量为50 % , 降温至50 ℃ 加入50 % 三乙胺水溶液、N-甲苯二乙醇胺调节p H 值至8.5 , 升温到60 ℃ 反应至透明, 降温到40 ℃ 出料。
2、改性HDI 缩二脲交联剂
产品配方:
NCO:H2O = 3:1.1, NCO:OH =6:1, 理论NCO 含量= 15.9 % , 采用分阶段聚合反应、中和法。
工艺步骤: 多元醇- 羧酸溶液的制备, 按配方将新戊二醇、偏苯三甲酸酐、DMPA 、二甲苯、甲苯加入反应釜, 升温至80℃ 溶解均匀, 再升温至148 ℃ 回流脱水至透明无水后, 降温至40 ℃ 出料备用。HDI 预聚体制备: 按配方将己二异氰酸酯、二甲苯加入反应釜, 通入氮气, 升温至65 ℃ , 加入10 % 磷酸(甲苯) 液搅匀, 将去离子水加入滴加釜开始滴加, 反应自放热, 控制自升温在80 ℃ 以下, 完成滴加后, 升温至90 ℃反应1h 、120 ℃ 2h 、130 ℃ 1h , 降温至70 ℃ , 再将多元醇- 羧酸液进入滴加釜开始滴加,滴完后在70 ℃ 反应(2 —3) h 、80 ℃ 1h , 测游离HDI<0.2 % , 抽真空脱出有机溶剂,加入亲水溶剂, 调节固含量50 % , 降温至50 ℃ 加入50 % 三乙胺水溶液, 调p H 值8.4 , 升温到60℃反应至透明, 降温到40 ℃ 过滤出料。
3、 改性TD I 三聚体交联剂
产品配方:
NCO:OH ( 物质的量比) 为6:1, 采用三聚催化反应、终止反应、残基封闭法及分阶段反应。
工艺步骤: 多元醇- 羧酸液的制备, 按配方将三羟甲基丙烷、新戊二醇、偏苯三甲酸酐、DM - PA、醋酸丁酯、二甲苯加入反应釜搅拌, 升温至80 ℃ 溶解均匀, 再将其升温至148 ℃ 回流脱水至透明, 降温到40 ℃过滤出料备用。
三聚体制备: 按配方将二甲苯、甲苯加入反应釜搅拌、升温至148 ℃ 回流脱完水后, 降温至120 ℃,加入10 %磷酸锂液搅匀, 通氮气, 将TDI 加入单体滴加釜开始滴加, 3h 滴加完后, 保温120 ℃ 反应2h 、130 ℃ 1h, 降温至65 ℃ , 将多元醇- 羧酸液进入滴加釜开始滴加, 反应自放热, 控温在75 ℃ 以下, 滴完, 80 ℃保温2h , 取样测游离TDI<0.9 % , 加入10 % 磷酸甲苯液升温至85 ℃ 反应2h ( 或降至25℃ 静置7d) , 检测游离TDI<0.2 % , 加入10 % 硫酸二甲酯液、10 % 二甲基吡唑液升温至90℃反应15min , 抽真空脱出有机溶剂, 加入亲水溶剂调节固含量至50 % , 降温至50 ℃ 加入50 %三乙胺水溶液、N - 甲苯二乙醇胺调节p H 值为8 . 4 , 升温到60 ℃ 反应至透明, 降温至40 ℃ 出料。
4、TD I/ TMP 加成、改性物交联剂
产品配方:
NCO:OH ( 物质的量比) 为3:1 , 采用三聚催化反应、终止反应、残基封闭法。工艺步骤: 多元醇- 羧酸溶液的制备, 按配方将TMP 、新戊二醇、苯偏三甲酸酐、DMPA、醋酸丁酯加入反应釜搅拌升温至80 ℃ 溶解均匀, 升温到140 ℃ 回流脱水至透明, 降温至40 ℃ , 过滤出料备用。
加成物制备: 按配方将醋酸丁酯、甲苯进入反应釜搅拌升温至140 ℃ 回流脱水后, 降温到60 ℃ 加入TDI ,通入氮气, 将多元醇- 羧酸溶液加入滴加釜开始滴加, 反应自放热, 滴加要缓慢, 控温在70 ℃ 以下滴完, 加入10%磷酸甲苯液, 70 ℃ 反应(4—5) h 。检测NCO 含量达13.1 % , 游离TDI在12.5 % ,加入10 % 三正丁基膦液搅匀, 升温至85 ℃ 反应(2—3) h( 或降温至25 ℃ , 静置7d),取样检测游离TDI<0.2 % , 加入10 % 苯甲酰氯液、10% 二甲基吡唑液升温至90 ℃ ,反应15min , 抽真空减压, 脱出有机溶剂, 加入亲水溶剂, 调节固含量50% , 降温至50 ℃ 加入50% 三乙胺水溶液、N-甲苯二乙醇胺调节p H 值为8.5 , 升温到60℃ 反应至透明, 降温至40℃ 过滤出料。
5、XDI/TMP 加成改性物, NCO 交联剂
产品配方:
NCO:OH ( 物质的量比) = 9:1 , 采用三聚催化、终止、残基封闭法。
工艺步骤: 参照第四的工艺步骤进行。
6、改性TD I 醇解油, NCO 交联剂
产品配方:
油度86.4 % , K 值= 0.93 , 醇超量R = 1.17 , NCO:1OH ( 物质的量比) = 3:( 含蓖麻油中羟基), 采用三聚催化、终止、残基封闭法。
工艺步骤: 按配方将TD I 、蓖麻油、新戊二醇加入反应釜, 升温至120℃ 加入环烷酸钙, 搅拌、升温至240℃ ,醇解反应(2—3) h , 取样测试其透明度, 合格后降温至180℃ , 加入苯偏三甲酸酐、DMPA 反应40min ,降温至120℃ 加入甲苯稀释, 升温到134℃ 回流脱水, 水脱尽后, 降温至60℃ , 开始滴加TDI , 2h滴完, 加入10% 磷酸甲苯液搅匀, 升温至70℃ 反应(3—4)h , 测试NCO 含量在12% 、游离TDI 在9.5 % , 加入10% 烷基膦液搅匀, 升温至80℃ 反应(2—3)h( 或降温至25℃静放7d) , 测试游离TDI<0.3% , 加入10% 苯甲酰氯液、10% 二甲基吡唑液搅匀升温至90℃反应15min , 抽真空减压脱出全部甲苯, 加入亲水溶剂, 调整固体含量为50% , 降温至50℃ 加入三乙胺、N -甲苯二乙醇胺, 调整p H 值为8.5 , 升温至60℃ 反应到透明, 降温至40℃ 过滤, 出料。
7、水性聚酯聚氨酯
产品配方( 甲组分): OH ∶ NCO ( 物质的量比) = 1.5:1 , K 值= 1.02 ,醇超量R = 1.18。
工艺步骤: 按配方将新戊二醇、己二酸、苯偏三甲酸酐、DMPA 加入反应釜, 通入CO2 气, 升温至120℃ ,加入钛酸四异丙基酯, 搅拌升温至180 ℃ , 反应2h 后, 每隔30min 取样测试其酸值, 直至达到79mg KOH/ g , 羟值达到79.5 , 降温至130℃ 加入二甲苯, 升温至150℃ 回流脱水, 脱尽后, 抽真空回收二甲苯,降温至80 ℃ 加入丙酮进行稀释, 保温在60℃ ,1.5h 滴加TDI , 滴完加入10% 磷酸( 甲苯)液搅匀, 升温至70℃ 反应(4—5)h , 测试游离TDI<0.2% , 加入50% 苯酚( 甲苯)液升温至80℃ 反应15min , 再升温至90℃ , 蒸馏出1/2 投料量的丙酮, 70℃保温备用。在另一个装有快速搅拌的反应釜中, 加入N- 甲苯二乙醇胺、三乙胺、乙二胺、去离子水开动快速搅拌, 将上述保温在70℃ 的物料, 缓慢加入反应釜, 在60℃ 进行中和反应透明后, 升温至70℃ , 抽真空减压, 蒸馏出余下的全部丙酮,降温至40℃ , 过滤, 出料。
8、水性豆油酸聚酯聚氨酯
产品配方( 甲组分): OH ∶ NCO ( 物质的量比) =1:1.5 , 树脂K 值= 1.019 ,醇超量R= 1.3 、r =1.5 , 油度56%。
工艺步骤: 按配方将豆油脂肪酸、蓖麻油脂肪酸、季戊四醇、新戊二醇加入反应釜, 通入CO 2 气, 升温至120℃加入二月桂酸二丁基锡进行搅拌, 升温至220℃ , 反应3h , 降温至180℃ 加入间苯二甲酸、苯偏三甲酸酐、DMPA在180℃ 下反应2h 后, 每隔30min 取样测试其酸值, 直至达到75mg KOH/g , 羟值为80 ,降温至120 ℃ 加入甲苯, 升温至132℃ 回流脱水, 脱尽后, 降温至65℃ 加入10% 苯酚甲苯液搅匀,将TDI 加入单体滴加釜, 开始滴加,1.5h 滴完后, 升温至70℃ 反应4h , 80℃ lh , 测试游离TDI 在0.2 % , 加入50% 苯酚( 甲苯) 液搅匀, 升温至90℃ 反应15min , 进行真空减压脱出2/3 的甲苯, 加入异丁醇降温至50℃ , 加入三乙胺、二甲苯乙醇胺及1/3 的去离子水, 调整p H 值为8.6 ,升温到60℃ 反应至透明, 抽真空脱出全部甲苯, 加入余下的去离子水, 调整固含量50% , 过滤, 出料。
9、水性菜油醇酸聚氨酯
产品配方( 甲组分): OH ∶ NCO ( 物质的量比) =1:1.5 , 树脂K 值=1.01 ,醇超量R= 1.314 , r= 1.499 , 油度= 55.2% , 理论NCO 含量= 228% 。
工艺步骤: 按配方将菜籽( 色拉) 油、蓖麻油脂肪酸、TMP 、新戊二醇加入反应釜, 通入CO2 气, 升温至120℃ 加入环烷酸锂搅拌, 升温至230℃ 反应(2 ~ 3)h , 测试醇解透明合格后, 降温至180℃ ,加入苯二甲酸酐、苯偏三甲酸酐、DMPA , 在180℃ 反应2h 后, 每隔30min , 测试一次酸值,直至达到70mg KOH/ g 为止, 然后降温至110℃ 加入甲苯, 升温至132℃ 脱水, 将水脱尽后, 降温至65℃ 加入10% 磷酸( 甲苯) 液搅匀, 将TDI 加入单体滴加釜, 开始滴加, 滴完后升温至70℃ 反应(4—5) h ,80℃ 1h , 测试游离TDI 达到0.2 % , 加入50% 苯酚( 甲苯) 液, 升温至90℃反应15min , 抽真空脱出1/3 的甲苯, 加入异丙醇, 降温至50℃ 加入N - 二甲基乙醇胺、三乙胺, 及1/2 的去离子水, 调整p H 值为8.6 , 升温到60℃ 反应至透明, 抽真空脱出全部甲苯, 加入余下的去离子水,调节固含量50% , 过滤, 出料。
10、水性蓖麻油醇酸聚氨酯
产品配方(甲组分): OH∶NCO ( 物质的量比) =1:1.5 , 树脂K 值=0197 , 醇超量R= 1.23, r= 1.36, 油度=5514% , 理论NCO 含量= 2.3% 。
工艺步骤: 按配方将蓖麻油、甘油(95%) 、新戊二醇加入反应釜, 通入CO2 气, 升温至120℃加入一氧化铅搅拌, 升温至230℃, 反应(2-3) h , 测试其醇解透明合格后, 降温至180℃加入苯二甲酸酐、苯偏三甲酸酐、DMPA 、松香二元醇, 在180℃ 反应2h 后, 每隔30min 测试酸值,直至达到80mg KOH/g 为止, 然后降温至110℃ 加入甲苯, 升温到128 回流脱水, 脱尽后, 加入10%磷酸甲苯液降温至65℃, 用1.5h 滴完TDI , 升温至70℃反应4h , 80℃1h , 测试其游离TDI达到0.2 % , 加入50% 苯酚(甲苯) 液, 升温至95 反应15min , 抽真空脱出1/ 2 量的甲苯,加入异丙醇, 降温至50 加入一乙醇胺、三乙胺及1/2 量的去离子水, 调整p H 值为8.6 ,升温到60℃反应至透明, 抽真空脱出全部甲苯, 加入余下的去离子水, 过滤, 出料。
乳胶漆:乳胶漆与含TDI的油漆交叉施工时,高含量的游离TDI和乳胶漆相遇会发生化学反应,致使墙面变黄。
油性漆:引起变黄的主要原因是由于光线中的紫外线照射,油漆树脂中不饱和键结构发生变化、氧化或化学键断裂,这种改变在外观上反映就是漆膜变黄。
白油漆:在制作板材时为消除板材色差,厂家常对板材进行漂白处理,漂白剂主要用双氧水、亚氯酸钠或亚硫酸氢钠,另外,有部分厂商将漂白好的材料冒充好的材料,当聚酯白漆和这些经漂白的木材结合时,聚酯白漆的固化剂TDI与木材在漂白时残留的氧化型漂白剂反应,使漆膜表面立刻泛黄。
一、我们来看看海绵的来历和成分。
PU海绵罩杯是由以下四种原料加工发泡而成:
1.多元醇或多元醚
2.TDI甲苯二异氰酸酯
3.发泡剂
4.多种化学助剂。
二、海绵里最毒的元凶:TDI甲苯二异氰酸酯(奥运期间禁运产品)
TDI是剧毒化学品。虽然没有直接证据显示TDI与乳癌有关,但是动物实验证明,TDI经老鼠吸收,受热分解成TDA甲苯二甲胺,而TDA是公认的致癌化学品。实验也证明在TDI环境下操作工人的尿液里,可检测到TDA的异常存在。
由PU海绵罩杯散逸出来的微量TDI气体,被乳房经皮肤吸收的威胁始终存在。尽管无从证明。但从我国质检单位对新装修居室要求检测TDI挥发气体的浓度--从PU木器漆散发出来的,TDI的毒性也略见一斑。)
TDI对人类健康的危害是很大的,长期大量接触会导致过敏症的危险,这种过敏症是无法恢复的,因为这是一种免疫系统的反应,与一般的刺激过敏不同。
TDI还很容易与其他物质发生放热反应,并放出CO2,有烧伤及气压上的危险,以及导致严重的温室效应。
三、海绵对地球环境的破坏很严峻,威胁到人类的生存。
生产海绵中,CFC系列发泡剂所挥发的气体,严重破坏了大气层的臭氧层,从而导致地球的温度急骤升高,改变有益人类生活的环境。虽然至目前为止,尚未有性价比相同的代用品出现,但是,中国法令已规定:2010年全面禁止使用破坏臭氧层的CFC系列发泡剂。
四、海绵文胸,因为其成分和组织结构的特性,还有藏污纳垢的坏处。
由于海绵分子结构的不稳定,它极易变黄,几乎没有厂商用PU海绵制作光板(没有蕾丝等掩饰的)白色胸罩。又由于海绵蜂巢式结构,组织严密,不易透气。出汗时,水分子储存于蜂巢内而产生闷热感,不但不易干燥,而且容易藏污纳垢,成为细菌生长的温床。
五、海绵文胸,不能彻底清洁干净。
海绵内衣本来吸附性就很强,而且是用石油的废料做成的,当你清洗它的时候,海绵已经在悄悄地吸收那些洗衣服、香皂等清洁品,不管你怎么投洗,都不会彻底的洗干净。而我们胸部的呼吸主要靠乳头,想想,如果我们的乳头长期在充满了清洁元素、脏脏东西的包围下,会发生什么事情,后果很严重。