建材秒知道
登录
建材号 > 盐酸 > 正文

粉煤灰和盐酸生成什么溶液和什么固体

落后的裙子
英俊的小蝴蝶
2023-01-26 10:48:34

粉煤灰和盐酸生成什么溶液和什么固体?生成溶液的主要物质的化学式是什么?

最佳答案
洁净的冷风
冷静的毛衣
2026-02-04 10:08:13

粉煤灰,是从煤燃烧后的烟气中收捕下来的细灰,粉煤灰是燃煤电厂排出的主要固体废物。我国火电厂粉煤灰的主要氧化物组成为:SiO2、Al2O3、FeO、Fe2O3、CaO、TiO2等。

盐酸能和Al2O3、FeO、Fe2O3、CaO、TiO2反应,而无法与SiO2反应,所以与盐酸充分反应后反应得到的溶液主要是铝、铁、钙、钛的氯化盐溶液,而固体则是二氧化硅或者硅酸钙。

液体中的含有Al3+、Fe2+、Fe3+、Ti4+和Cl-等离子,固体化学式则为SiO2、CaSiO3等。

最新回答
美好的高山
安详的音响
2026-02-04 10:08:13

利用粉煤灰合成莫来石一般都要对粉煤灰进行预处理,包括除碳、除杂质、研磨等,以减少杂质含量对合成莫来石质量的影响,而研磨可以增加物料的反应活性以降低合成莫来石的烧结温度。

( 1) 除杂质效果

将粉煤灰手工除铁前后所做的化学成分分析进行对比不难看出,手工除铁效果并不明显,Fe2O3含量仅从 1. 95%降至 1. 84% ( 表 5. 4) 。但在除铁过程中我们发现明显有磁性颗粒吸附于磁铁之上,颜色为灰黑色,说明粉煤灰中磁性颗粒 ( Fe3O4) 是存在的,FESEM-EDX 的分析也证实了粉煤灰中确实含有磁铁矿。这方面的分析说明: 一是粉煤灰中的铁含量本身就不高,而且多数以赤铁矿存在二是靠手工除铁效果不理想,磁场强度过低。工业化分选粉煤灰中的氧化铁通常都采用磁选机进行,用高梯度强磁场 ( 107Gs / cm 数量级) 磁选机不仅可以从粉煤灰中分选出强磁性矿物,而且还可以分选出弱磁性矿物。如果在除碳加热过程中营造还原性气氛,还可以将部分非磁性矿物如赤铁矿 ( Fe2O3) 转化为磁性矿物如磁铁矿 ( Fe3O4) ,然后再用磁选机分选。

表 5. 4 粉煤灰除杂质前、后化学成分之对比 ( %)

粉煤灰在 800℃高温下恒温 2 h 可以达到良好的除碳效果,这一点可以从除碳前、后粉煤灰的烧失量 ( LOI) 加以判断,实验中粉煤灰的烧失量已经从原来的 2. 10% 降至1. 02% ( 表 5. 4) 。如果粉煤灰中的碳含量较高,可以相应延长恒温时间以确保大部分残余炭粒被清除。否则炭粒的存在会在加热过程中与氧气结合产生二氧化碳,降低制品的物理性能。除碳前、后粉煤灰的粒度并没有发生明显变化 ( 图 5. 7 ( a) 和 5. 7 ( b) ) ,说明粉煤灰中的炭粒与无机颗粒大小相近,分布一致。但这一情况与底灰明显不同,底灰中的炭粒数量较多、粒度较大。

用 20%浓度的盐酸处理除碳研磨后的粉煤灰,去除杂质效果比较理想 ( 表 5. 4) ,CaO 含量从 4. 22% 降至 1% 以下,说明粉煤灰中的活性 CaO 含量较高,容易与盐酸反应形成可溶盐而被清除。对 Fe2O3的去除效果一般。但值得注意的是,用酸清洗后,其他杂质K2O、Na2O、MgO 的含量也有所降低,其中 K2O、Na2O 的存在会导致合成过程中已经形成的莫来石产生分解,形成霞石质液相。整体来看,准格尔电厂粉煤灰中的杂质含量并不高 ( 9. 73%) ,经 20%盐酸处理后大部分有所降低 ( 5. 65%) ,只有 TiO2含量基本保持不变。在合成莫来石过程中有少量的杂质存在也是允许的,它可以降低烧成温度,其中的钛、铁离子还可以部分进入莫来石晶格中去 ( Johnson 等,1982) 。由杂质产生的少量液相还能够进入制品的孔隙空间,增加密度,减少体积膨胀。然而,从高纯莫来石的质量要求来看,杂质含量越少越好。

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

图 5. 7 粉煤灰、工业氧化铝及不同配料的粒度分布

( 2) 研磨效果

由于粉煤灰手工除铁效果不理想,而且粉煤灰中的 Fe2O3含量在烧结合成莫来石的允许范围内 ( 1% ~3%) ,所以在后面的实验过程中不再对粉煤灰进行除铁处理。直接将除碳粉煤灰和除碳并经酸洗的粉煤灰用于实验。经过除碳研磨的粉煤灰以 A 表示,除碳研磨后又经酸洗的粉煤灰以 B 表示,A50、A60、A70 和 B50、B60、B70 表示这两类粉煤灰中的 Al2O3含量分别为原始含量 ( 52. 72%) 以及配比后达到 60%和 70%的含量。

用 ZJM-20 型周期式搅拌球磨机,以球∶灰∶水 =5∶1∶1 配比研磨 5 h 后,粉煤灰的粒度从原来的 1 ~100 μm 降至 0. 3 ~30 μm,且 10 μm 以下的颗粒已经达到 95%以上,说明研磨效果相当理想 ( 图 5. 7 ( c) 。研磨 5 h 并经 20%盐酸清洗后的粉煤灰粒度有所下降,从0. 3 ~ 30 μm 变为 0. 2 ~ 20 μm,而且主峰位置明显转向细颗粒方向一侧,从 4. 89 μm 转至1. 27 μm ( 图 5. 7 ( d) ) ,说明粉煤灰经酸洗后粒度减小,这是因为盐酸会侵蚀粉煤灰颗粒的外表面。

工业氧化铝的原始粒度较粗,在 20 ~ 400 μm 之间 ( 图 5. 7 ( e) ) ,并且以聚合体形式存在,经 5 h 研磨后粒度变为 0. 3 ~20 μm,10 μm 以下的颗粒已经达到 98% 以上 ( 图5. 7 ( f) ) ,优于粉煤灰研磨效果。其原因是工业氧化铝的脆性比粉煤灰大,研磨时刚玉质小球的快速运动与旋转使得工业氧化铝聚合体首先分离,在撞击力与剪切力的双重作用下,氧化铝比粉煤灰更容易遭到破坏。不管是粉煤灰还是工业氧化铝,经 5 h 研磨后的粒度均从原来的单峰分布转变为双峰分布,工业氧化铝的双峰分布特征更加明显。

将研磨后的粉煤灰 ( A 系列) 和研磨并经酸洗后的粉煤灰 ( B 系列) 与研磨后的工业氧化铝按 Al2O3含量分别为 60%和 70%进行配料,然后混磨 1 h ( 让粉煤灰与氧化铝充分混合) ,混磨后的粒度分布见图 5. 7 ( g) 至 ( j) ,从图中可以看出: 混合后 A60 与 A70粒度分布基本一致,并且与未加氧化铝的粉煤灰 A50 相差也不大B60 与未加氧化铝的B50 粒度分布基本一致,但 B70 的粒度分布不同于 B60,而与工业氧化铝研磨 5 h 后的粒度分布接近,说明 B70 的粒度受加入的工业氧化铝研磨粒度影响较大。总之,粉煤灰经5 h研磨后 10 μm 以下颗粒占 95% 以上,混磨 1 h 对配料粒度影响不大 ( 图 5. 8) 。

( 3) 配料及试样成型

研磨5 h 和混磨1 h 后不同 Al2O3含量配比的粉煤灰化学成分见表5. 5。然后按照前面设计的 3 因素 3 水平正交实验设计方案压制成型,共需成型54 个试样用于合成莫来石实验。成型时,将配置好的 A、B 系列粉煤灰分别称取相同质量的物料用塑料漏斗装入模具中,在 WE-30B 型液压式万能实验机上加压成型。成型试样在压力为 100、150 和200 MPa下的平均密度分别为 1. 36、1. 40 和 1. 42 g/cm3。密度上的差异有两方面因素引起: 一是成型压力不同二是配料中 Al2O3的含量不同,随成型压力增大和 Al2O3含量的增高,试样的密度增大,但增加的幅度并不明显。试样的整体成型情况良好,仅有 3 个试样在出膜时出现轻微的破底现象,但这并不影响后面的合成莫来石实验。粉煤灰中 Fe2O3的存在使得成型试样呈现微弱的浅红色 ( 图 5. 9) 。

图 5. 8 工业氧化铝与粉煤灰粒度

表 5. 5 工业氧化铝成分及合成 M50、M60、M70 莫来石样品配料

单薄的黑裤
简单的牛排
2026-02-04 10:08:13
粉煤灰:假如你要看灰的好坏和最直接的办法:1 用显微镜观看(方面携带的显微镜价格在400+,观看里面的晶体,俗称玻璃球的多少。当然越多表明灰越好啦,反之就是差灰)2滴盐酸。纯煤灰不管它的细度大小,需水量的多少,是绝对不会与盐酸反应 3净浆,一般搅拌站都掺30%的粉煤灰,(这个说起来有点麻烦。但做起来很快,如果觉得我说的可行,继续追问。

风中的小蚂蚁
勤奋的书包
2026-02-04 10:08:13
AL2O3+ 6 HCL=2ALCL3 + 3 H2O Fe2O3+6HCl=2FeCl3+3H2O CaO +2HCl = CaCl2 + H2O CuO+2HCl=CuCl2+H2O SO3+H2o=H2SO4

记得采纳啊

靓丽的口红
单薄的大船
2026-02-04 10:08:13

为了研究杂质 ( 除 Al2O3和 SiO2外的其他氧化物) 含量对合成莫来石的物理性能和莫来石生成量的影响,我们采用了两个系列进行平行实验,其中一个系列对粉煤灰中的杂质不做任何处理,另一个系列采用 20% 的盐酸对粉煤灰样品中的杂质进行处理,主要是除去粉煤灰中的 CaO,因为粉煤灰中的 CaO 含量在几种杂质中最高,为 4. 22%。在莫来石化作用过程中,钙离子并不像铁、钛离子那样能够部分进入莫来石晶格中去。而且在烧结过程中,CaO 的线膨胀系数因子要比 MgO 大许多倍 ( 顾幸勇等,2001) ,从而引起烧制品的物理性能降低。

将除碳研磨后的粉煤灰 ( A 系列) 和除碳研磨后又经 20% 盐酸处理过的粉煤灰 ( B系列) ,分别按照原始 Al2O3含量 ( 分别记为 A50 和 B50) 和加入工业氧化铝后使配料中Al2O3含量分别达到 60% ( 分别记为 A60 和 B60) 和 70% ( 分别记为 A70 和 B70) 来进行实验。根据 3 因素 3 水平正交实验设计方案,每种配料须做 9 个实验,那么两大系列 3个不同 Al2O3含量的样品一共做了 54 个实验。采用的实验流程见图 5. 6。

图 5. 6 高铝粉煤灰烧结合成莫来石的实验流程

( 1) 除铁

粉煤灰中铁的氧化物有 Fe2O3和 Fe3O4两种 ( 一般用 Fe2O3表示) ,后者具有磁性,通常可以采用磁选机在 15000 ~20000 Gs( 磁通量密度) 下除铁,以减少铁的杂质含量。由于研究处于实验室环境,我们仅采用了长度为 10 cm 的半圆形磁铁使用手工方法除铁,除铁效果并不理想,粉煤灰中的氧化铁仅从 1. 95%降至 1. 84%。如果从工业化生产考虑,必须采用磁选机除铁,这是通用的做法。

( 2) 除碳

粉煤灰中存在未完全燃烧的煤粒或残炭,在合成莫来石实验之前必须进行清除,否则在后期加热过程中产生的 CO2会引起烧制品密度的降低,甚至降低莫来石的生成量。粉煤灰中碳的去除有两种方法: 一是利用密度差异进行浮选,浮选后的多孔炭可以用作废物的吸附剂,或制备成过滤材料另一种是将粉煤灰在一定温度下加热除碳,当粉煤灰中碳含量较低、没有太多提取价值时常用。除碳过程一般在 800℃ 下恒温 2 h 即可。这次研究我们采用了上海跃进医疗器械厂生产的 SX2-4-10 型箱式电阻炉对粉煤灰进行了 800℃下恒温 2 h 的除碳处理,效果比较理想,粉煤灰的烧失量 ( LOI) 从 2. 10% 降至 1. 02% 。

( 3) 细磨与混磨

细磨是合成莫来石过程中不可缺少的重要环节,因为烧结法合成莫来石主要是靠Al2O3和 SiO2之间的固相反应完成的。通过细磨可以提高原料的分散度,增加 Al2O3和SiO2的晶格缺陷,提高反应活性,以加速固相反应的进程和降低烧结温度。通常情况下,磨料越细,混合越充分,莫来石化反应越彻底,生成的莫来石数量越多,物理性能越好,但细磨的程度与磨矿设备和经济因素有关,一般保证小于 10 μm 的颗粒占到 80% 以上即可。

本次实验过程中采用了郑州东方机器制造厂生产的 ZJM-20 型周期式搅拌球磨机,以球∶灰∶水 =5∶1∶1 配比研磨 5 h,完全可以达到上述要求。考虑到粉煤灰中莫来石含量已经较高,所以采用的研磨介质为刚玉 ( Al2O3) 质小球,球体直径 2 ~ 3 mm。工业氧化铝采用了焦作万方铝业公司从澳大利亚的进口产品,Al2O3纯度在 99%以上,对工业氧化铝采用了同样的研磨条件。将研磨后的物料按照 60%、70% Al2O3含量进行配料,然后再混磨 1 h 使其达到充分混合。此过程也可以先将粉煤灰与工业氧化铝进行配料,然后再混磨。由于粉煤灰属于脊性料,所以我们在研磨过程中未加任何分散剂,当磨细料黏度增大时可添加少量水稀释以提高研磨效果。

( 4) 除钙

用盐酸处理粉煤灰可以除去粉煤灰中的部分杂质,如铁、钙、镁等,因为盐酸可以与粉煤灰中的活性 CaO ( 或 CaCO3、MgCO3等) 和 Fe2O3( 或赤铁矿、菱铁矿、褐铁矿等)反应生成可溶性盐,其反应式如下:

CaO ( 活性) + 2HCl = CaCl2+ H2O

CaCO3+ 2HCl = CaCl2+ CO2+ H2O

MgCO3+ 2HCl = CaCl2+ CO2+ H2O

Fe2O3+ 6HCl = 2 FeCl3+ 3H2O

FeCO3+ 2HCl = FeCl2+ CO2+ H2O

我们此次酸洗的目的主要是除钙,采用的盐酸浓度为 20%。一般来说,随着盐酸浓度的增加,除铁效果会越来越好,但当盐酸浓度增加到 20% 以后,盐酸浓度与除铁效果的关系不甚明显,其原因是 20. 2% 是盐酸与水的共蒸发点,盐酸在加热、酸浸过程中会迅速逸出,影响酸浸效果。酸浸时,如果提高温度能增加反应物活性,加快反应速度,有利于提高浸出效果。一般情况下,在 80 ~100℃时反应 3 h 就能获得良好的浸出效果,室温下长时间浸泡 ( 2 ~3 d) 也能达到类似的效果 ( 李凯琦等,2001) 。

对细磨后的粉煤灰,采用 20%的盐酸,按照固∶液 = 1∶3 在室温下将浆液放入塑料桶内静置 3 d,然后用自来水冲洗至 pH =7。实验过程中我们发现,静置 3 d 后倒出的清水呈现浅绿色 ( 主要是铁的浸出物) ,浆液呈现白色浑浊物难以沉淀 ( 主要是钙的浸出物) ,更换清水大约需要 2 ~3 d 一次,至 25 d 后每天更换一次清水,此时浸出物基本被清除干净,浆液 pH 值达到中性大约需要 30d 时间。由于是静水冲洗而非流动水洗,所以消耗了大量时间。颗粒物细度的增加也延缓了沉淀的过程。这一步骤在实际生产过程中一般采用压滤法完成。将清洗后的物料放入由上海博迅实业有限公司医疗设备厂生产的 DHG-9000A 型电热恒温鼓风干燥箱中,于 105℃ 下干燥 2 h,然后自然冷却至室温,以备物料压制成型使用。

( 5) 成型

考虑到烧结后试样属脆性材料,并要进行单轴抗压强度实验,所以将物料按照 1 <长径比 <2 成型。为满足试样成型要求,我们专门加工了上端内径为 19 mm,下端内径为19. 5 mm ( 便于取出成型后的试样) ,长度为 600 mm 的钢制模具,并且加工了外径为50 mm的底座。试样采用 WE-30B 型液压式万能实验机单轴加压成型,压力分别选择 100、150 和 200 MPa 3 个水平。因为粉煤灰属于脊性料,成型时采用半干法 ( 含 5% 水分) ,所以在取样时由于试样与模具内壁之间的摩擦力,很容易使试样产生脆皮脱落和脆性断裂现象。为避免上述现象的发生,一方面抛光模具内壁,另一方面在物料中加入了 2% 的糊晶( 淀粉) 作为结合剂,成型效果相当理想。为了考察样品烧结后的收缩率,用游标卡尺对成型样品直径和高度进行逐个测量,并做好记录。

( 6) 烧结

将成型后的试样首先放入 DHG-9000A 型电热恒温鼓风干燥箱中,于105℃下干燥2 h。将干燥后的试样放入湖南湘潭中山仪器厂生产的 SX6-12-16 型全纤维快速升温电阻炉中,在 1000℃以前按照 10℃ /min 的速率升温,1000℃以后以 5℃ /min 的速率升温,分别加热至 1300、1400、1500℃下,然后在不同温度下分别恒温 2、3、4 h。在实验室条件下自然冷却至室温后取出。此次实验过程中每完成一批试样大约需要24 h,因为电阻炉在封闭状态下自然冷却通常需要花费很长时间。烧结过程中的升温速率必须引起注意,这是因为在低温时电阻炉升温较快,至高温时升温速度变慢,所以要不断调节电阻炉电流以确保合成莫来石的实验温度。经自然冷却后的样品,同样采用游标卡尺法对其直径和高度进行逐个测量,并做好记录。

至此,利用粉煤灰烧结合成莫来石的实验过程基本完成,然后就要对烧结试样的物理、力学性能和莫来石含量进行测定。

坚强的犀牛
端庄的钢笔
2026-02-04 10:08:13
使用氢氧化钠测,取一定量的粉煤灰,测好质量(重量),浸泡在足量氢氧化钠溶液中,较长时间后把溶液倒掉,微热烘干后再称重,其差值即为铝的含量。

把余下的物质用足量盐酸浸泡,较长时间后微热烘干后再次称重,这次与第二次的差值即约为铁的含量

大力的睫毛
怕黑的发夹
2026-02-04 10:08:13
碱与煤粉反应可能会生成氢氧化亚铁等物质,该物质呈绿色。

粉煤灰水热合成沸石的一般工艺为:粉煤灰→焙烧(815℃)→NaOH水热处理(90~100℃)→结晶→静置(10~16h)→加入Na2SiO3→过滤→滤液→洗涤→烘干→沸石产品。用NaOH或KOH作为活化剂,配成适当浓度的水溶液,将一定体积碱溶液和一定质量粉煤灰混合均匀,在一定温度条件下老化一段时间,适当温度范围内晶化,然后将溶液过滤,用去离子水洗涤固体(至滤液的pH值约为10),在100℃下进行烘干,即为沸石产品。

风中的猫咪
知性的小甜瓜
2026-02-04 10:08:13

( 1) 粉煤灰的除杂质效果

高铝粉煤灰经 800℃ ×2 h 除碳,粉煤灰的烧失量由原来的 2. 10% 降至 1. 02%,除碳效果明显。除碳前、后粉煤灰粒度变化不大 ( 图 6. 5) ,说明粉煤灰中的炭粒与无机颗粒大小相近,分布一致。若原始粉煤灰中残炭含量较低,高温除碳是比较理想的方法若原始粉煤灰中残炭含量较高,可采用浮选方法 ( 如重介旋流器、微泡浮选机等分选装置)去除,去除的残炭可用作气体或液体废物的吸附剂或加工制备成过滤材料加以充分利用。

图 6. 5 除碳前、后高铝粉煤灰的粒度分布

酸法除钙使粉煤灰中的氧化钙含量从 4. 22% 降至 0. 95%,尽管合成堇青石实验中CaO 固溶体的含量可达 4. 7% ( Sundar 等,1993) ,但在天然堇青石中 CaO 含量一般在0. 1% 以下。粉煤灰经 20% 盐酸酸洗后,其他氧化物含量也略有降低 ( 表 6. 4) 。铁的去除方法通常采用磁选机 ( 高梯度强磁场 107Gs / cm 数量级) 去除,加大磁通量方法不仅可以从粉煤灰中分选出强磁性矿物,而且还可以分选出弱磁性矿物。如果在除碳加热过程中将炉膛中的气氛营造成还原性气氛,也可以将部分非磁性矿物,如赤铁矿 ( Fe2O3) ,转化为磁性矿物,如磁铁矿 ( Fe3O4) ,然后再用磁选机分选去除。除去的含铁矿物可以用作炼铁的原料加以利用。若粉煤灰中 TiO2含量较高,还可以采用氟化铝法除去其中的钛( 林和成等,1999) 。

表 6. 4 高铝粉煤灰除杂质前、后化学成分之对比 ( %)

( 2) 合成堇青石配料的粒度

将除碳后的高铝粉煤灰,用郑州东方机器制造厂生产的 ZJM-20 型周期式搅拌球磨机,以球∶灰∶水 =5∶1∶1 配比研磨 5 h 后,粉煤灰的粒度从原来的 <100 μm 降至 30 μm 以下,且 10 μm 以下的颗粒达 95%以上,说明研磨效果相当理想 ( 图 6. 6 ( a) ) 研磨 5 h 并经20% 盐酸清洗后的粉煤灰粒度有所下降,从 <30 μm 变为 20 μm 以下,而且主峰位置明显转向细颗粒方向一侧,从 4. 89 μm 转至 1. 27 μm ( 图 6. 6 ( b) ) ,说明粉煤灰经酸洗后粒度减小,这是因为盐酸会侵蚀粉煤灰颗粒的外表面。

图 6. 6 细磨 5 h 后粉煤灰粒度与进一步酸洗后粉煤灰粒度分布

实验用的滑石粉直接采用市售辽宁大石桥国利微粉厂生产的 1250 目 ( 10 μm) 滑石粉做配料,以增加合成堇青石原料中缺乏的 MgO 和含量不足的 SiO2数量。工业化生产堇青石时可将滑石原料直接与除碳后的粉煤灰,按堇青石化学计量配比混合后一起细磨,以减少工艺程序,降低生产成本。实验用滑石粉和合成原料配料后的激光粒度分析结果见图6. 7。可以看出,滑石粉的粒度 85% 处于 10 μm 之下,粒度呈正态分布,满足合成堇青石对原料粒度的要求。滑石粉的颗粒形貌在 SEM 下观察呈现叶片状 ( 图 6. 8) 。

图 6. 7 滑石粉的粒度分布

图 6. 8 滑石粉的形貌特征

A、B、C 3 个系列样品配方比例分别为:

A 系列: 酸洗前粉煤灰 + 滑石粉滑石∶粉煤灰 = 1∶1. 6288

B 系列: 酸洗后粉煤灰 + 滑石粉滑石∶粉煤灰 = 1∶1. 6288

C 系列: 酸洗后粉煤灰 + 滑石粉滑石∶粉煤灰 = 1∶1. 5150。

激光粒度分析结果表明,A 系列配方粒度相对较粗B、C 系列配方粒度相对较细。这一结果与粉煤灰酸洗前后粒度变化特征相一致,即酸洗后粉煤灰粒度变小,使得 B、C系列配方粒度减小。B、C 系列二者之间差异不大 ( 图 6. 9) 。各配料激光粒度分析测定参数特征见表 6. 5,A 系列 10 μm 以下颗粒占 79. 18%,B 系列 10 μm 以下颗粒占 99. 30%,C 系列 10 μm 以下颗粒占 98. 54% ,均可满足合成堇青石对原料粒度的要求。

图 6. 9 配料的粒度分布

表 6. 5 配料的激光粒度测定参数

A、B、C 配料的颗粒形貌特征如图 6. 10 所示。

图 6. 10 配料的颗粒形貌

( 3) 合成堇青石配料的化学成分

A、B 和 C 系列配方的化学成分见表 6. 6。其中 A 和 C 系列最接近化学计量堇青石配方,B 系列稍有差异。由于粉煤灰中存在杂质氧化物,所以合成堇青石的化学计量配比主要考虑 MgO、SiO2、Al2O33 种氧化物之间的比例,即 3 种氧化物归一化后的百分比最接近堇青石的化学计量比。Acme 公司生产的陶瓷窑具是世界名牌产品,各种造型的组合支架纤细、质轻,具有极高的节能效果,制品强度高,抗热震性好,其中两种产品的化学成分见表 6. 7。

表 6. 6 合成堇青石配料的化学成分 ( %)

表 6. 7 Acme 公司生产的堇青石产品的化学成分 ( %)

根据 Camerucci 等 ( 2003) 的研究成果 ( 图 6. 11) ,合成堇青石原料在 1350℃时,固熔体的范围较大,也就是说合成原料的配比范围较宽,有利于工业化生产在 1400℃时,固熔体的范围变小,对合成原料配比要求严格。所以本次实验温度分别选择在 1350℃和1370℃ ,恒温时间选择了 2 h 和 3 h,这一范围也与 MgO-Al2O3-SiO2系相图中堇青石形成范围基本一致 ( 图 6. 12) 。恒温时间的选择取决于成型试样的密度和体积,以使其充分发生固相反应为宜。

图 6. 11 合成堇青石原料在 MgO-Al2O3-SiO2三元系统中的位置

图 6. 12 MgO-Al2O3-SiO2系相图( 据陈美凤,1992)

通常而言,利用矿物原料直接制备堇青石产品时,对产品规格的控制难度较大,多数情况下都是首先制备出堇青石原料,再按需要的产品性能将堇青石原料与其他原料 ( 如莫来石) 进行配比,取其各种原料的优点,获得优质的堇青石或堇青石复合材料制品。例如,工业上使用的莫来石-堇青石棚板,即可用预合成堇青石作骨料。

现实的学姐
热情的西装
2026-02-04 10:08:13

高温下,许多熔融的液体急剧冷却所形成的固体,其原子不能达到晶体所需的有序程度,被称之为非晶态,粉煤灰中的玻璃相就是非晶态之中的一种特殊类型,它的无序结构可以有 3 种因素而产生 ( 钱觉时,2002) : ①熔体的急剧淬火②网架的同晶替换③阳离子改性。在这3 种情况中,第一种往往缺乏充足的结晶时间,而后两种则属于聚合的两种不同类型。Henry 等 ( 2004) 认为,玻璃体即无定性部分相对于具有同样化学组成的晶体有更大的能量,因此不管在酸性还是碱性条件下,玻璃体都是支配反应行为的部分,这是因为玻璃体相对晶体键角、键距的改变等结构的缺陷,使其化学键更容易断裂。

粉煤灰中的玻璃体主要来源于高温条件下粉煤中矿物的分解和熔融,不同矿物之间的反应也可以形成玻璃体。矿物在煤粉燃烧过程中对玻璃体的贡献不尽相同,煤中黏土矿物通常是粉煤灰玻璃体的主要来源。根据 Spears ( 2000) 的研究,粉煤灰中的玻璃相和空心微珠主要得益于煤中的伊利石矿物。钱觉时 ( 2002) 给出了具有比较理想组成的高岭土质黏土 ( Al2O3·2SiO2·2H2O) 与碳酸盐之间的化学反应式,所生成的产物有铝硅玻璃体、莫来石、二氧化碳和水,即:

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

式中所给出的铝硅玻璃体组成仅是根据铝含量按照电中性原则来推算玻璃体结构中的阳离子改性剂量,如果硅酸盐的链断裂而发生解聚,将有更多改性剂离子参与反应,那么玻璃体的结构更为复杂,这种情况下很难给出类似上述的化学反应式。

粉煤灰中的玻璃体含量通常都在 50% 以上,在 XRD 曲线上明显可以看出 “鼓包”的存在,对粉煤灰中玻璃体含量的精确测定一般采用强酸 ( 如盐酸或氢氟酸) 溶解法,通过计算酸溶解前后粉煤灰的质量变化就可以知道粉煤灰中的玻璃体含量。粉煤灰中的活性物质主要来自玻璃体,其含量越高,活性越大。XRD 分析表明,准格尔电厂高铝粉煤灰的玻璃体含量为 55. 2% ,其成因主要来自炉前煤中高岭石矿物在高温下的熔融。

Hemmings 等 ( 1988) 在研究粉煤灰颗粒时发现,粉煤灰中玻璃体的化学组成与改性剂含量 ( K2O + Na2O + CaO + MgO) 有明显关系,他们将颗粒密度在 0. 8 ~ 2. 0 g / cm3,薄壁状的有较少改性剂构成的粉煤灰玻璃体称为Ⅰ型玻璃体相应将密度 >2. 5 g/cm3,有相对较多改性剂构成的粉煤灰玻璃体称为Ⅱ型玻璃体。Berry 等 ( 1988) 采用盐酸来溶解粉煤灰中的玻璃体 ( 非晶质铝硅酸盐) ,然后对其进行分析,更为明确地将粉煤灰中Ⅰ型玻璃体和Ⅱ型玻璃体定义如下:

Ⅰ型玻璃体: 一种铝硅酸盐玻璃体,有比较低的改性剂含量 ( CaO + MgO + K2O +Na2O≈8% ) ,通常出现在低密度粉煤灰颗粒中,呈中空状球体

Ⅱ型玻璃体: 一种铝硅酸钙玻璃体,有较高的改性剂含量 ( CaO + MgO + K2O + Na2O≈27%) ,主要出现在高密度、小尺寸粉煤灰颗粒中,呈实心球体。

Ⅰ型玻璃体和Ⅱ型玻璃体,在 SiO2-Al2O3-CaO 三元系统图中分别大致属于 F 类和 C类粉煤灰的范畴。由于这种划分方法存在概念外延上的不封闭,即密度在小于 0. 8 g/cm3和密度在 2. 0 ~2. 5 g/cm3之间,或者改性剂含量在小于 8%、8% ~27% 和大于 27% 的玻璃体划分问题,从而造成了实际应用上的困难。为了操作上的方便,我们在对准格尔电厂粉煤灰玻璃体划分时,将改性剂含量做了如下界定:

Ⅰ型玻璃体: 改性剂含量 ( CaO + MgO + K2O + Na2O) <15%

Ⅱ型玻璃体: 改性剂含量 ( CaO + MgO + K2O + Na2O) ≥15%

通过统计计算,准格尔电厂粉煤灰以Ⅰ型玻璃体占绝对优势,为 83. 6%,Ⅱ型玻璃体仅占 16. 4% ( 表 4. 8) 。这是因为准格尔电厂粉煤灰属低钙粉煤灰 ( CaO <10%) ,CaO含量仅有4. 22%,而且 MgO、K2O 和 Na2O 的含量均在 1% 以下,CaO、MgO、K2O、Na2O四种成分之和仅为 5. 56%。

表 4. 8 准格尔电厂粉煤灰中玻璃体类型及含量

图 4. 8 给出准格尔电厂粉煤灰中这两种玻璃体的部分 FESEM-EDX 分析结果,可以看出,Ⅰ型玻璃体外表比较光滑,Ⅱ型玻璃体外表有的比较光滑,有的粘附有较多的微粒。另外,粉煤灰中的玻璃体并非都呈球状,也有许多呈现出不规则的粒状。

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

图 4. 8 准格尔电厂粉煤灰中的玻璃体类型 ( 附有 EDX 能谱点的颗粒)

阳光的发夹
想人陪的煎饼
2026-02-04 10:08:13
粉煤灰的酸法改性有盐酸法、硫酸法、混酸法和酸-盐混合法。四种方法各有特色,但是也不见得改性后的粉煤灰在性能上就有必然性的提升,这个只能是通过实验比较来说明。要搞清楚普通酸和浓硫酸改性就必须搞清楚改性原理。粉煤灰具有多孔结构、表面积大(多数为2500-5000m2/g)、有表面活性基团和较强吸附能力等特点,其主要成分为SiO2、Al203、Fe2O3及CaO等。经酸处理后的粉煤灰中含有 Al2(SO4)3 、FeCl3及H2SiO3等,这些物质中,特别是硅酸凝胶的存在,能够捕捉悬浮颗粒,起到混凝吸附架桥作用。另外,改性粉煤灰中的水解物质水解时能形成许多复杂的络合物,这些 络合物不断发生缩聚反应,逐渐形成高分子聚合物。随着缩聚 反应的不断进行,聚合物的电荷不断升高,更有利于吸附废水悬 浮的胶体杂质。在混凝搅拌过程,粉煤灰悬浮于不断产生络合 物的废水中。由于粉煤灰颗粒的吸附性,使其被许多络合物和 高分子聚合物包裹着,形成较大的悬浮体。当停止搅拌时,这些悬浮体由于容重较大会迅速沉降,从而提高处理效率。同时经酸处理的粉煤灰颗粒表面形成许多凹槽和孔洞,能加强吸附这些脱稳的胶体颗粒。

所以根据以上原理可知,普通酸与粉煤灰的中的铝氧化物、铁氧化物发生反应,生成铝盐和铁盐并在遇水后这些盐类溶水使得颗粒表面形成大量的孔洞和凹槽。而浓硫酸由于其强氧化性、强酸性、和强烈的吸水性脱水性,可能一方面使得粉煤灰中的铁铝氧化物成盐,另一方面使得颗粒中的结合水脱离出颗粒体(脱水性和吸水性),这样颗粒体本身的上的孔洞,凹槽(酸化作用)和裂隙(吸水脱水作用)就更多了。通过查阅文献,我知道的差别就这些了,尽管有差别但是在实际应用中也不见得浓硫酸酸化改性的效果就一定比普通酸改性的好。具体要看粉煤灰中盐类成分含量及粉煤灰本身结构特征,不同类型的煤炭产出的粉煤灰也有很大差别,另外就是看应用对象了,就像治病要对症下药。楼主,你是否有所收获呢。