2,4,5-三氟苯甲酰乙酸乙酯 cas:98349-24-7外观是怎样的?
中文:2,4,5-三氟苯甲酰乙酸乙酯 ,bolonpharm【CAS】98349-24-7 ,0576,88702855【中文名称】2,4,5-三氟苯甲酰乙酸乙酯 ,【英文名称】3-OXO-3-(2,4,5-TRIFLUORO-PHENYL)-PROPIONIC ACID ETHYL ESTER, 【分子式】C11H9F3O3 , 【分子量】246.18,【外观性状】白色至淡黄色粉末。
三氟乙醇
三氟乙醇
2,2,2-trifluoroethanol
2,2,2-三氟乙醇,具有醇的气味。熔点-45℃,沸点73.6℃,相对密度1.3822(25/4℃)。蒸馏时稳定 ,能与水和多种有机溶剂相混溶。具有能使尼龙(聚酰胺)和多肽溶解的特殊性质。由于具有极好的物理性质及热力学性质,与水混合后可作为兰肯引擎的工作液,从废热源中回收热能。
化学上具有醇类的典型性质,通过各类氧化剂,如:用氯水或V2O5催化下以氧氧化,可得三氟乙醛或者三氟乙酸。三氟乙醇首先为斯乌阿兹催化还原三氟乙酸酐所得。另外的方法,如:三氟乙酰胺催化氢化,四氢化铝锂还原三氟乙酰氯或其酯。最近报导以氧化铜催化氢化2,2,2-三氟乙酸三氟乙酯可得三氟乙醇,产率高达95%。
对人的毒性尚无可查。对小雄鼠50/100万~150/100万的长期暴露可使之睾丸受抑制,当百万分之十时无明显症状。但应当避免空气中的浓度达百万分之五,或者化合物与皮肤长期接触 。
回答者: 地瓜王子ⅩⅧ - 千总 四级 1-25 19:10
三氟乙醇指的是2,2,2—三氟乙醇,是一种重要的脂肪族含氟中间体,由于含有三氟甲基的特殊结构,因此使其性质不同与其他的醇类,可以参与多种有机合成反应,尤其用于合成含氟的医药、农药和染料,国内外需求量越来越大,已经成为含氟精细化学品的重要的中间体之一,目前国内尚没有生产,开发与生产前景非常广阔。 |K}K@}W\X
三氟乙醇的文献合成路线较多,其中已经工业化或具有工业化前景的路线也比较多,按起始原料分为三氟乙酰氯法、三氟醋酐法、三氟醋酸法、三氟醋酸酯法、偏氟乙烯法、HFC-143a(三氟乙烷)法和HCFC—133a(三氟氯乙烷)法等。其中最具开发前景和符合国情的合成路线是HCFC—133a(三氟氯乙烷)法,如浙江大学材料与化工学院化工所,以HCFC-133a,在γ—丁内酯存在下和ω—羧基丁酸钾在200℃和4.5MPa下反应制得三氟乙醇,反应后副产ω—羟基丁酸钾可以还原成γ—丁内酯,回收利用。中科院上海有机所以三氟氯乙烷为原料,在相转移催化剂存在下,温度150-300℃,压力4-15MPa条件下,与羧酸的碱或碱金属盐在水溶液中反应制备三氟乙醇,其中相转移催化剂可以是离子型、非离子型表面活性剂或分子式为XC-nF2OCFSOY的含氟化合物等。另外浙江化工研究院开发出以HCFC—133a为原料,经过酯化,水解二步反应合成三氟乙醇的工艺路线。
三氟乙醇作为一种基础含氟有机中间体,由于具有独特的物化性质,可以作为多种化学助剂,如溶剂、催化剂、引发剂等,另外由于其特殊的分子结构,与其他物质合成的化学品多具有优异的性能。 L+9#o^c
在医药行业中三氟乙醇最主要的用途是作为麻醉剂,以其为原料开发出了低毒的异氟烷和高性能的新型麻醉剂去氯氟烷:三氟乙醇可以将三氟甲基等做为功能基引进药物的结构中,由其合成主要药物有中枢神经兴奋剂氟替尔、取代吡啶类胃壁细胞质子泵阻断剂(用作抗溃疡剂)如Lansoprazole和Panprazole等、抗心律失常药物氟卡同胺、镇痛药物苯并二氮杂卓和排尿困难治疗药物KMD-3212等。在农药行业中,主要用于合成除草剂三氟硫甲基等。 a]S(Y
在染料行业行中,三氟乙醇得到很好的开发与应用,如将CF3CH2O—引入酞菁中,可以增加其溶解性,并能抑制分子间的聚合,另外在一些染料中分子中引入CF3CH2O—和CF3—可以明显改善染料的耐光、耐候和化学稳定性。 Un6o&
作为溶剂,三氟乙醇能溶解醇、酮等含氧化合物和苯、甲苯等芳族化合物,而且能溶解多种聚合物树脂。在反应中三氟乙醇作为非亲核性离子溶剂,可作羧酸的保护性基团;由于三氟乙醇的低亲核性和稳定性也是一些氟化反应及亲核性聚合物的优良溶剂,如聚甲醛、聚酰胺和聚丙烯腈;另外一些聚烯烃聚合时候以三氟乙醇为溶剂,可以得到更高的产率和反应速率,而且能大大改善聚合物的立体规整性,提高聚合物的性能;在一些离子反应和电化学反应中也经常会使用三氟乙醇为溶剂;最近鉴于三氟乙醇溶解性能优良且纯度高,正在开发其用作高效液体色谱法的分离溶剂和手性化合物的色谱分离溶剂的用途。 ]3fu2R i
可作为酰化剂,三氟乙醇是亲核性低的醇;在酯交换反应中生成三氟乙醇缺乏反应性,而可逆反应的另一侧的羟基就能朝一个方向酰化,因此三氟乙醇已经开始广泛用于光学活性醇和甾类化合物的位置选择性酰化,胺的光学拆分及光学活性医药的合成。 ULtO'xZ
三氟乙醇热稳定性强,具有良好的动力学特性,原来仅用于部分热回收系统,由于其对臭氧层破坏系数为零,目前全球性环境问题和节能问题日益得到重视,三氟乙醇今后可以替代氟里昂,因此其在这些领域内的重要性得到重新评价与认识。目前三氟乙醇与水的混合液作为回收废热发电的兰金循环的工作介质用于废热回收发电系统,在今后炼铁厂、水泥制造厂之类的高耗能企业作为环境效益良好的废热回收系统工作流体方面具有巨大的潜力。另外人们利用三氟乙醇与酰胺化合物混合时能产生大量溶解热的特性,进行三氟乙醇与N—甲基吡咯烷酮、N,N-二甲基咪唑啉酮等环状酰胺类化合物混合工作流体吸收式化学热泵的开发,该系统可作为替代电力应用于能使用城市煤气、丙烷气、煤油等的空调设备,与现有化学热泵相比,在低温下不冻结、设备紧凑、取冷采暖能量效率高,工业用和民用前景都非常看好。 }q=|AcXD
可用于合成材料改性,用三氟乙醇改性的磷腈橡胶具有耐低温特性、耐热、阻燃、耐溶剂等性能,广泛应用于航天航空、电子电表气等领域,近年来关于氟磷腈橡胶研究逐渐升温;三氟乙醇与甲基丙烯酸酯化得到三氟乙醇甲基丙烯酸甲酯,与通常的甲基丙烯酸酯一样,具有聚合性有酯气味的无色透明液体,与甲基丙烯酸甲酯相比,具有更优良的聚合性,容易与其他丙烯酸酯、苯乙烯、丙烯腈、醋酸乙烯等共聚,因为具有三氟甲基基团,聚合物具有良好性能,在树脂功能性的改性等方面具有良好的发展前景,广泛应用于涂料、光学信息传输、信息化学品、印刷电路、抗光蚀剂材料等多个领域得到应用。另外在聚酯合成中,引入-OCH2CF3,可以提高平衡常数,得到期望分子量的聚酯。 7^vH=Q[
有机合成领域,三氟乙醇作为重要的基础的有机氟化物,在有机合成中越来越得到重视,如以三氟乙醇为原料合成三氟乙醛,三氟乙醛是一种典型的含氟的醛类;三氟乙醇还可以合成1—呋喃,2,2,2-三氟乙醇、3-氯-4-(2,2,2—三氟乙氧基)苯腈等。 DQ?~Z6Ku
三氟乙醇还有许多用途,而且近年来关于其应用的专利和文献非常之多,比较引人注目的是对蛋白质和酶的作用。 7,/AH~$K_
三氟乙醇作为高附加值、良好发展前景、基础的含氟有机中间体,国内亟需开发,目前国内已经有几家科研单位开发出三氟乙醇的工艺技术,因此国内有关厂家应与科研单位联手,加快工艺技术的提高和市场开发,尽快促进三氟乙醇的产业化。 x(^U3/
对的哦
……
由亚砜类化合物还原得到硫醚类化合物是重要的有机化学转化,传统方法是通过低价金属试剂、金属氢化物、卤离子、磷化合物、Woollin试剂以及膦/氯化试剂来实现这一转化。然而,大多数方法具有以下缺点:1)所用试剂昂贵,2)官能团容忍性差,3)难于处理或反应条件苛刻。因此,需要开发更为有效且原子经济的方法。
技术实现要素:
针对现有技术的不足,本发明的目的在于提供一种硫醚类化合物的合成方法,该合成方法能够得到一系列的硫醚类化合物。
本发明的另一个目的是提供一种合成方法在提高硫醚类化合物产率中的应用,该合成方法能够将硫醚类化合物的产率最高提高至99%。
本发明的目的是通过下述技术方案予以实现的。
一种硫醚类化合物的合成方法,包括以下步骤:将三氯化磷与均匀分布有亚砜类化合物的溶剂均匀混合,混合后于20~25℃反应0.5~6小时,得到硫醚类化合物,
其中,所述溶剂为乙腈,
所述亚砜类化合物与三氯化磷的物质的量的比为1:1.05,所述硫醚类化合物的通式为:
所述亚砜类化合物为:
所述R1为芳基或烷基,所述R2为芳基或烷基。
在上述技术方案中,通过点板检测确定反应时间。
在上述技术方案中,所述亚砜类化合物为1-(丁基亚磺酰基)-4-甲基苯、1-(异丙基亚磺酰基)-4-甲基苯、环丙基亚磺酰基苯、1-(烯丙基亚磺酰基)-4-甲基苯、1-甲基-4-(丙-2-炔-1-基亚磺酰基)苯、1-(苄基亚硫酰基)-4-甲基苯、1-苄基-2-(苄基亚硫酰基)-1H-苯并[d]咪唑、2-(对甲苯基亚磺酰基)乙酸乙酯、1-甲基-3-三氟甲基亚磺酰基-1H-吲哚、3-二氟甲基亚磺酰基-1H-吲哚、二苯基亚砜、二(4-硝基苯基)亚砜、二(4-甲氧基苯基)亚砜、二(2,6-二甲基苯基)亚砜、9H-噻吨-9-酮-10-氧化物、1-甲基-3-(对甲苯亚磺酰基)-1H-吲哚、二苄基亚砜、二丁基亚砜、2-(对甲苯基亚磺酰基)乙酸、4,4’-亚磺酰基二苯酚、N,N-二乙基-2-(对甲基苯亚磺酰基)乙酰胺或亚磺酰双(4,1-亚苯基)二乙酸酯。
在上述技术方案中,在所述分布有亚砜类化合物的溶剂中,所述亚砜类化合物的物质的量与溶剂的体积的比为1:(2~4),所述物质的量的单位为mmol,所述体积的单位为mL。
在上述技术方案中,在得到硫醚类化合物之后,将体积比为10:1的石油醚和乙酸乙酯均匀混合并作为流动相,用所述流动相对所述硫醚类化合物进行洗脱。
上述合成方法在制备得到硫醚类化合物中的应用。
在上述技术方案中,所述硫醚类化合物的产率为66~99%。
硫代双(4,1-亚苯基)二乙酸酯的制备方法,包括以下步骤:
将三氯化磷与均匀分布有亚磺酰双(4,1-亚苯基)二乙酸酯的乙腈均匀混合,混合后于20~25℃反应至少0.5小时,得到硫代双(4,1-亚苯基)二乙酸酯,
其中,所述亚磺酰双(4,1-亚苯基)二乙酸酯与三氯化磷的物质的量的比为1:1.05。
在上述技术方案中,通过点板检测确定反应时间。
在上述技术方案中,所述亚磺酰双(4,1-亚苯基)二乙酸酯的物质的量与乙腈的体积的比为1:(2~4),所述物质的量的单位为mmol,所述体积的单位为mL。
在上述技术方案中,在得到硫代双(4,1-亚苯基)二乙酸酯之后,将体积比为10:1的石油醚和乙酸乙酯均匀混合并作为流动相,用所述流动相对所述硫代双(4,1-亚苯基)二乙酸酯进行洗脱。
上述制备方法在合成硫代双(4,1-亚苯基)二乙酸酯中的应用,产率大于等于93%。
相比于现有技术,本发明的合成方法具有的有益效果为:
1、原料便宜易得;
2、使用的还原剂为三氯化磷,廉价易得,易于保存;
3、此反应得到一系列硫醚类化合物。
附图说明
图1为本发明的硫醚类化合物的结构通式。
具体实施方式
本发明硫醚类化合物的结构通式为:
其中,R1为芳基或烷基,所述R2为芳基或烷基。
应用亚砜类化合物在三氯化磷存在下的溶剂中进行反应,合成出一系列的硫醚类化合物。合成公式为:
本发明反应机理如下式所示:
本发明的合成方法制备得到的典型的硫醚类化合物为:
正丁基(对甲基苯基)硫醚;
异丙基(对甲基苯基)硫醚;
环丙基(苯基)硫醚;
烯丙基(对甲基苯基)硫醚;
炔丙基(对甲基苯基)硫醚;
苄基(对甲基苯基)硫醚;
1-苄基-2-(苄硫基)-1H-苯并[d]咪唑;
2-(对甲苯基硫基)乙酸乙酯;
1-甲基-3-三氟甲硫基-1H-吲哚;
3-二氟甲硫基-1H-吲哚;
二苯基硫醚;
二(4-硝基苯基)硫醚;
二(4-甲氧基苯基)硫醚;
二(2,6-二甲基苯基)硫醚;
9H-噻吨-9-酮;
1-甲基-3-(对甲苯硫基)-1H-吲哚;
二苄基硫醚;
二正丁基硫醚
2-(对甲基苯硫基)乙酸
4,4’-硫代二苯酚
N,N-二乙基-2-(对甲基苯硫基)乙酰胺
硫代双(4,1-亚苯基)二乙酸酯
在本发明的合成方法后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,柱层析技术的具体步骤为:将30克硅胶(规格200-300目)用100毫升石油醚拌匀后,再填入柱子中,然后再加压淋洗柱子至硅胶柱中无气泡,之后用2毫升二氯甲烷将样品溶解后,再用胶头滴管转移得到的溶液,沿着层析柱内壁均匀加入,上样完毕后,接着用相应体积比为10:1的石油醚:乙酸乙酯作为流动相进行洗脱。
在本发明的具体实施方式中,点板检测的步骤为:
用毛细管吸取10微升反应混合物并用0.5毫升二氯甲烷溶解稀释作为待测溶液,用毛细管吸取待测溶液点于薄层色谱硅胶板的基线上,将硅胶板下部置于(石油醚:乙酸乙酯体积比为2:1作为流动相)展缸中,溶剂展开至距硅胶顶部5毫米,取出硅胶板,待溶剂挥发尽,置于紫外灯(波长为254nm)下观察反应体系中的原料是否反应完全。
下述产率测定方法:首先称量出产物的质量,用产物的质量除以产物的摩尔质量,得到产物的物质的量。然后用产物的物质的量除以原料中亚砜类化合物的物质的量,就得到该产物的产率。
核磁共振的仪器以及型号为核磁共振光谱(1H NMR)测试仪,Brucker ARX 400(400MHz),化学位移使用四甲基硅烷作为内标。
下面结合附图和实施例具体实施例进一步说明本发明的技术方案。
实施例1
合成的硫醚类化合物为:(正丁基(对甲基苯基)硫醚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到无色油状液体即可,硫醚类化合物的产率为97%。核磁数据1H NMR(400MHz,CDCl3):δ7.24-7.21(m,2H),7.06(d,J=8.0Hz,2H),2.86(t,J=7.4Hz,2H),2.28(s,3H),1.62-1.53(m,2H),1.47-1.37(m,2H),0.90(t,J=7.4Hz,3H);13C NMR(100MHz,CDCl3):δ135.7,133.3,129.7,129.6,34.0,31.4,22.0,21.0,13.7.
其中,亚砜类化合物为1-(丁基亚磺酰基)-4-甲基苯,来源:安耐吉化学,结构式为:
实施例2
合成的硫醚类化合物为:(异丙基(对甲基苯基)硫醚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(1.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到无色油状液体即可,硫醚类化合物的产率为95%。核磁数据1H NMR(400MHz,CDCl3):δ7.32-7.29(m,2H),7.11-7.09(m,2H),3.34-3.24(m,1H),2.32(s,3H),1.26(d,J=6.8Hz,6H);13C NMR(100MHz,CDCl3):δ137.1,132.9,131.8,129.7,38.8,23.3,21.2.
其中,亚砜类化合物为1-(异丙基亚磺酰基)-4-甲基苯,来源:安耐吉化学,结构式为:
实施例3
合成的硫醚类化合物为:(环丙基(苯基)硫醚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到无色油状液体即可,硫醚类化合物的产率为88%。核磁数据1H NMR(400MHz,CDCl3):δ7.37-7.34(m,2H),7.26(t,J=7.2Hz,2H),7.13-7.09(m,1H),2.20-2.14(m,1H),1.06-1.01(m,2H),0.70-0.65(m,2H);13C NMR(100MHz,CDCl3):δ138.9,128.8,126.8,125.1,12.3,8.6.
其中,亚砜类化合物为环丙基亚磺酰基苯,来源:安耐吉化学,结构式为:
实施例4
合成的硫醚类化合物为:(烯丙基(对甲基苯基)硫醚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到黄色固体即可,硫醚类化合物的产率为89%。核磁数据1H NMR(400MHz,CDCl3):δ7.27-7.26(m,1H),7.26-7.24(m,1H),7.10(d,J=8.0Hz,2H),5.92-5.81(m,1H),5.11-5.06(m,1H),5.06-5.02(m,1H),3.52-3.49(m,2H),2.31(s,3H);13C NMR(100MHz,CDCl3):δ136.6,134.0,132.3,130.9,129.7,117.5,38.1,21.2.
其中,亚砜类化合物为1-(烯丙基亚磺酰基)-4-甲基苯,来源:安耐吉化学,结构式为:
实施例5
合成的硫醚类化合物为:(丙-2-炔-1-基(对甲苯基)硫醚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到黄色油状液体即可,硫醚类化合物的产率为73%。核磁数据1H NMR(400MHz,CDCl3):δ7.39-7.36(m,2H),7.14(d,J=8.0Hz,2H),3.55(d,J=2.8Hz,2H),2.34(s,3H),2.22(t,J=1.2Hz,1H);13C NMR(100MHz,CDCl3):δ137.5,131.4,131.3,129.9,80.2,71.6,23.5,21.2.
其中,亚砜类化合物为1-甲基-4-(丙-2-炔-1-基亚磺酰基)苯,来源:安耐吉化学,结构式为:
实施例6
合成的硫醚类化合物为:(苄基(对甲基苯基)硫醚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到白色固体即可,硫醚类化合物的产率为99%。核磁数据1H NMR(400MHz,CDCl3):δ7.25-7.18(m,7H),7.04(d,J=8.0Hz,2H),4.04(s,2H),2.28(s,3H);13C NMR(100MHz,CDCl3):δ138.0,136.7,132.7,130.9,129.7,129.0,128.6,127.2,40.0,21.2.
其中,亚砜类化合物为1-(苄基亚硫酰基)-4-甲基苯,来源:安耐吉化学,结构式为:
实施例7
合成的硫醚类化合物为:(1-苄基-2-(苄硫基)-1H-苯并[d]咪唑)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(1.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到白色固体即可,硫醚类化合物的产率为95%。核磁数据1H NMR(400MHz,CDCl3):δ7.74(d,J=8.0Hz,1H),7.41-7.37(m,2H),7.31-7.26(m,3H),7.26-7.20(m,4H),7.17-7.15(m,2H),7.10-7.08(m,2H),5.23(s,2H),4.62(s,2H);13C NMR(100MHz,CDCl3):δ151.8,143.8,136.9,136.3,135.8,129.2,128.9,128.8,128.0,127.8,127.0,122.3,122.2,118.6,109.4,47.7,37.7.
其中,亚砜类化合物为1-苄基-2-(苄基亚硫酰基)-1H-苯并[d]咪唑,来源:安耐吉化学,结构式为:
实施例8
合成的硫醚类化合物为:(2-(对甲苯基硫基)乙酸乙酯)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到无色油状液体即可,硫醚类化合物的产率为81%。核磁数据1H NMR(400MHz,CDCl3):δ7.34-7.31(m,2H),7.10(d,J=8.0Hz,2H),4.15(q,J=7.2Hz,2H),3.57(s,2H),2.31(s,3H),1.22(t,J=7.2Hz,3H);13C NMR(100MHz,CDCl3):δ169.9,137.4,131.4,131.1,129.9,61.5,37.6,21.1,14.2.
其中,亚砜类化合物为2-(对甲苯基亚磺酰基)乙酸乙酯,来源:安耐吉化学,结构式为:
实施例9
合成的硫醚类化合物为:(1-甲基-3-三氟甲硫基-1H-吲哚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到黄色油状液体即可,硫醚类化合物的产率为75%。核磁数据1H NMR(400MHz,CDCl3):δ7.79(d,J=7.6Hz,1H),7.38-7.25(m,4H),3.83(s,3H);13C NMR(100MHz,CDCl3):δ137.4,137.1,130.4,129.6(q,J=308.0Hz,1C),123.1,121.4,119.6,110.0,93.3(q,J=2.0Hz,1C),33.4;19F NMR(376MHz,CDCl3):δ-44.96(s,3F).
其中,亚砜类化合物为1-甲基-3-三氟甲基亚磺酰基-1H-吲哚,来源:安耐吉化学,结构式为:
实施例10
合成的硫醚类化合物为:(3-二氟甲硫基-1H-吲哚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到棕色油状液体即可,硫醚类化合物的产率为93%。核磁数据1H NMR(400MHz,CDCl3):δ8.45(s,1H),7.80-7.78(m,1H),7.46(d,J=2.8Hz,1H),7.42-7.40(m,1H),7.30-7.23(m,2H),6.68(t,J=57.6Hz,1H);13C NMR(100MHz,CDCl3):δ136.2,132.0,129.8,123.4,121.4,121.2(t,J=274.0Hz,1C),119.4,111.8,96.7(t,J=3.7Hz,1C);19F NMR(376MHz,CDCl3):δ=-91.96(d,J=60.1Hz,2F).
其中,亚砜类化合物为3-二氟甲基亚磺酰基-1H-吲哚,来源:安耐吉化学,结构式为:
实施例11
合成的硫醚类化合物为:(二苯基硫醚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到无色油状液体即可,硫醚类化合物的产率为99%。核磁数据1H NMR(400MHz,CDCl3):δ7.34-7.31(m,5H),7.29-7.25(m,3H),7.23-7.19(m,2H);13C NMR(100MHz,CDCl3):δ136.0,131.2,129.3,127.1.
其中,亚砜类化合物为二苯基亚砜,来源:安耐吉化学,结构式为:
实施例12
合成的硫醚类化合物为:(二(4-硝基苯基)硫醚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为6h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到黄色油状液体即可,硫醚类化合物的产率为93%。核磁数据1H NMR(400MHz,d6-DMSO):δ8.25(dd,J=8.4,1.6Hz,4H),7.64(dd,J=8.4,2.0Hz,4H);13C NMR(100MHz,d6-DMSO):δ146.7,142.2,131.3,124.8.
其中,亚砜类化合物为二(4-硝基苯基)亚砜,来源:安耐吉化学,结构式为:
实施例13
合成的硫醚类化合物为:(二(4-甲氧基苯基)硫醚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到白色固体即可,硫醚类化合物的产率为99%。核磁数据1H NMR(400MHz,CDCl3):δ7.29-7.25(m,4H),6.85-6.81(m,4H),3.78(s,6H);13C NMR(100MHz,CDCl3):δ159.2,132.9,127.6,114.9,55.5.
其中,亚砜类化合物为二(4-甲氧基苯基)亚砜,来源:安耐吉化学,结构式为:
实施例14
合成的硫醚类化合物为:(二(2,6-二甲基苯基)硫醚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到白色固体即可,硫醚类化合物的产率为99%。核磁数据1H NMR(400MHz,CDCl3):δ7.06-6.99(m,6H),2.22(s,12H);13C NMR(100MHz,CDCl3):δ140.5,134.5,128.6,127.0,21.8.
其中,亚砜类化合物为二(2,6-二甲基苯基)亚砜,来源:安耐吉化学,结构式为:
实施例15
合成的硫醚类化合物为:(9H-噻吨-9-酮)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到黄色固体即可,硫醚类化合物的产率为99%。核磁数据1H NMR(400MHz,CDCl3):δ8.64-8.61(m,2H),7.65-7.57(m,4H),7.51-7.47(m,2H);13C NMR(100MHz,CDCl3):δ180.1,137.4,132.4,130.0,129.5,126.4,126.1.
其中,亚砜类化合物为9H-噻吨-9-酮-10-氧化物,来源:安耐吉化学,结构式为:
实施例16
合成的硫醚类化合物为:(1-甲基-3-(对甲苯硫基)-1H-吲哚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到白色固体即可,硫醚类化合物的产率为70%。核磁数据1H NMR(400MHz,CDCl3):δ7.61(dd,J=7.6,0.4Hz,1H),7.38-7.35(m,1H),7.31(s,1H),7.30-7.26(m,1H),7.17-7.13(m,1H),7.03-7.00(m,2H),6.97-6.95(m,2H),3.82(s,3H),2.24(s,3H);13C NMR(100MHz,CDCl3):δ137.6,136.1,134.9,134.6,130.0,129.5,126.3,122.6,120.5,119.9,109.8,101.4,33.1,20.9.
其中,亚砜类化合物为1-甲基-3-(对甲苯亚磺酰基)-1H-吲哚,来源:安耐吉化学,结构式为:
实施例17
合成的硫醚类化合物为:(二苄基硫醚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到白色固体即可,硫醚类化合物的产率为93%。核磁数据1H NMR(400MHz,CDCl3):δ7.33-7.22(m,10H),3.60(s,4H);13C NMR(100MHz,CDCl3):δ138.3,129.1,128.6,127.1,35.8.
其中,亚砜类化合物为二苄基亚砜,来源:安耐吉化学,结构式为:
实施例18
合成的硫醚类化合物为:(二丁基硫醚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到无色油状液体即可,硫醚类化合物的产率为82%。核磁数据1H NMR(400MHz,CDCl3):δ2.53-2.49(m,4H),1.61-1.53(m,4H),1.46-1.36(m,4H),0.92(t,J=7.6Hz,6H);13C NMR(100MHz,CDCl3):δ32.0,22.2,13.8.
其中,亚砜类化合物为二丁基亚砜,来源:安耐吉化学,结构式为:
实施例19
合成的硫醚类化合物为:(2-(对甲基苯硫基)乙酸)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到黄色固体即可,硫醚类化合物的产率为81%。核磁数据1H NMR(400MHz,CDCl3):δ11.17(s,1H),7.33(d,2H,J=8.20Hz),7.11(d,2H,J=8.20Hz),3.60(s,2H),2.32(s,3H);13C NMR(100MHz,CDCl3):δ175.6,137.6,131.1,131.0,130.1,37.5,21.2.
其中,亚砜类化合物为2-(对甲苯基亚磺酰基)乙酸,来源:安耐吉化学,结构式为:
实施例20
合成的硫醚类化合物为:(4,4’-硫代二苯酚)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到白色固体即可,硫醚类化合物的产率为94%。核磁数据1H NMR(400MHz,d6-DMSO):δ9.62(s,1H),7.14(d,2H,J=8.64Hz),6.73(d,2H,J=8.64Hz);13C NMR(100MHz,d6-DMSO):δ157.0,132.7,124.7,116.3.
其中,亚砜类化合物为4,4’-亚磺酰基二苯酚,来源:安耐吉化学,结构式为:
实施例21
合成的硫醚类化合物为:(N,N-二乙基-2-(对甲基苯硫基)乙酰胺)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到无色油状液体即可,硫醚类化合物的产率为66%。核磁数据1H NMR(400MHz,CDCl3):δ7.36(d,2H,J=8.12Hz),7.10(d,2H,J=8.12Hz),3.68(s,2H).3.36(q,2H,J=7.12Hz),3.31(q,2H,J=7.16Hz),2.32(s,3H),1.18(t,3H,J=7.16Hz),1.10(t,3H,J=7.12Hz);13C NMR(100MHz,CDCl3):δ167.7,137.3,131.5,129.8,42.6,40.4,37.8,21.1,14.5,13.0.
其中,亚砜类化合物为N,N-二乙基-2-(对甲基苯亚磺酰基)乙酰胺,来源:安耐吉化学,结构式为:
实施例22
合成的硫醚类化合物为:(硫代双(4,1-亚苯基)二乙酸酯)
向干燥的15mL schlenck管中加入亚砜类化合物(0.5mmol)和乙腈(2.0mL),然后在25℃下,将三氯化磷(0.525mmol)用注射器滴加到schlenck管中,通过点板检测确定反应时间(即反应完全后)为0.5h,反应结束后,通过柱层析将硫醚类化合物与溶剂和POCl3分离开,得到白色固体即可,硫醚类化合物的产率为93%。核磁数据1H NMR(400MHz,CDCl3):δ7.34(d,2H,J=8.76Hz),7.04(d,2H,J=8.76Hz),2.30(s,3H);13C NMR(100MHz,CDCl3):δ169.3,150.1,133.0,132.3,122.6,21.2.高分辨质谱数据HRMS(MS)m/z calcd for C16H14O4S(M+H)+303.0686,found 303.0674.
其中,亚砜类化合物为亚磺酰双(4,1-亚苯基)二乙酸酯,来源:安耐吉化学,结构式为:
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。
当溶液本身是类似于缓冲溶液一样的情况时,当到达终点的时候,它的pH值突变不明显。那就会导致变色不明显。
另外一种情况是指示剂加的太少或者指示剂本身的变色不明显。例如酸色和碱色颜色接近。
重点讲解:
1、有机物的同系物和同分异构体
这类题的考查方式有:
①确定符合某分子式的所有同分异构体的数目或者具有某些性质、结构特点、支链或侧链的数目等限定条件的同分异构体的数量,或该有机物的结构简式;
②给出某种信息(如空间异构),根据信息确定同分异构体的数量或者结构简式,或者从众多同分异构体中选择某个适宜的物质作为有机合成的中间体。
在确定同分异构体的数目时,要多用推理的方法;在书写同分异构体时,要考虑到碳链异构、官能团位置异构和官能团异构。
例1.下列各对物质中属于同分异构体的是
A、126C与136C B、O2与O3
解析:本题主要考查了学生对“同位素、同素异形体、同分异构体、同系物、同一物质”概念的理解。A为同位素;B为同素异形体;C中的两种物质是以碳原子为中心的四面体结构,而不是平面结构,因此不存在同分异构体,它们为同一种物质;D为同分异构体。
答案:D。
小结:常见的官能团异构体(碳原子数相同)有:
单烯烃和环烷烃(CnH2n);炔烃和二烯烃(CnH2n-2);饱和一元醇和醚(CnH2n+2O);饱和一元醛和酮(CnH2nO);饱和一元羧酸和酯(烃基饱和)(CnH2nO2);芳香醇和酚;葡萄糖和果糖(C6H12O6);麦芽糖和蔗糖(C12H22O11)。注意:淀粉和纤维素尽管表示式相同,但不同称为同分异构体。
例2.已知化合物B3N3H6(硼氮苯)与C6H6(苯)的分子结构相似,如下图:
则硼氮苯的二氯代物B3N3H4Cl2的同分异构体数目为
A、2 B、3 C、4 D、6
解析:本题可抓住硼氮苯分子中能够发生取代反应的位置特点进行组合,可发现其组合方式(指氯原子取代时)有:B—B(1种)、N—N(1种)、B—N(邻、对2种)共四种,所以选C。
2.官能团与性质的关系
这类题的考查方式有:给定生产或生活中涉及到的有机物的结构简式,考查有机物的组成、结构、性质、溶解性、反应类型、特征反应,各反应的共同点,官能团之间的相互影响等。
例3.杀虫剂DDT的结构简式为: ,联合国世界卫生组织曾评价说:“单独从疾病看,DDT拯救了5000万生命,但是由于DDT是难降解的化合物,毒性残留时间长,世界各国已明令禁止生产和使用。”
(1)DDT__________(填难或易)溶于水,原因是__________________。
(2)为了避免或减少污染环境,科学家研制出多种新型杀虫剂,以代替DDT,下列化合物就是其中的一种。
①该化合物能否通过醇的催化氧化增加一个醛基?能否通过醇的消去反应引入一个碳碳双键?分别说明理由。
②1mol该化合物与足量H2反应,消耗的H2的物质的量最大值是_________________。
(3)杀虫剂“1605”(结构见下图)对人畜的毒性远强于DDT,但却未被禁用,请从其结构上说明原因。
解析:该题由联合国世界卫生组织对DDT功过是非的评论导出,意在提醒考生对环境保护、生态平衡等热点问题的关注。除此以外,还提供了二个信息,一是DDT的结构式;二是DDT的性能。
(1)判断有机物能否溶解于水,应从课本知识乙醇、丙三醇、苯酚、乙酸、葡萄糖等可溶于水,烃、卤代烃、硝基化合物等难溶于水的具体实例中规纳出,能溶于水的有机物大多含有—OH、—COOH等官能团(系水基团),而DDT中因无系水基团,所以难溶于水。
(2)①醇能否发生催化氧化和消去反应,与有机物自身的结构特点有着密切的关系。仔细观察该有机物结构,连有羟基的碳原子上无氢(发生催化氧化的结构条件),以及它邻位的碳原子上也无氢(发生消去反应的结构条件),因而上述三个反应均不能发生。
②根据1mol—CHO能与1molH2加成,1mol C=C能与1mol H2加成,则1mol该化合物与足量H2反应,最多可消耗H2物质的量为3mol。
(3)“1605”毒性虽强于DDT,但它具有酯的结构,在自然环境中易从P—O键断裂降解为毒性小的物质,这就是“1605”至今尚未被禁用的主要原因。
3.有机信息迁移与有机合成
这类题型的考查方式有:结合新信息,选择最佳的合成途径。题目中往往涉及到对有机化学的基本知识,基本技能和知识迁移能力的考查(如化学方程式的书写、反应类型的判断、结构简式和同分异构体的判断和书写)。
例4.化合物A(C8H17Br)经NaOH溶液处理后(发生消去反应)生成烯烃B,B(C8H16)经过先用臭氧处理,再在Zn存在下水解(如下图),只生成一种化合物C,C经催化氢化吸收1mol H2生成醇D(C4H10O),用浓硫酸处理D只生成一种无侧链的烯烃E(C4H8)。已知:
试根据已知信息写出下列物质的结构简式:
A__________ B2__________ C__________ E_____________。
解析:由题所给信息可知:烯烃E无侧链。结合题意,则A、B、C、D也应无侧链。
又因为烯烃B用臭氧处理后只生成一种化合物C,证明B一定量一种对称烯烃。由此可知,B的结构简式应为:CH3CH2CH2CH=CHCH2CH2CH3,则可推出A为:CH3CH2CH2CH2CHBrCH2CH2CH3,C为:CH3CH2CH2CHO,E为CH3CH2CH=CH2。
小结:(1)解有机合成题,首先应认真阅读试题,正确判断出要合成的有机物所带官能团及其所在的位置特点,其次根据已有原料、信息和有关反应规律,明确题意并形成解题思路。
(2)解有机信息题,首先要分析信息、寻找规律,一般需从信息中涉及到的官能团和官能团在引入、转换过程中键的断裂方式和成键位置入手,确定信息的信心;其次要根据试题提供的新信息和新规律,对旧知识进行加工,使之得到尽可能的深化和充分的利用,然后在更高深的层次上拓宽。
4.有机物的鉴别、分离、提纯
考查内容有:萃取实验中分液漏斗的使用和萃取分液的实验程序;蒸馏实验装置及温度计的使用等。
例5.实验室用溴和苯反应制取溴苯,得到粗溴苯后,要用如下操作精制:①蒸馏;②水洗;③用干燥剂干燥;④10%NaOH溶液洗;⑤水洗。正确的操作顺序为:
A、①②③④⑤ B、②④⑤③① C、④②③①⑤ D、②④①⑤③
解析:因为粗溴苯里含有苯和溴,要得到纯净的溴苯先要用大量水洗去没有反应的苯和溴,再用NaOH除去残余的溴,然后用水除去残余的NaOH,最后溴苯中的水,应该先用干燥剂干燥,最后再蒸馏。答案:B。
小结:分离和蒸馏是有机物分离和提纯过程中最常用的方法。课本中涉及到的例子有:除去硝基苯中的硝酸、硫酸;除去溴乙烷中的酒精;除去乙酸乙酯中的乙酸;除去苯中的苯酚;除去95%酒精中的水;除去乙醇中的乙酸。
本周练习:
1.能在有机物分子中引入羟基的反应类型有:
①酯化;②取代;③消去;④加成;⑤水解;⑥氧化。其中正确的组合是
A、①②③⑥ B、④⑤ C、②④⑤⑥ D、②④⑥
2.稀土是我国的丰产元素,17种稀土元素性质非常接近;用有机萃取剂来分离稀土元素是一种重要的技术。化合物A是其中的
一种。其结构简式为:
据你所学知识判断A属于:
A、醇类 B、酸类 C、酯类 D、油脂类
3、有机物CH2=CH—CH=CH—CH=CH—CH3与溴按物质的量比1∶1发生加成反应,可以得到产物种类为
A、3 B、4 C、5 D、6
4.某烃完全燃烧时,消耗的氧气和生成的CO2体积比为4∶3,该烃能使酸性KMnO4溶液褪色,不能与溴水反应而使之褪色,则该烃的分子式可能为:
A、C3H4 B、C7H8 C、C9H12 D、C8H10
参考答案:
1、C 2、AC 3、D 4、C
有机化学总复习(二)
六、常见有机物之间的相互转化
掌握各类有机物间的相互联系,使有机化学知识形成体系。
各类链烃及其衍生物间的关系可表示如下:
七、有机实验
(1)制备实验:
三气:CH4、CH2=CH2、CH≡CH
两固:酚醛树脂、肥皂
(2)性质实验:
银镜反应,醛与新制Cu(OH)2反应,酯、二糖、多糖的水解
(3)其他:
1)需要用水浴加热的实验:
银镜反应,制酚醛树脂,制硝基苯,酯和糖的水解
2)温度计的使用
置于反应物中的:制乙烯
置于水浴中的,制硝基苯
置于烧瓶支管口处的:蒸馏
3)石油的分馏
八、需特别掌握的物理性质:
(1)溶解性:有机物均能溶于有机溶剂,能溶于水的有机物为:低级的醇、醛、丙酮、酸
(2)密度:比水轻的——烃、苯及其同系物、酯、油脂
九、有机物的鉴别
对有机物的鉴别最好应选择该物质的特征反应,并且要求操作简便,现象明显。
常见物质的特征反应列表如下:
有机物或官能团 常用试剂 反应现象
C=C双键
C≡C叁键 溴水 褪色
酸性KMnO4溶液 褪色
苯的同系物 酸性KMnO4溶液 褪色
溴水 分层,上层棕红色
醇中的—OH 金属钠 产生无色无味气体
苯酚 浓溴水 溴水褪色并产生白色沉淀
FeCl3溶液 呈紫色
醛基—CHO 银氨溶液 水浴加热生成银镜
新制Cu(OH)2 煮沸生成砖红沉淀
羧基—COOH 酸碱指示剂 变色
新制Cu(OH)2 常温沉淀溶解呈蓝色溶液
Na2CO3溶液 产生无色无味气体
淀粉 碘水 呈蓝色
蛋白质 浓HNO3 呈黄色
灼烧有烧焦羽毛味
十、通过计算推断有机物的化学式
有机物的结构简式是在实验事实的基础上推断出来的。一般情况下,先进行定性和定量实验,计算出该化合物的相对分子质量,求分子式。然后再根据该有机物的性质、推导出结构。
确定有机化合物结构简式一般过程归纳如下:
[例题解析]
例1.有机物H3C— —CH=CH—C≡C—CH3分子中,最多可有多少个原子共面
A、14 B、18 C、20 D、24
解析:可将该有机物按所在平面写成:
可以看出, 所在平面与 所在平面可以重合,—C≡C—为该平面上的延长线,端点的两个—CH3可以沿键轴方向旋转,使—CH3的一个氢原子在此平面上,所以此有机物分子中最多可有20个原子共面。
故本题正确答案为C。
A、盐酸 B、CO2 C、NaOH D、H2SO4
解析:本题是将—ONa变为—OH,所以必须加酸,可将C选项排除,A、D为强酸,亦可将—COONa变为—COOH,亦可排除。
故本题正确答案为B。
例3.把有机物的混合物在一定条件下反应:①甲醇,乙醇和浓硫酸加热得到醚 ②乙二醇与乙酸酯化得酯 ③氨基乙酸与丙氨酸生成二肽,④苯酚和浓溴水,反应所生成的有机物的种类由多到少的顺序是:
A、④③②① B、①②③④ C、③①②④ D、③②①④
解析:
故本题正确答案为C。
例4.下列实验能成功的是( )
A、苯与浓溴水反应(Fe作催化剂)制溴苯
B、福尔马林与苯酚的混合物,沸水浴加热制酚醛树脂
C、氯乙烯加聚的生成物能使酸性KMnO4溶液褪色
D、加热硫酸、乙醇、氯化钠固体的混合物制氯乙烷
解析:
A、必须与液溴反应
B、制酚醛树脂需要浓盐酸或浓氨水做催化剂
C、氯乙烯加聚的产物不再有双键,因此不能使酸性KMnO4溶液褪色
D、以硫酸、氯化钠代替HCl,与乙醇发生取代反应生成氯乙烷,是可行的
故本题正确答案为D。
例5.由饱和一元酸与饱和一元醇形成的酯同饱和一元醛组成的混合物共xg,测得其中含氧yg,则其中碳的质量分数为
A、(x-y) B、1-y/x C、6/7(x-y) D、6/7(1-y/x)
解析:饱和一元酸与饱和一元醇生成的酯,其通式为CnH2nO2,饱和一元醛的通式为CnH2nO,两者的混合物xg中含氧yg,则含碳与氢的质量分数为( ),又:酯与醛中碳元素与氢元素的质量比为 ,所以,混合物中含碳的质量分数为: ×( )= ( )
故本题正确答案为D。
例6.下列各组有机物,不论以何种比例混合,只要二者的物质的量之和不变,完全燃烧时所消耗的氧气的物质的量和生成的水的物质的量均分别相等的是
A、甲烷和甲酸甲酯 B、乙烷和乙醇
C、苯和苯甲酸 D、乙炔和苯
解析:据题意,完全燃烧时所消耗的氧气的物质的量相等则要求两物质物质的量相同时,将氧原子折算掉C或H原子后的分子组成相同;生成水的物质的量相等则要求两物质含H原子个数相同。
A、将C2H4O2改写成CH4(CO2)与CH4耗氧量相同,且均含有4个氢原子
B、将C2H6O改写成C2H4(H2O)与C2H6组成不同
C、将C7H6O2改写成C6H6(CO2)与C6H6耗氧量相同,且均含有6个氢原子
D、C2H2和C6H6燃烧耗氧量与生成H2O的量均不相同
故本题正确答案为A、C。
例7.A、B两种有机物组成的混合物,当混合物的总质量相等时,无论A、B两种有机物以何种比例混合,完全燃烧后生成的二氧化碳质量都相等,符合这一条件的有机物组合是
B、C6H6 C6H5OH
C、CH3OH HOCH2CH2OH
D、CH4 C10H8O2
解析:据题意,完全燃烧后生成的CO2的质量相等,则要求两物质中碳元素的质量分数相同。
A、CH2O与C2H4O2,含碳元素质量分数相同
B、C6H6与C6H6O,含碳元素质量分数不同
C、CH4O与C2H6O2,含碳元素质量分数不同
D、CH4中含1个碳原子同时含4个氢原子,C10H8O2中可将2个氧原子的质量看作32个氢原子的质量,则可视为含有10个碳原子同时含有40个氢原子,即含碳元素的质量分数相同
故本题答案为A、D。
[练习提高]
A、所有碳原子有可能都在同一平面上
B、最多只可能有9个碳原子在同一平面上
C、只可能有5个碳原子在同一直线上
D、有7个碳原子可能在同一条直线上
2.化学式为C6H12的某烯烃的所有碳原子都在同一平面上,则该烯烃的结构简式为______________,若分子式为C10H18的链的分子中所有碳原子也有可能在同一平面上,它的结构简式为_______________________。
3.下列各组试剂中,能鉴别乙醇、己烷、乙烯、乙酸溶液、苯酚溶液等五种无色溶液的是
A、金属钠、FeCl3溶液、NaOH溶液
B、新制Cu(OH)2悬浊液,紫色石蕊试液
C、紫色石蕊液、溴水
D、溴水、新制Cu(OH)2悬浊液
4.将硬脂酸甘油酯和氢氧化钠溶液共热进行皂化反应,能把硬脂酸钠和甘油从混合溶液中分离出来的方法是:①盐析 ②过滤 ③蒸馏 ④分液 ⑤结晶。其中正确的组合是
A、①②③ B、①③④⑤ C、②③④ D、①②④⑤
5.下列各组物质,分别取等物质的量在足量氧气中完全燃烧,耗氧量不同的是
A、乙烷和甲酸乙酯 B、乙炔和乙醛
C、乙烯和乙醇 D、乙醇和乙酸
6.下列各组物质,不管它们以何种比例混合,只要总质量一定,经过燃烧后产生CO2的量也一定的是
A、乙醇和乙醛 B、乙酸和乙醛
C、丙烯和环丁烷 D、乙醛和丙酸甲酯
7.按一定体积比混合而成的丁烷、甲烷、乙醛的混合气体与同温同压下CO2的密度相等。若已知丁烷占总体积的25%,则三种气体的体积比是
A、2∶3∶5 B、1∶2∶5 C、3∶2∶5 D、2∶1∶5
8.有机化合物A、B化学式不同,它们只可能含碳、氢、氧元素中的两种或三种。如果将A、B不论以何种比例混合,只要其物质的量之和不变,完全燃烧时所消耗的氧气和生成的水的物质的量也不变。那么,A、B组成必须满足的条件是______________。
若A是甲烷,则符合上述条件的化合物B中,相对分子质量最小的是(写出化学式)_______________,并写出相对分子质量最小的含有甲基的(—CH3)B的2种同分异构体结构简式_______________________、______________________。
9.有机物A是烃的含氧衍生物。在同温同压下,A蒸气的质量是同体积乙醇的2倍。1.38g的A完全燃烧后,将燃烧产物先通过H2SO4,再通过碱石灰,浓H2SO4质量增重1.08g,碱石灰增重1.98g,取4.6gA与足量钠反应,生成气体在标准状况下的体积为1.68L。已知A不与纯碱反应,试确定A的结构简式和名称。
[参考答案]
1、A、C.
2、
3、C、D 提示:溴水滴入己烷中溶液分层,水层为近于无色,己烷层显橙色;溴水滴入己烯中溶液上、下两层均为无色
4、A 提示:加入食盐细粒使硬脂酸钠与水溶液分层——盐析,再过滤将硬脂酸钠滤出,将滤液蒸馏把甘油蒸出与NaCl溶液分离
5.D
6、C、D
7、D 提示:乙醛的式量为44与CO2相同。因此丁烷和甲烷必须按平均式量为44的比例混合
8.A、B的化学式中H原子数必相同,且相差n个C原子时,同时相差2n个氧原子;C2H4O2;
9.由题及阿佛加德罗定律知:
M(A)=2×46=92
所以,1.38克A的物质的量为
浓硫酸质量增加为水的质量,所以对应生成水的物质的量为 ,对应H的物质的量为0.12mol。
碱石灰增重为吸收CO2的质量,其物质的量为 ,即含C0.045mol。
H ~ A ~ C
0.12 0.015 0.045 ∴含氧=92-3×12-8=48,
8 1 3 则:n(O)=3
所以A的化学式为C3H8O3
又:A ~ H2 ∴含3个—OH
0.05 0.075
1 1.5
则A的结构简式为:
名称为:丙三醇
化合价的记忆:
元素化合价常用口诀表(金属显正价,非金属显负价)
(1)
一价氢氯钾钠银,
二价氧钙钡镁锌,
三铝、四硅、五价磷,
二三铁、二四碳,
二四六硫都齐全,
氢一氧二为标准,
铜汞二价最常见,
单质价数都为零。
代数和为0
(2)
一价氢氟钾钠银,
二价氧钙钡镁锌,
三价铝,四价硅,
三五价为磷,
一二汞铜,二三铁,
四七锰,二四碳,
二四六硫三五氮,
一五七氯常常见,
单质零价永不变。
(3)
一价氢氯钾钠银,
二价氧钙钡镁锌。
三铝四硅五价磷,
谈变价也不难,
二三铁,二四碳,
铜汞正二最常见,
单质元素价为零,
正价、负价要分明。
(4)
一价氢氯钾钠银,
二价氧钙钡镁锌。
三铝四硅五氮磷,
二三铁,二四碳,
二四六硫都齐全
铜汞二价最常见,
莫忘单质价为零。
(5)
钾钠氢银正一价
钙钡镁锌正二价
氟氯元素负一价
通常氧为负2价
铜正一二铝正三
亚铁正二铁正三
碳有正二正四价
硫有负二正四正六价
负一氢氧硝酸根
负二硫酸碳酸根
负三记住磷酸根
正一价的是铵根
[编辑本段]适合初学者的口诀
正一钾钠氢铵银
正二钙镁钡铜锌
负一氟氯负二氧
三铝四铁五氮磷
钾钠氢银正一价
钙镁钡锌正二价
二三铁、二四碳、三铝四硅磷五价、铜汞常见正二价
氟氯溴碘负一价
氧硫元素负二价
单质零价需记清
一价氢钾钠银与氟氯
还有氢氧 硝酸和铵根
二价钙镁钡锌与氧硫
还有硫酸和碳酸
铜汞一 二 铁二三
负一硝酸氢氧根
负二硫酸碳酸根
负三记住磷酸根
正一价的是铵根
钾钠银氢正一价,氟氯溴碘负一价;
钙镁钡锌正二价,通常氧是负二价;
二三铁,二四碳,三铝四硅五价磷;
一三五七正价氯,二四六硫锰四七;
铜汞二价最常见,单质化合价为零。
一价钾钠银氢
二价钙镁钡锌
三价铝,四价硅
一二铜,二三铁
钾钠氢银一价氢
二价氧钙镁钡铜锌
三铝四硅五氮磷
谈变价,也不难
二三铁,二四碳,二四六硫都齐全
一五七氯要记清
一价钾钠银氯氢
二价氧钙钡镁锌
铝价正三氧负二
以上价态要记真
铜一二来铁二三
碳硅二四要记全
硫显负二正四六
负三正五氮和磷
氯价通常显负一
还有正价一五七
锰显正价二四六
最高价数也是七
单质化合价是0
一价氢氟钾钠银
二价氧钙钡镁锌
三铝四硅五氮磷
一二铜汞四七锰
二三铁 二四碳
二四六硫三五氮
一五七氯常常见
单质为零永不变
钾钠银氢正一价
钙镁钡锌正二价
铜一二(+)
铁二三(+)
铝正三
氢正一
氧负二
钾钠氢银正一价,钙镁锌钡正二价;
氟氯溴碘负一价,通常氧是负二价;
铜正一正二铝正三,铁有正二和正三;
碳有正二和正四,硫有负二正四和正六
化学常见物质的颜色
(一)、固体的颜色
1、红色固体:铜,氧化铁
2、绿色固体:碱式碳酸铜
3、蓝色固体:氢氧化铜,硫酸铜晶体
4、紫黑色固体:高锰酸钾
5、淡黄色固体:硫磺
6、无色固体:冰,干冰,金刚石
7、银白色固体:银,铁,镁,铝,汞等金属
8、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭)
9、红褐色固体:氢氧化铁
10、白色固体:氯化钠,碳酸钠,氢氧化钠,氢氧化钙,碳酸钙,氧化钙,硫酸铜,五氧化二磷,氧化镁
(二)、液体的颜色
11、无色液体:水,双氧水
12、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液
13、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液
14、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液
15、紫红色溶液:高锰酸钾溶液
16、紫色溶液:石蕊溶液
(三)、气体的颜色
17、红棕色气体:二氧化氮
18、黄绿色气体:氯气
19、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体
对于溶剂的极性判断,业界还没有一个公认的标准,比较可靠的是根据溶剂介电常数做一个初步的判断。
实际上应用时未必将上述溶剂全部应用(有些溶剂,例如三氟乙酸,乙酸,三乙胺,三丁胺等有着很高的反应活性,可能会与底物发生反应),往往采用混合溶剂分离两种极性差不多的物质(如乙酰二茂铁和二茂铁的柱色谱分离即使用石油醚:乙酸乙酯=10:1的溶剂洗脱),同时混合溶剂也用于物质重结晶(咖啡因在75%乙醇中重结晶)。
常用溶剂的极性顺序:水(最大)>甲酰胺>三氟乙酸>DMSO>乙腈>DMF>六甲基磷酰胺>甲醇>乙醇>乙酸>异丙醇>吡啶>四甲基乙二胺>丙酮>三乙胺>正丁醇>二氧六环>四氢呋喃>甲酸甲酯>三丁胺>甲乙酮>乙酸乙酯>氯仿>三辛胺>碳酸二甲酯>乙醚> 异丙醚>正丁醚>三氯乙烯>二苯醚>二氯甲烷>二氯乙烷>苯>甲苯>四氯化碳>二硫化碳>环己烷>己烷>煤油(石油醚)(最小)。
扩展资料
常用的极性溶剂有:
(1) 水
水不具有任何药理与毒理作用,且廉价易得。所以水是最常用的和最为人体所耐受的极性溶剂。水能与乙醇、甘油、丙二醇及其他极性溶剂以任意比例混合。水能溶解无机盐以及糖、蛋白质等多种极性有机物。液体制剂用水应以蒸馏水为宜。
水的化学活性较有机溶剂强,能使某些药物水解,也容易增殖微生物,使药物霉变与酸败,所以一般以水为溶剂的制剂不易久贮。在使用水作溶剂时,要考虑药物的稳定性以及是否产生配伍禁忌。
(2)乙醇
乙醇也是常用的溶剂。可与水、甘油、丙二醇以任意比例混合,能溶解生物碱、挥发油、树脂等有机物,具有较广泛的溶解性能。乙醇的毒性小于其他有机溶剂。含乙醇20%以上即具有防腐作用,40%以上则能抑制某些药物的水解。但乙醇本身具有药理作用。与水相比存在成本高及易挥发、易燃等缺点。
(3)甘油
本品为黏稠状液体,味甜、毒性小,可供内服与外用。甘油能与乙醇、丙二醇、水以任意比例混合,能溶解许多不易溶于水的药物,如硼酸、鞣酸、苯阶等。无水甘油有吸水性,对皮肤黏膜具有一定的刺激性,但含水10%的甘油则无刺激性,且对药物的刺激性有缓解作用。
甘油由于黏度大,化学活性相对水较弱,并且在30%以上具有防腐性,故常用于外用液体制剂。在内服溶液制剂中,甘油含量在12%(g/ml)以上能防止鞣质的析出并兼有矫味作用。但过多的甘油含量会产生刺激性,且黏度大、成本高,故在使用中受到一定的限制。
硅氧烷
聚合物和
三氟乙酸乙酯
,微量水引起
甲基三乙氧基硅烷
水解,然后乙醇和CF3COOh
酯化
产生水,引起硅氧烷聚合。
1、常温常压下为气态的有机物: 1~4个碳原子的烃,一氯甲烷、新戊烷、甲醛。
2、碳原子较少的醛、醇、羧酸(如甘油、乙醇、乙醛、乙酸)易溶于水;液态烃(如苯、汽油)、卤代烃(溴苯)、硝基化合物(硝基苯)、醚、酯(乙酸乙酯)都难溶于水;苯酚在常温微溶与水,但高于65℃任意比互溶。
3、所有烃、酯、一氯烷烃的密度都小于水;一溴烷烃、多卤代烃、硝基化合物的密度都大于水。
4、能使溴水反应褪色的有机物有:烯烃、炔烃、苯酚、醛、含不饱和碳碳键(碳碳双键、碳碳叁键)的有机物。能使溴水萃取褪色的有:苯、苯的同系物(甲苯)、CCl4、氯仿、液态烷烃等。
5、能使酸性高锰酸钾溶液褪色的有机物:烯烃、炔烃、苯的同系物、醇类、醛类、含不饱和碳碳键的有机物、酚类(苯酚)。
6、碳原子个数相同时互为同分异构体的不同类物质:烯烃和环烷烃、炔烃和二烯烃、饱和一元醇和醚、饱和一元醛和酮、饱和一元羧酸和酯、芳香醇和酚、硝基化合物和氨基酸。
7、无同分异构体的有机物是:烷烃:CH4、C2H6、C3H8;烯烃:C2H4;炔烃:C2H2;氯代烃:CH3Cl、CH2Cl2、CHCl3、CCl4、C2H5Cl;醇:CH4O;醛:CH2O、C2H4O;酸:CH2O2。
8、属于取代反应范畴的有:卤代、硝化、磺化、酯化、水解、分子间脱水(如:乙醇分子间脱水)等。
9、能与氢气发生加成反应的物质:烯烃、炔烃、苯及其同系物、醛、酮、不饱和羧酸(CH2=CHCOOH)及其酯(CH3CH=CHCOOCH3)、油酸甘油酯等。
10、能发生水解的物质:金属碳化物(CaC2)、卤代烃(CH3CH2Br)、醇钠(CH3CH2ONa)、酚钠(C6H5ONa)、羧酸盐(CH3COONa)、酯类(CH3COOCH2CH3)、二糖(C12H22O11)(蔗糖、麦芽糖、纤维二糖、乳糖)、多糖(淀粉、纤维素)
、蛋白质(酶)、油脂(硬脂酸甘油酯、油酸甘油酯)等。
11、能与活泼金属反应置换出氢气的物质:醇、酚、羧酸。
12、能发生缩聚反应的物质:苯酚(C6H5OH)与醛(RCHO)、二元羧酸(COOH—COOH)与二元醇(HOCH2CH2OH)、二元羧酸与二元胺(H2NCH2CH2NH2)、羟基酸(HOCH2COOH)、氨基酸(NH2CH2COOH)等。
13、需要水浴加热的实验:制硝基苯(
,60℃)、制苯磺酸(
,80℃)、制酚醛树脂(沸水浴)、银镜反应、醛与新制的Cu(OH)2悬浊液反应(热水浴)、酯的水解、二糖水解(如蔗糖水解)、淀粉水解(沸水浴)。
14、光照条件下能发生反应的:烷烃与卤素的取代反应、苯与氯气加成反应(紫外光)、
(注意在铁催化下取代到苯环上)。
15、常用有机鉴别试剂:新制Cu(OH)2、溴水、酸性高锰酸钾溶液、银氨溶液、NaOH溶液、FeCl3溶液。
16、最简式为CH的有机物:乙炔、苯、苯乙烯(
);最简式为CH2O的有机物:甲醛、乙酸(CH3COOH)、甲酸甲酯(HCOOCH3)、葡萄糖(C6H12O6)、果糖(C6H12O6)。
17、能发生银镜反应的物质(或与新制的Cu(OH)2共热产生红色沉淀的):醛类(RCHO)、葡萄糖、麦芽糖、甲酸(HCOOH)、甲酸盐(HCOONa)、甲酸酯(HCOOCH3)等。
18、常见的官能团及名称:—X(卤原子:氯原子等)、—OH(羟基)、—CHO(醛基)、—COOH(羧基)、—COO—(酯基)、—CO—(羰基)、—O—(醚键)、
(碳碳双键)、—C≡C—(碳碳叁键)、—NH2(氨基)、—NH—CO—(肽键)、—NO2(硝基)
19、常见有机物的通式:烷烃:CnH2n+2;烯烃与环烷烃:CnH2n;炔烃与二烯烃:CnH2n-2;苯的同系物:CnH2n-6;饱和一元卤代烃:CnH2n+1X;饱和一元醇:CnH2n+2O或CnH2n+1OH;苯酚及同系物:CnH2n-6O或CnH2n-7OH;醛:CnH2nO或CnH2n+1CHO;酸:CnH2nO2或CnH2n+1COOH;酯:CnH2nO2或CnH2n+1COOCmH2m+1
20 、检验酒精中是否含水:用无水CuSO4——变蓝
21、发生加聚反应的:含C=C双键的有机物(如烯)
22、能发生消去反应的是:乙醇(浓硫酸,170℃);卤代烃(如CH3CH2Br)
醇发生消去反应的条件:
、卤代烃发生消去的条件:
23、能发生酯化反应的是:醇和酸
24、燃烧产生大量黑烟的是:C2H2、C6H6
25、属于天然高分子的是:淀粉、纤维素、蛋白质、天然橡胶(油脂、麦芽糖、蔗糖不是)
26、属于三大合成材料的是:塑料、合成橡胶、合成纤维 27、常用来造纸的原料:纤维素 28、常用来制葡萄糖的是:淀粉 29、能发生皂化反应的是:油脂 30、水解生成氨基酸的是:蛋白质 31、水解的最终产物是葡萄糖的是:淀粉、纤维素、麦芽糖 32、能与Na2CO3或NaHCO3溶液反应的有机物是:含有—COOH:如乙酸
33、能与Na2CO3反应而不能跟NaHCO3反应的有机物是:苯酚34、有毒的物质是:甲醇(含在工业酒精中);NaNO2(亚硝酸钠,工业用盐) 35、能与Na反应产生H2的是:含羟基的物质(如乙醇、苯酚)、与含羧基的物质(如乙酸) 36、能还原成醇的是:醛或酮37、能氧化成醛的醇是:R—CH2OH 38、能作植物生长调节剂、水果催熟剂的是:乙烯 39、能作为衡量一个国家石油化工水平的标志的是:乙烯的产量 40、通入过量的CO2溶液变浑浊的是:C6H5ONa溶液 41、不能水解的糖:单糖(如葡萄糖) 42、可用于环境消毒的:苯酚 43、皮肤上沾上苯酚用什么清洗:酒精;沾有油脂是试管用热碱液清洗;沾有银镜的试管用稀硝酸洗涤 44、医用酒精的浓度是:75%46、加入浓溴水产生白色沉淀的是:苯酚 47、 加入FeCl3溶液显紫色的:苯酚 48、能使蛋白质发生盐析的两种盐:Na2SO4、(NH4)2SO4 俗名总结: 1. 甲烷:沼气、天然气的主要成分 2. Na2CO3 纯碱、苏打 3.乙炔:电石气 4. NaHCO3 小苏打 3 乙醇:酒精 5.CuSO45H2O 胆矾、蓝矾 6.丙三醇:甘油 7.SiO2 石英、硅石 8. 苯酚:石炭酸 9. CaO 生石灰 10. 甲醛:蚁醛 11. Ca(OH)2 熟石灰、消石灰 12.乙酸:醋酸 13. CaCO3 石灰石、大理石 14.三氯甲烷:氯仿15.Na2SiO3水溶液 水玻璃 16.NaCl:食盐 17. KAl(SO4)212H2O 明矾 18.NaOH:烧碱、火碱、苛性钠 19.CO2固体 干冰 “有机化学”知识小结1.羟基官能团可能发生反应类型:取代、消去、酯化、氧化、缩聚、中和反应2.最简式为CH2O的有机物:甲酸甲酯、麦芽糖、纤维素3.分子式为C5H12O2的二元醇,主链碳原子有3个的结构有2种4.常温下,pH=11的溶液中水电离产生的c(H+)是纯水电离产生的c(H+)的104倍5.甲烷与氯气在紫外线照射下的反应产物有4种6.醇类在一定条件下均能氧化生成醛,醛类在一定条件下均能氧化生成羧酸7.CH4O与C3H8O在浓硫酸作用下脱水,最多可得到7种有机产物8.分子组成为C5H10的烯烃,其可能结构有5种9.分子式为C8H14O2,且结构中含有六元碳环的酯类物质共有7种10.等质量甲烷、乙烯、乙炔充分燃烧时,所耗用的氧气的量由多到少。11.棉花和人造丝的主要成分都是纤维素
12.聚四氟乙烯的化学稳定性较好,其单体是不饱和烃,性质比较活泼13.酯的水解产物只可能是酸和醇;四苯甲烷的一硝基取代物有3种14.甲酸脱水可得CO,CO在一定条件下与NaOH反应得HCOONa,故CO是酸酐15.应用水解、取代、加成、还原、氧化等反应类型均可能在有机物分子中引入羟基16.由天然橡胶单体(2-甲基-1,3-丁二烯)与等物质的量溴单质加成反应,有三种可能生成物17.苯中混有己烯,可在加入适量溴水后分液除去18.由2-丙醇与溴化钠、硫酸混合加热,可制得丙烯19.混在溴乙烷中的乙醇可加入适量氢溴酸除去20.应用干馏方法可将煤焦油中的苯等芳香族化合物分离出来21.甘氨酸与谷氨酸、苯与萘、丙烯酸与油酸、葡萄糖与麦芽糖皆不互为同系物22.裂化汽油、裂解气、活性炭、粗氨水、石炭酸、CCl4、焦炉气等都能使溴水褪色23.苯酚既能与烧碱反应,也能与硝酸反应24.常温下,乙醇、乙二醇、丙三醇、苯酚都能以任意比例与水互溶25.利用硝酸发生硝化反应的性质,可制得硝基苯、硝化甘油、硝酸纤维26.分子式C8H16O2的有机物X,水解生成两种不含支链的直链产物,则符合题意的X有7种27.1,2-二氯乙烷、1,1-二氯丙烷、一氯苯在NaOH醇溶液中加热分别生成乙炔、丙炔、苯炔28.甲醛加聚生成聚甲醛,乙二醇消去生成环氧以醚,甲基丙烯酸甲酯缩聚生成有机玻璃29.甲醛、乙醛、甲酸、甲酸酯、甲酸盐、葡萄糖、果糖、麦芽糖、蔗糖都能发生银镜反应30.乙炔、聚乙炔、乙烯、聚乙烯、甲苯、乙醛、甲酸、乙酸都能使KMnO4(H+)(aq)褪色“化学实验”知识1.银氨溶液、氢氧化铜悬浊液、氢硫酸等试剂不宜长期存放,应现配现用2.分液时,分液漏斗中下层液体从下口放出,上层液体从上口倒出3.蒸馏时,应使温度计水银球靠近蒸馏烧瓶支管口。分析下列实验温度计水银球位置。(测定溶解度、制乙烯、硝基苯、苯磺酸、酚醛树脂、乙酸乙酯制备与水解、糖水解)4.一种试剂可以鉴别甲苯、氯仿、己烯、酒精、苯酚水溶液、纯碱溶液5.除去蛋白质溶液中的可溶性盐可通过盐析的方法6.饱和纯碱溶液可除去乙酸乙酯中的乙酸;渗析法分离油脂皂化所得的混合液有机物的物理性质规律有机物的物理性质与化学性质同等重要,且“结构决定性质,性质反映结构”不仅表现在化学性质中,同时也体现在某些物理性质上。有机物一些物理性质存在着内在规律,如果抓住其中的规律,可以更好地认识有机物。一、熔沸点 有机物微粒间的作用是分子间作用力,分子间的作用力比较小,因此烃的熔沸点比较低。对于同系物,随着相对分子质量的增加,分子间作用力增大,因此同系物的熔沸点随着相对分子质量的增大而升高。 1. 烃、卤代烃及醛各种烃的同系物、卤代烃及醛的熔沸点随着分子中碳原子数的增加而升高。如:都是烷烃,熔沸点的高低顺序为:;都是烯烃,熔沸点的高低顺序为:;再有,等。同类型的同分异构体之间,主链上碳原子数目越多,烃的熔沸点越高;支链数目越多,空间位置越对称,熔沸点越低。如。 2. 醇由于分子中含有—OH,醇分子之间存在氢键,分子间的作用力较一般的分子间作用力强,因此与相对分子质量相近的烃比较,醇的熔沸点高的多,如的沸点为78℃,的沸点为-42℃,的沸点为-48℃。影响醇的沸点的因素有:(1)分子中—OH个数的多少:—OH个数越多,沸点越高。如乙醇的沸点为78℃,乙二醇的沸点为179℃。(2)分子中碳原子个数的多少:碳原子数越多,沸点越高。如甲醇的沸点为65℃,乙醇的沸点为78℃。 3. 羧酸羧酸分子中含有—COOH,分子之间存在氢键,不仅羧酸分子间羟基氧和羟基氢之间存在氢键,而且羧酸分子间羰基氧和羟基氢之间也存在氢键,因此羧酸分子之间形成氢键的机会比相对分子质量相近的醇多,因此羧酸的沸点比相对分子质量相近的醇的沸点高,如1-丙醇的沸点为97.4℃,乙酸的沸点为118℃。影响羧酸的沸点的因素有:(1)分子中羧基的个数:羧基的个数越多,羧酸的沸点越高;(2)分子中碳原子的个数:碳原子的个数越多,羧酸的沸点越高。二、状态物质的状态与熔沸点密切相关,都决定于分子间作用力的大小。由于有机物大都为大分子(相对无机物来说),所以有机物分子间引力较大,因此一般情况下呈液态和固态,只有少部分小分子的有机物呈气态。
1.随着分子中碳原子数的增多,烃由气态经液态到固态。分子中含有1~4个碳原子的烃一般为气态,5~16个碳原子的烃一般为液态,17个以上的为固态。如通常状况下呈气态,苯及苯的同系物一般呈液态,大多数呈固态。2. 醇类、羧酸类物质中由于含有—OH,分子之间存在氢键,所以醇类、羧酸类物质分子中碳原子较少的,在通常状况下呈液态,分子中碳原子较多的呈固态,如:甲醇、乙醇、甲酸和乙酸等呈液态。3. 醛类通常状况下除碳原子数较少的甲醛呈气态、乙醛等几种醛呈液态外,相对分子质量大于100的醛一般呈固态。4. 酯类通常状况下一般分子中碳原子数较少的酯呈液态,其余都呈固态。5. 苯酚及其同系物由于含有—OH,且苯环相对分子质量较大,故通常状况下此类物质呈固态。三、密度烃的密度一般随碳原子数的增多而增大;一氯代烷的相对密度随着碳原子数的增加而减小。注意: 1. 通常气态有机物的密度与空气相比,相对分子质量大于29的,比空气的密度大。 2. 通常液态有机物与水相比:(1)密度比水小的有烃、酯、一氯代烃、一元醇、醛、酮、高级脂肪酸等;(2)密度比水大的有溴代烃、硝基苯、四氯化碳、氯仿、乙二醇、丙三醇等。四、溶解性研究有机物的溶解性时,常将有机物分子的基团分为憎水基和亲水基:具有不溶于水的性质或对水无吸引力的基团,称为憎水基团;具有溶于水的性质或对水有吸引力的基团,称为亲水基团。有机物的溶解性由分子中亲水基团和憎水基团的溶解性决定。1. 官能团的溶解性 (1)易溶于水的基团(即亲水基团)有:—OH、—CHO、—COOH、—NH2。 (2)难溶于水的基团(即憎水基团)有:所有的烃基(如—、—CH=CH2、—C6H5等)、卤原子(—X)、硝基(—NO2)等。2. 分子中亲水基团与憎水基团的比例影响物质的溶解性 (1)当官能团的个数相同时,随着烃基(憎水基团)碳原子数目的增大,溶解性逐渐降低,如溶解性:(一般地,碳原子个数大于5的醇难溶于水);再如,分子中碳原子数在4以下的羧酸与水互溶,随着分子中碳链的增长,在水中的溶解度迅速减小,直至与相对分子质量相近的烷烃的溶解度相近。 (2)当烃基中碳原子数相同时,亲水基团的个数越多,物质的溶解性越强。如溶解性:。 (3)当亲水基团与憎水基团对溶解性的影响大致相同时,物质微溶于水。例如,常见的微溶于水的物质有:苯酚、苯胺、苯甲酸、正戊醇(上述物质的结构简式中“-”左边的为憎水基团,右边的为亲水基团)。 (4)由两种憎水基团组成的物质,一定难溶于水。例如,卤代烃R—X、硝基化合物R—均为憎水基团,故均难溶于水。3. 有机物在汽油、苯、四氯化碳等有机溶剂中的溶解性与在水中相反。如乙醇是由较小憎水基团和亲水基团—OH构成,所以乙醇易溶于水,同时因含有憎水基团,所以也必定溶于四氯化碳等有机溶剂中。其他醇类物质由于都含有亲水基团—OH,小分子都溶于水,但在水中的溶解度随着憎水基团的不断增大而逐渐减小,在四氯化碳等有机溶剂中的溶解度则逐渐增大。