建材秒知道
登录
建材号 > 硫酸 > 正文

葡萄糖溶解度是多少

无心的猎豹
善良的小丸子
2023-01-26 09:43:40

葡萄糖溶解度是多少?

最佳答案
兴奋的时光
执着的树叶
2026-02-05 08:29:04

葡萄糖在15摄氏度下,溶解度为100ml水中溶解154克。

它是自然界分布最广泛的单糖。葡萄糖含五个羟基,一个醛基,具有多元醇和醛的性质。在碱性条件下加热易分解,应密闭保存。在干燥的条件下,葡萄糖具有良好的稳定性,水溶液可经高压灭菌。过热可导致溶液pH值的下降和焦糖化。

葡聚糖是一种多糖物质,存在于某些微生物在生长过程中分泌的粘液中,分为α-葡聚糖跟β-葡聚糖,为深褐色的胶体溶液。右旋糖酐铁固体为深棕褐色无定形粉末。在空气中有吸湿性易溶于水,溶液是深褐色的胶体溶液,pH5.2-6.5,不溶于乙醇等有机溶剂。

葡萄糖的化学性质

它是自然界分布最广泛的单糖。葡萄糖含五个羟基,一个醛基,具有多元醇和醛的性质。在碱性条件下加热易分解。应密闭保存。口服后迅速吸收,进入人体后被组织利用。1mol葡萄糖经人体完全氧化反应后放出2870kJ能量,这些能量有部分能量转化为30或32 mol ATP。

其余能量以热能形式散出从而维持人体体温,也可通过肝脏或肌肉转化成糖原或脂肪贮存。分子中的醛基,有还原性,能与银氨溶液反应,被氧化成葡萄糖酸铵。葡萄糖可以淀粉为原料,经盐酸或稀硫酸水解制得。也可以淀粉为原料在淀粉糖化酶的作用下而制得。

以上内容参考:百度百科-葡萄糖

最新回答
懦弱的万宝路
大胆的机器猫
2026-02-05 08:29:04

兽用萄萄糖结块还能用吗?可以的

专利名称:一种水溶性兽用药用辅料优糖及其制备工艺的制作方法

技术领域:

本发明涉及一种新型水溶性兽药药用辅料优糖及其制备工艺,属于兽药原料生产领域。

背景技术:

随着我国养殖业的迅猛发展,兽药及饲料添加剂的应用日益广泛,现已成为现代养殖 业中重要的一环,在日益繁荣的兽药生产中,兽药辅料被广泛应用,但目前国内使用的兽药 载体主要为葡萄糖,其缺点是易吸潮、易结块、流动性差,与药物不易混合均匀,并且甜味 重,许多动物不喜进食和饮用,使进入动物体内的药物达不到要求剂量,影响治疗效果,所 以使用葡萄糖作为辅料的产品一上市,在很短的时间便出现结块或变色现象,同时有些药 物和葡萄糖容易起化学反应,导致无法添加,例如新霉素、氯化铵等。所以现代兽药生产中急需一种性质稳定、PH值稳定;活性低,不易和药物发生反 应,不吸潮、不结块、不变色;同时产品分散性,流动性好,易溶于水,水溶液澄清度高,有较 强的吸附性和亲和性,具有缓释增效作用的药用辅料。优糖是由多种无机盐、葡聚糖、糊精及柠檬酸等经高温处理而制成的复合物。它具 有性质稳定、水溶性好、流动性佳、色泽均匀、不易吸湿和不结块等特点。以本品为基质的粉 剂预混剂,不吸潮、不结块、不变色,有利于药物在动物体内吸收和分布,对提高药物的生物 利用度和增加疗效有较大的帮助。

发明内容

技术问题

本发明提供了一种兽药水溶性药用辅料,它具有性质稳定、PH稳定在6. 5-7之间,水溶 性好、流动性佳、色泽均匀、不易吸湿和不结块等特点。技术方案

一种兽药水溶性药用辅料,其特征在于所述兽药水溶性辅料由以下原料组成 优糖(白色)

1)12水硫酸镁40%

2)2水硫酸钠35%

3)葡聚糖15%

4)糊精10% 优糖(黄色)

1)12水硫酸镁40%

2)2水硫酸钠35%

3)葡聚糖15%

4)糊精6%

5)柠檬酸4%

同时,本发明中的兽药水溶性辅料,其特征在于所述兽药水溶性辅料采用下述工艺制

备 优糖(白色)

1)先将12水硫酸镁、2水硫酸钠、葡聚糖、糊精混合搅拌均匀;

2)倒入高温炉内加热至800度使原料溶解,后冷却结块。3)冷却后的复合物经水解搅拌,并用200度烘干并产生结晶 性粉末;

4) 100目筛分,包装入库。 优糖(黄色)

1)先将12水硫酸镁、2水硫酸钠、葡聚糖、糊精、柠檬酸混合搅拌均匀;

2)倒入高温炉内加热至800度使原料溶解,后冷却结块。3)冷却后的复合物经水解搅拌,并用200度烘干并产生结晶 性粉末;

4) 100目筛分,包装入库。有益效果

本发明产品由多种无机盐、葡聚糖、糊精及柠檬酸等经高温

处理而制成的复合物。它具有性质稳定、PH稳定在6. 5-7之间,水溶性好、流动性佳、色 泽均匀、不易吸湿和不结块等特点。以本品为基质的粉剂预混剂,不吸潮、不结块、不变色, 有利于药物在动物体内吸收和分布,对提高药物的生物利用度和增加疗效有较大的帮助。

具体实施例方式

为进一步阐述本发明水溶性兽用药用辅料,特结合实施例作更详尽说明。本发明提供了一种兽药水溶性药用辅料,其特征在于所述兽药水溶性辅料由以 下原料组成

优糖(白色)

1)12水硫酸镁40%

2)2水硫酸钠35%

3)葡聚糖15%

4)糊精10% 优糖(黄色)

1)12水硫酸镁40%

2)2水硫酸钠35%

3)葡聚糖15%

4)糊精6%

5)柠檬酸4%

其中,12水硫酸镁、2水硫酸钠和葡聚糖为主要原料,糊精 为膨松剂,柠檬酸为调色剂。所述兽药水溶性辅料采用下述工艺制备 优糖(白色)

1)先将12水硫酸镁、2水硫酸钠、葡聚糖、糊精混合搅拌均匀;

2)倒入高温炉内加热至800度使原料溶解,后冷却结块。3)冷却后的复合物经水解搅拌,并用200度烘干并产生结晶性粉末; 4) 100目筛分。5)产品检验

产品经检验,水分含量彡6% ;80目通过率为100% ;PH值(5%溶液,25%°C):6. 5-7. 0 ; 澄清度实验澄清;产品经检验符合企业产品质量标准,包装入库。 优糖(黄色)

1)先将12水硫酸镁、2水硫酸钠、葡聚糖、糊精、柠檬酸混合搅拌均匀;

2)倒入高温炉内加热至800度使原料溶解,后冷却结块。3)冷却后的复合物经水解搅拌,并用200度烘干并产生结晶 性粉末;

4) 100目筛分。5)产品检验

产品经检验,水分含量彡6% ;60目通过率为100% ;PH值(5%溶液,25%°C):6. 5-7. 0 ; 澄清度实验澄清;产品经检验符合企业产品质量标准,包装入库。产品是由多种无机盐、葡聚糖、糊精及柠檬酸等经高温处理而制成的复合物。它具 有性质稳定、PH稳定在6. 5-7. 0之间,水溶性好、流动性佳、色泽均匀、不易吸湿和不结块 等特点。以本品为基质的粉剂预混剂,不吸潮、不结块、不变色,且有利于药物在动物体内吸 收和分布,对提高药物的生物利用度和增加疗效有较大的帮助。

权利要求

一种兽药水溶性药用辅料优糖,其特征在于,由以下原料按质量比组成12水硫酸镁40%;2水硫酸钠35%;葡聚糖15%;糊精10%或者糊精6%和柠檬酸4%。

2.权利要求1所述兽药水溶性辅料优糖的制备工艺,包括1)先将12水硫酸镁、2水硫酸钠、葡聚糖、糊精、柠檬酸混合搅拌均匀;2)倒入高温炉内加热至800度使原料溶解,后冷却结块;3)冷却后的复合物经水解搅拌,用200度烘干产生结晶性粉末;4)100目筛分,包装入库。

全文摘要

本发明提供了一种水溶性兽用药用辅料优糖及其制备工艺,属于兽药原料生产领域。以12水硫酸镁、2水硫酸钠、葡聚糖、糊精、以及适量的柠檬酸经过高温溶解再冷却结块,然后水解搅拌并以200度烘干等工艺生产出结晶性粉末。产品性质稳定、pH值稳定;活性低,不易和药物发生反应,不吸潮、不结块、不变色;同时产品分散性,流动性好,易溶于水,水溶液澄清度高,有较强的吸附性和亲和性,具有缓释增效作用,是一种稳定高效的兽用药用辅料。

文档编号A61K47/12GK101979092SQ20101053284

公开日2011年2月23日 申请日期2010年11月5日 优先权日2010年11月5日

发明者张笑意, 曹映海 申请人:南京南农高科兽药研究所有限公司江苏南农高科动物药业有限公司

伶俐的黑裤
默默的芹菜
2026-02-05 08:29:04
西安北郊未央区盛龙广场泷舞舞蹈零基础培训学校告诉大家DS是什么:

领舞又被称呼为DS,是dance shower 的缩写,通常指舞秀者;后来称为领舞或平台。

这个舞种不限制年龄,使用范围广,可增加身体的软度,协调四肢,简单易学,自由随性,朋友聚会 嗨歌都可以跳上一把,如果没有基础的朋友想学习舞蹈的,最好从这个舞开始学。

中国称领舞,领舞是一种职业,多于酒吧等娱乐场所,并非是一种舞蹈。但DS们运用自己的舞蹈功底和所长在音乐的配合下跳出可以活跃气氛的舞姿,商业用途和艺术效果好,所以至今一直在娱乐场所运用。 DS南北及城市间都是有区别的,这跟当地文化和娱乐消费水平有关系。 DS的舞蹈应该说多为即兴,随音乐和需要而走。所以它的流行及发展是不断更新的,这也适合娱乐场所的需要。

DS在中国发展代表了娱乐业的发展水平和中国舞蹈发展水平。 领舞在社会中运用性比较强,要求动作和适应性也强,所以如果做不好很容易被社会淘汰。因为人们的意识及欣赏水平在提升,如果娱乐做不好这一项,那么直接涉及到盈亏。

DS对外受娱乐场所发展方向及发展目标的限制,也同时受自己本身舞蹈功底和适应性的限制。

酒吧文化及娱乐场所的变化直接影响到领舞动作技巧的变化和发展,领舞舞蹈内容及方式是按娱乐场所服务需求进行,领舞是一种职业,并非舞种,是在社会需要的情况下产生的新职业,这种新的职业在社会需要中变化和发展着,这就是领舞。

震动的黑米
儒雅的战斗机
2026-02-05 08:29:04

Dxs网络意思硫酸葡聚糖;大学生电竞运动网。   

[例句]Compared with other types of tissue engineered blood vessel, the DXs have several advantages.

同其它类型的组织工程血管相比,脱细胞异种血管支架具备更多优点。

英语翻译技巧:

第一、省略翻译法

这与最开始提到的增译法相反,就是要求你把不符合汉语,或者英语的表达的方式、思维的习惯或者语言的习惯的部分删去,以免使所翻译出的句子沉杂累赘。

第二、合并法

合并翻译法就是把多个短句子或者简单句合并到一起,形成一个复合句或者说复杂句,多出现在汉译英的题目里出现,比如最后会翻译成定语从句、状语从句、宾语从句等等。

高贵的咖啡豆
激昂的小馒头
2026-02-05 08:29:04
微生物来源活性多糖的研究进展

【关键词】 多糖;,,,微生物;,,,药用;,,,生物合成

摘要: 活性多糖是新药研发中的一个热点,其中研究相对较多的是来源于微生物的多糖。近年来,关于微生物多糖的研究有了进一步的发展,本文对药用微生物多糖在生物合成、作用机制和构效关系等各方面的最新研究进展进行了综述。

关键词: 多糖; 微生物; 药用; 生物合成

Advances in the research of active polysaccharides derived from microbes

ABSTRACT Over the past few years, many advances have been made toward research on active polysaccharides especially microbial polysaccharides, it becomes a hot spot in new drug research and development. This review will focus on recent studies that illustrate the biological activities, mechanisms of action and structurefunction relationships of microbial polysaccharides for drug use.

KEY WORDS Polysaccharide Microorganism Drug use Biological activities

多糖广泛分布于高等植物、地衣、海藻、动物和微生物中。微生物来源的多糖是至今研究得比较详细的一类多糖,其广泛的生物活性使得其已成为微生物药物一个重要的组成部分,且在新药研发中越来越受到重视。本文对迄今为止所发现的微生物多糖的药用生物活性进行了综述,并总结了近年来关于多糖构效关系和作用机理方面的研究成果。

1 免疫调节功能

免疫调节剂在疾病治疗中的作用越来越受到重视。多糖免疫调节剂于40余年前被首次发现,近二十年来,有更多微生物来源的多糖被确认对机体免疫反应的调节有着极为重要的意义。这些多糖的免疫调节作用涉及到免疫系统的各个方面,对于其免疫调节机制的研究也体现在各个层次上,对这些多糖分子决定它们与宿主免疫系统相互作用的结构特征也已经进行了更为深入的研究。以下对几种比较典型的免疫调节剂分别进行介绍。

1.1 两性离子多糖 两性离子多糖(zwitterionic polysaccharides,Zps)是有同时含有阳离子和阴离子结构以实现其生物功能的一类多糖。多糖A(PS A)是Zps的分类原型。PS A是从革兰阴性厌氧菌脆弱拟杆菌中分离得到的两种荚膜多糖中的一种。Zps在菌体表面组装成荚膜多糖复合物(CPC)。早期研究证明,CPC能调节腹腔内脓毒症伴随性脓肿的形成〔1〕。CPC的腹膜内给药能诱导脓肿形成,而皮下和肌肉的预防性给药则能防止宿主在细菌感染后形成脓肿。一方面,在诱导脓肿形成过程中,Zps扮演了多重角色,它能诱导细菌在腹腔间皮表面的粘附,并能刺激某些促免疫细胞因子和化学增活素,进而诱导宿主细胞CAMs的表达,完成腹腔内多形核白细胞的募集。另一方面,Zps预防脓肿形成、保护机体免于免疫反应的作用,并非是作为一种经典的免疫原去介导特异性的免疫反应,而是对宿主的免疫系统进行调节,从而对导致脓肿形成的免疫反应实现全面抑制。其具体机制是Zps对CD4+T细胞活性和IL2生成的调节〔2〕,而IL2似乎是Zps调节机体免疫以预防脓肿的中心环节〔3〕。对于其构效关系的研究表明,Zps同时含有阴阳电荷基团的重复单元是其免疫调节作用的关键性结构,破坏多糖的电荷结构能使其活性显著降低〔4〕。

1.2 β(13)葡聚糖从酵母和真菌中纯化得到的β(13)葡聚糖是另一类免疫调节剂。沿着β(13)葡聚糖主链随机分布着β(16)葡聚糖基支链。Williams等证明β(13)葡聚糖能显著增加动物体内嗜中性粒细胞水平并增加骨髓细胞的增殖。PGG是Williams研究组经高度纯化已获专利的一种β(13)葡聚糖。PGG给药后,嗜中性和嗜酸性粒细胞的比例增加,从给药小鼠体内得到的嗜中性粒细胞,在体外对大肠埃希菌的吞噬作用增加〔5〕;巨噬细胞的形态发生改变,巨噬细胞同时表现出磷酸酶活性增加和脂多糖(LPS)刺激的NO生成的特征〔6〕。研究表明,β(13)葡聚糖能调节淋巴细胞和单核细胞中促免疫细胞因子的产生〔7〕。β(13)葡聚糖对NFκB样和NFIL6样转录因子的调节作用具有时间和浓度依赖性〔8〕。其所涉及的信号转导通路与超抗原LPS不同。PGG用于预防治疗也获得了肯定的实验结果。能显著降低腹腔内脓毒症的致死率。Williams在脓毒症小鼠模型试验中研究了β(13)葡聚糖对转录激活、细胞因子表达的影响,发现与对照动物相比,NFκB和NFIL6的核结合活性降低,TNFα和IL6的mRNA水平也有所下降。转录因子活性和细胞因子表达的下调和败血症动物的存活率升高是正相关〔10〕。β(13)葡聚糖的免疫调节生物活性基于它们与巨噬细胞和多形核中性粒细胞(PMNs)的直接作用。Muller等的工作表明,磷酸葡聚糖,一种水溶性的(13)βD葡聚糖,能够与人或鼠的单核/巨噬细胞结合。这种结合特异地导致了外来细菌的内在化和增加的胞浆空泡化〔11〕。β(13)葡聚糖的免疫调节还涉及到补体途径。补体受体3(CR3)也已经被确认是某些葡聚糖的受体〔12〕。CR3介导的吞噬作用和脱颗粒作用需要CR3结构域上一个iC3b结合位点和一个葡聚糖结合位点同时与配基的结合。用抗PGG葡聚糖受体的单克隆抗体对中性白细胞处理,可以抑制NFκB样因子的激活〔13〕。将酵母菌株煮沸和酶处理得到可溶和不可溶的葡聚糖粗品。不可溶的葡聚糖可通过磷酸化、硫酸化和氨基化等方式进行衍生化修饰以提高其溶解性。可溶性葡聚糖在水溶液中主要以线形的三螺旋结构存在。研究表明,糖链的螺旋结构构象是其生物活性存在的必要条件,而糖链中的亲水性基团(多羟基)应位于螺旋体的表面〔14〕。微粒酵母葡聚糖的免疫调节活性还受其分子量和β(16)糖苷键数目的影响。同样的情况也发生在其他的一些β(13)D葡聚糖上,如真菌多糖pestalotan等。另外,支链长度也会影响多糖的活性。从真菌Phytophthoraparasitica中分离得到的活性β(13)D葡聚糖,其具有葡聚三糖支链的组份,活性大大高于具有葡聚二糖支链的组分〔16〕。

1.3 甘露聚糖从白念珠菌中分离得到了有一定免疫调节活性的甘露聚糖。巨噬细胞递呈的甘露糖结合凝集素(MBL)能与甘露聚糖结合,并通过一种非自身识别机制激活宿主免疫系统。甘露聚糖包裹感染性抗原并介导了内吞和吞噬作用,甘露聚糖受体识别多糖里的一个重复单位,这种识别导致了细胞信号转导、细胞因子产生和补体的激活。研究表明,白念珠菌甘露聚糖在皮下注射给药后对宿主的免疫抑制作用与用药后迟发型超敏反应被抑制有关〔17〕。IL4是介导甘露聚糖特异性诱导免疫下调的关键性细胞因子。另外也有研究表明,IL12p40、IL10和IFNγ对CD+T细胞(下调效应细胞)的产生也有一定作用〔18〕。

1.4 蛋白结合多糖从真菌蘑菇中分离得到了蛋白结合多糖PSK和PSP。这些化合物在结构上比较相近,分子量约为100kDa〔19〕。其单糖间以α(14)和β(13)糖苷键连接,蛋白部分则以天门冬氨酸和谷氨酸为主,蛋白含量约为15%。这类多糖能够抑制体外肿瘤细胞系的生长并具有体内的抗肿瘤活性。对食道癌、胃癌、肺癌、卵巢癌和子宫颈癌等有肯定的防治效果。这类多糖的免疫调节作用机制尚不清楚。有研究表明,小鼠在PSK给药处理后,PSK能结合并抑制免疫抑制细胞因子TGFβ〔20〕。PSK还能够激活嗜中性粒细胞,这些可能是PSK抗癌活性的部分原因。PSK和PSP是生物反应调节剂,能刺激T细胞的激活和诱导IFNγ和IL2的生成。也有研究发现PSK和PSP能增强小鼠体内的超氧化物歧化酶(SOD)的活性〔21〕。

1.5 透明质酸透明质酸(HA)可以由链球菌产生,同时也是组成哺乳动物组织胞外基质的一种主要的糖类成分,在皮肤、关节、眼和大多数其它的器官和组织中都有存在。透明质酸是一个二糖的重复。该二糖是一种最简单的阴离子氨基葡聚糖。透明质酸是通过与真核细胞CD44受体的结合来完成对免疫系统的调节作用。这种配体受体间的相互作用对于T细胞胞间通信和白细胞外渗的调节是至关重要的〔22〕。低分子量HA则可被用于阻断T淋巴细胞CD44和真核细胞来源HA之间的相互作用。这在临床上可被用于防止同种异体移植的排斥反应以保护机体器官的功能。另外,HA能促使创伤愈合,并能在眼睛和关节外科中被用作人体HA的替代品〔9〕。

2 抗肿瘤活性微生物

多糖的抗肿瘤活性多与其免疫调节功能密切相关。多糖能激活免疫细胞,并诱导多种免疫细胞因子和细胞因子受体基因的表达,增强机体的抗肿瘤免疫力。从担子菌门真菌中得到的香菇多糖、裂褶多糖、云芝多糖、茯苓多糖等抗肿瘤多糖,在国内外临床上已普遍应用,都具有上述免疫调节剂的特征结构。从香菇子实体和深层发酵菌丝体中得到的两种具抗肿瘤活性的多糖分别为β(13)葡聚糖和含少量肽的α甘露糖。云芝多糖PSK则具有蛋白结合多糖结构。裂褶多糖和茯苓多糖也是β(13)葡聚糖,但当茯苓多糖含有β(16)葡聚糖侧链时没有活性,而用高碘酸盐氧化反应将侧链除去后,却表现出显著的抗肿瘤活性。免疫调节多糖的抗肿瘤作用需要宿主免疫系统的参与,但有些微生物多糖在体外也表现出对肿瘤细胞生长的抑制作用。除了免疫调节外,近年来对多糖抗肿瘤活性的其它作用机制也有所研究。主要有以下几个方面〔23〕:(1)影响细胞的生化代谢:茯苓多糖对肉瘤S180细胞的增殖有抑制作用,可导致S180细胞膜唾液酸(SA)含量增加,而膜磷脂、花生四烯酸和豆蔻酸的含量下降,细胞膜的PI转换被显著抑制,影响了肿瘤细胞转移和相关抗原的表达。香菇、猪苓、茯苓多糖能抑制人早幼粒细胞白血病HL60细胞酪氨酸蛋白激酶(TPK)的活性,激活磷酸酪氨酸蛋白磷酸酶(PTPP),可降低细胞酪氨酸蛋白的磷酸化程度;(2)影响细胞周期:某些多糖可能作用于肿瘤细胞的细胞周期。Kamei等将云芝多糖与结肠癌细胞AGS一起培养4d后,肿瘤细胞的数量比对照组明显减少,流式细胞术检测表明,肿瘤细胞的生长被阻滞于S期和G2/M期〔15〕。(3)抗氧化作用:机体内过量的超氧化自由基和脂质过氧化物(LPO)对DNA的持续损伤,会导致细胞的癌变。动物和临床试验表明云芝多糖PSK能增强超氧化物歧化酶(SOD)的活性,缓解肿瘤宿主体内的氧化应激状态。Kariya等在联氨氧化反应体系中观察到云芝多糖有自由基清除剂作用,并通过电子自旋共振检测,证明其有拟SOD的作用。又有报道云芝多糖能增强正常小鼠和正常迟发型超敏感性(DH)小鼠淋巴细胞、脾及胸腺中SOD的活力,而对肿瘤组织中SOD则有明显的抑制作用。(4)其它:香菇、云芝和灵芝等多糖均能抑制鼠肝细胞对致癌物苯并芘的吸收。香菇多糖能使肿瘤部位的血管扩张和出血,造成肿瘤组织坏死。有些微生物来源的多糖与肿瘤细胞表面的糖类分子很相似,能抑制肿瘤细胞的粘附,从而抑制了肿瘤细胞的侵袭与转移〔24〕。

3 抗病毒活性

多糖的抗病毒作用已引起医药界的高度重视。尤其在抗HIV方面,硫酸酯化多糖因为其活性明确,已成为近年来的研究热点〔26〕。研究表明,其作用机制除了多糖的免疫激活作用外,该类聚合物可以通过阻断HIV病毒gp120与宿主细胞CD4受体的结合而发挥作用,这可以阻断病毒对宿主细胞的吸附,防止合细胞的形成〔25〕。某些硫酸多糖还能够抑制HIV逆转录酶活性,硫酸化侧链与RNA模板引物上的某些酶有相同的结合位点,从而产生竞争性抑制作用。最近的研究又发现,硫酸多糖与HIV1反式激活因子tat的结合能阻止tat蛋白进入胞内,使HIVLTR的转录激活受到抑制,从而抑制了HIV1的复制和整合。硫酸多糖的抗病毒活性首先源于其聚阴离子特性,因此硫酸基团是该类多糖活性的必要条件。分子中硫酸基团的含量越高,其抗HIV的作用越强。但硫酸根过多会产生抗凝血等不良反应〔27〕。硫酸基团分布的空间构象对抗病毒活性也有影响,如Tat蛋白与肝素的结合要求至少有2O、6O和N位置的硫酸化〔28〕。糖链柔性的降低能升高硫酸多糖的抗病毒活性。分子大小是多糖抗病毒活性的另一个影响因素。硫酸葡聚糖抗HIV的活性随着相对分子质量的增加而增加,相对分子质量在1×104~5×105的范围内能保持最大活性。除了抗HIV外,多糖对其他类型病毒也有抑制作用,如单纯疱疹病毒(Herpes simplex virus,HSV1,HSV2)、巨细胞病毒(Cytomegalovirus,CMV)、流感病毒(Influenza virus)、囊状胃炎病毒(Vesicular stomatitis virus,VSV)等〔29〕。香菇多糖具有抗肿瘤作用,硫酸酯化后则具有显著的抗艾滋病作用,在浓度为100mg/L时能完全抑制RT活性,10~100mg/L时能抑制合体细胞的形成,10mg/L时能强烈抑制HIV抗原的合成,并能保护被HIV感染的MT4细胞。但硫酸酯化后的多糖却失去了原有的抗肿瘤活性。由此推测硫酸酯化多糖和非硫酸化多糖的免疫调节作用机制是不同的。通过13CNMR、苯胺蓝荧光法及粘度法测定证明,硫酸基团的引入造成多糖理化性质及其空间立体构象的变化,而这正是多糖活性的决定因素。

4 其它活性

多糖的免疫调节功能使其在临床上具有抗感染和抗炎活性。免疫调节剂的使用相对于常规药物治疗具有其独特的优点。对宿主免疫系统的先天抗感染能力的增强可能会有效地解决抗生素耐药的问题。吴倩等应用重组sIL1 RⅠ为靶点建立抑制剂筛选模型,从链霉菌的代谢产物中得到IL1的拮抗剂139A,动物模型的研究表明它们具有抗类风湿性关节炎的作用〔30〕。对139A生物合成中引导糖基转移酶基因的克隆和鉴定工作也已经完成〔31〕。对中药植物多糖降血糖活性的研究较为普遍,近年来,从微生物中也发现了一些有明显降血糖作用的多糖。从Cordyccps sinensis中提取得到的多糖CSF10能增强葡萄糖激酶活性,加速葡萄糖的代谢;并可以降低GLUT2蛋白水平从而抑制肝脏葡萄糖的输出,最终达到降低血糖的目的〔32〕。另外,发现某些微生物来源多糖(如银耳多糖)和一些多糖的硫酸化衍生物,具有肝素样抗凝血作用,其抗凝活性与多糖分子量和硫酸化程度相关;木耳多糖、银耳多糖等对血栓的形成有抑制作用,这可能与它们降低血栓纤维蛋白原含量,降低血小板数目及其粘附力的能力有关;香菇多糖可促进胆固醇代谢而降低血清胆固醇含量,从而达到降血脂的目的;灵芝多糖能抑制人嗜中性粒细胞自发和Fas介导的细胞凋亡,这与抗衰老活性相关;灵芝中的一种小分子多糖能增加蛋白和核酸的合成;而某些微生物多糖对RNase有抑制作用,可减少RNA降解,对RNA治疗可起到协同作用。5 结语

多糖类药物具有多效性、低毒性、来源广泛、天然绿色等优点,多糖与现有药物的联合用药可以提高药物的作用范围和效力,减少用药量,并可防止或推迟耐药的出现。但由于多糖结构太复杂,所以不易控制其质量标准,结构测定及合成难度较大;缺乏明确的作用机制研究;而有些多糖在天然产物中含量很低且不易分离得到。这使它们在临床上的应用受到限制。近年来,随着结构分析技术的进步和作用机制研究的不断积累和深入,人们对多糖如何作用于细胞因子网络、协调生物学功能的结构特征有了更多的了解,发现了一些多糖的特异受体,为新活性化合物的开发提供了基础。对于多糖构效关系的认识也更为丰富,为提高活性而进行的结构改造工作也有很大进展。多糖的结构研究是多糖研究中亟待解决的薄弱环节。在确保多糖纯度的前提下,现有二维核磁技术的结合(如:COSY谱、NOESY谱、HOHAHA谱、TOCSY谱等)使我们有可能推导出部分多糖完整的一级结构〔33〕。而质谱由于其高度的灵敏性,在多糖尤其是极少量多糖的结构分析中,也发挥了越来越重要的作用,FABMS和液质联用技术已越来越广泛地用于多糖的结构分析中。多糖的高级结构分析也有所发展,但还无法做到像核酸和蛋白质结构测定那样自动化、微量化和标准化。关于药用微生物多糖生物合成的研究也逐渐开展起来。对这些微生物菌株进行的多糖合成基因分析发现有共同的操作子结构,暗示了这些多糖的生物合成拥有相同的分子机制。对于多糖合成基因簇及其生物合成途径更深入的了解,能为进一步的组合生物学研究,以及最终获得新结构多糖、改变天然多糖理化性质、提高多糖的活性和产量提供理论基础。

参考文献

〔1〕 Kasper D L, Onderdonk A B, Crabb J, et al. Protective efficacy of immunization with capsular antigen against experimental infection with Bacteroides fragilis 〔J〕. J Infect Dis,1979,140:724

〔2〕 Tzianabos A O, Russell P R, Onderdonk A B, et al. IL2 mediates protection against abscess formation in an experimental model of sepsis 〔J〕. J Immunol,1999,163:893

〔3〕 Tzianabos A O, Onderdonk A B, Rosner B, et al. Structural features of polysaccharides that induce intraabdominal abscesses 〔J〕. Science,1993,262:416

〔4〕 Tzianabos A O, Kasper D L, Cisneros R L, et al. Polysaccharidemediated protection against abscess formation in experimental intraabdominal sepsis 〔J〕. J Clin,1995,96:2727

〔5〕 Williams D L, Sherwood E R, Browder I W. Effect of glucan on neutrophil dynamics and immune function in Escherichia coli peritonitis 〔J〕. J Surg Res,1988,44:54

〔6〕 Cleary J A, Kelly G E, Husband A J. The effect of molecular weight and beta1,6linkages on priming of macrophage function in mice by (1,3)betaDglucan 〔J〕. Immunol Cell Biol,1999,77:395

〔7〕 Soltys J, Quinn M T. Modulation of endotoxin and enterotoxininduced cytokine release by in vivo treatment with beta(1,6)branched beta(1,3)glucan 〔J〕. Infect Immun,1999,67:244

〔8〕 Wakshull E, BrunkeReese D, Lindermuth J, et al. PGGglucan, a soluble beta(1,3)glucan, enhances the oxidative burst response, microbicidal activity, and activates an NFkappa Blike factor in human PMN: evidence for a glycosphingolipid beta(1,3)glucan receptor 〔J〕. Immunopharmacology,1999,41:89

〔9〕 Tzianabos O. Polysaccharide immunomodulators therapeutic agents: structural aspects and biologic function 〔J〕. Tzianabos,2005,13(4):523

〔10〕 Williams A, Sun X, Fischer J E, et al. The expression of genes in the ubiquitinproteasome proteolytic pathway is increased in skeletal muscle from patients with cancer 〔J〕. Surgery,1999,126:744

〔11〕 Muller A, Rice P J, Ensley H E, et al. Receptor binding and internalization of a watersoluble (13)βglucan biologic response modifier in two monocyte/macrophage cell lines 〔J〕. J Immunol,1996,156:3418

〔12〕 Yan J, Vetvicka V, Xia Y, et al. Betaglucan, a "specific" biologic response modifier that uses antibodies to target tumors for cytotoxic recognition by leukocyte complement receptor type 3(CD11b/CD18) 〔J〕. J Immunol,1999,163:3045

〔13〕 Wakshull E, BrunkeReese D, Lindermuth J, et al. PGGglucan, a soluble beta(1,3)glucan, enhances the oxidative burst response, microbicidal activity, and activates an NFkappa Blike factor in human PMN: evidence for a glycosphingolipid beta(1,3)glucan receptor 〔J〕. Immunopharmacology,1999,41:89

〔14〕 Kulicake W M. Correlation between immunological activity, molar mass, and molecular structure of different (1→3)βDglucans 〔J〕. Carbohydr Res,1997,297:135

〔15〕 Lin X, Cai Y J, Li Z X, et al. Structure determination, apoptosis induction, and telomerase inhibition of CFP2, a novel lichenin from Cladonia furcata 〔J〕. Biochim Biophys Acta,2003,1622:99

〔16〕 Perret J, Bruneteau M, Micheal G, et al. Effect of growth conditions on the structure of βDglucans from Phytophthoraparasitica dastur, aphytophthogenicfungus 〔J〕. Carbohydr Polymer,1991,17(2):231

〔17〕 Garner R E, Childress A M, Human L G, et al. Characterization of Candida albicans mannaninduced, mannanspecific delayedhypersensitivity suppressor cells 〔J〕. Infect Immun,1990,58:2613

〔18〕 Wang Y, Li S P, Moser S A, et al. Cytokine involvement in immunomodulatory activity affected by Candida albicans mannan 〔J〕. Infect Immun,1998,66:1384

〔19〕 Ng T B. A review of research on the proteinbound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (Basidiomycetes: Polyporaceae) 〔J〕. Gen Pharmacol,1998,30:1

〔20〕 Matsunaga K, Hosokawa A, Oohara M, et al. Direct action of a proteinbound polysaccharide, PSK, on transforming growth factorbeta 〔J〕. Immunopharmacology,1998,40:219

〔21〕 Wei W S, Tan J Q, Guo F, et al. Effects of Coriolus versicolor polysaccharides on superoxide dismutase activities in mice 〔J〕. Chung Kuo Yao Li Hsueh Pao,1996,17:174

〔22〕 Siegelman M H, DeGrendele H C, Estess P. Activation and interaction of CD44 and hyaluronan in immunological systems 〔J〕. Leukoc Biol,1999,66:315

〔23〕 周永. 多糖类抗肿瘤作用的研究进展〔J〕. 国外医学卫生学分册,2001,28(3)

〔24〕 Katsuhide M, Shin Y, Yuji K, et al. Activity of microbial surface polysaccharides in inhibition of cancer cell adhesion 〔J〕. Kagaku Kogaku,1996,60(11):832

〔25〕 Callahan L N, Phelan M, Mallinson M, et al. Dextran sulfate blocks antibody binding to the principal neutralizing domain of human immunodeficiency virus typeⅠ without interfering with gp120CD4 interaction 〔J〕. J Virol,1991,65(3):1543

〔26〕 Berteau O, Mulloy B. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide 〔J〕. Glycobiology,2003,13(6):29R

〔27〕 Yoshida O, Nakashima H, Yoshida T, et al. Sulfation of the immunomodulating polysaccharide lentinan: a novel strategy for antivirals to human immunodeficiency virus (HIV) 〔J〕. Biochem Pharmacal,1998,37(15):2887

〔28〕 Watson K, Gooderham N J, Davies D S, et al. Interaction of the transactivating protein HIV1 Tat with sulphated polysaccharide 〔J〕. J Infect Dis,1990,161(1):208

〔29〕 王长云,管华诗. 多糖抗病毒作用研究进展Ⅰ多糖抗病毒作用〔J〕. 生物工程进展,2000,20(1):17

〔30〕 吴倩,吴剑波,李元. 白细胞介素1受体拮抗剂139A的理化性质及体内活性研究〔J〕. 中国抗生素杂志,1999,24(6):401

〔31〕 王玲燕,李元,等. 链霉菌胞外多糖139A生物合成中引导糖基转移酶基因的克隆和鉴定〔J〕. 遗产学报,2003,30(8):723

〔32〕 Kiho T, Ookubo K, Usui S, et al. Structrual features and hypoglycemic activity of a polysaccharide (CSF10) from the cultured mycelium of Cordyceps sinensis 〔J〕. Biol Pharm Bull,1999,22(9):966

〔33〕 Sandeep S, Glushka J, Halbeek H, et al. Structure of the capsular polysaccharide of clostridium perfringers hobbs 5 as determined by NMR spectroscopy 〔J〕. Carbohydr Res,1997,299:119

成就的招牌
标致的荔枝
2026-02-05 08:29:04
先在蛋白溶液中加入一定浓度的氯化镁或者氯化钙,搅拌一段时间以后,缓慢加入一定量的硫酸葡聚糖,这时脂类会沉淀下来,最后离心去沉淀,多余氯化镁,氯化钙,硫酸葡聚糖可以用透析的方法去除,操作相对简单的。

认真的鸭子
热心的绿草
2026-02-05 08:29:04
核酸分子原位杂交中杂交液的基本成分:50%甲酰胺,ssDNA 100 μg/ml,探针20 ng,50 mmol/L DTT,5×Denhardt液,5%硫酸葡聚糖,4×SSC。

阳离子可以极大提高核酸互补链的杂交效率;

甲酰胺分子克隆第三版p510有详细的论述,用甲酰胺进行的杂交比通过调节温度更容易控制杂交的严谨性。

提高核酸杂交率 - 溶液中含10%的硫酸葡聚糖,DNA链的再退火率约增加10倍,这一现象进一步扩大了单链或双链的探针与固定在膜上的DNA/RNA的杂交率。不仅如此,添加10%硫酸葡聚糖也许会增加随机切割的双链DNA探针与固定化核酸的杂交率,高达100倍。

痴情的发带
个性的戒指
2026-02-05 08:29:04

分子杂交是通过各种方法将核酸分子固定在固相支持物上,然后用放射性标记的探针与被固定的分子杂交,经显影后显示出目的DNA或RNA分子所处的位置。根据被测定的对象,分子杂交基本可分为以下几大类:

(1) Southern杂交:DNA片段经电泳分离后,从凝胶中转移到硝酸纤维素滤膜或尼龙膜上,然后与探针杂交。被检对象为DNA,探针为DNA或RNA。

(2) Northern杂交:RNA片段经电泳后,从凝胶中转移到硝酸纤维素滤膜上,然后用探针杂交。被检对象为RNA,探针为DNA或RNA。

根据杂交所用的方法,另外还有斑点(dot)杂交、狭槽(slot)杂交和菌落原位杂交等。有3种固相支持体可用于杂交:硝酸纤维素滤膜、尼龙膜和Whatman 541滤纸。不同商标的尼龙膜需要进行不同的处理,在DNA固定和杂交的过程中要严格按生产厂家的说明书来进行。Whatman 541滤纸有很高的湿强度,最早用于筛选细菌菌落。该滤纸主要用于筛选一些基因文库。固定化DNA的杂交条件基本与使用硝酸纤维素滤膜时所建立的条件相同。Whatman 541滤纸与硝酸纤维素滤膜相比有一些优点:它更便宜,杂交中更耐用,干燥过程中不易变形和碎裂等。然而若变性过程不小心,杂交信号的强度会明显弱于用硝酸纤维素滤膜时所得到的信号强度。因此,常规的细菌筛选和各种杂交时仍选用硝酸纤维素滤膜作为固相支持体。 Southern杂交可用来检测经限制性内切酶切割后的DNA片段中是否存在与探针同源的序列,它包括下列步骤:

(1) 酶切DNA, 凝胶电泳分离各酶切片段,然后使DNA原位变性。

(2) 将DNA片段转移到固体支持物(硝酸纤维素滤膜或尼龙膜)上。

(3) 预杂交滤膜,掩盖滤膜上非特异性位点。

(4) 让探针与同源DNA片段杂交,然后漂洗除去非特异性结合的探针。

(5) 通过显影检查目的DNA所在的位置。

Southern杂交能否检出杂交信号取决于很多因素,包括目的DNA在总DNA中所占的比例、探针的大小和比活性、转移到滤膜上的DNA量以及探针与目的DNA间的配对情况等。在最佳条件下,放射自显影曝光数天后, Southern杂交能很灵敏地检测出低于0.1pg与32 P标记的高比活性探针的(>109 cpm/μg)互补DNA。如果将10μg基因组DNA转移到滤膜上,并与长度为几百个核苷酸的探针杂交,曝光过夜,则可检测出哺乳动物基因组中1kb大小的单拷贝序列。

将DNA从凝胶中转移到固体支持物上的方法主要有3种:(1)毛细管转移。本方法由Southern发明,故又称为Southern转移(或印迹)。毛细管转移方法的优点是简单,不需要用其他仪器。缺点是转移时间较长,转移后杂交信号较弱。(2)电泳转移。将DNA变性后,可电泳转移至带电荷的尼龙膜上。该法的优点是不需要脱嘌呤/水解作用,可直接转移较大的DNA片段。缺点是转移中电流较大,温度难以控制。通常只有当毛细管转移和真空转移无效时,才采用电泳转移。(3) 真空转移。有多种真空转移的商品化仪器,它们一般是将硝酸纤维素膜或尼龙膜放在真空室上面的多孔屏上,再将凝胶置于滤膜上,缓冲液从上面的一个贮液槽中流下,洗脱出凝胶中的DNA,使其沉积在滤膜上。该法的优点是快速,在30分钟内就能从正常厚度(4-5mm)和正常琼脂糖浓度(<1%)的凝胶中定量地转移出来。转移后得到的杂交信号比Southern转移强2-3倍。缺点是如不小心,会使凝胶碎裂, 并且在洗膜不严格时,其背景比毛细转移要高。

1、材料: 待检测的DNA,已标记好的探针。

2、设备: 电泳仪,电泳槽,塑料盆,真空烤箱,放射自显影盒,X-光片,杂交袋,硝酸纤维素滤膜或尼龙膜,滤纸。

3、试剂:

(1)10mg/ml 溴化乙锭(EB)。

(2)50×Denhardt's溶液:5g Ficoll-40, 5g PVP, 5g BSA加水至500ml,过滤除菌后于-20℃储存。

(3)1×BLOTTO:5g脱脂奶粉,0.02%叠氮钠,储于4℃。

(4)预杂交溶液:6×SSC, 5×Denhardt, 0.5% SDS, 100mg/ml鲑鱼精子DNA, 50%甲酰胺。

(5)杂交溶液:预杂交溶液中加入变性探针即为杂交溶液。

(6)0.2mol/L HCl。

(7)0.1% SDS。

(8)0.4mol/L NaOH。

(9)变性溶液:87.75g NaCl, 20.0g NaOH加水至1000ml。

(10)中和溶液:175.5g NaCl, 6.7g Tris·Cl, 加水至1000ml。

(11)硝酸纤维素滤膜。

(12)20×SSC: 3mol/L NaCl, 0.3mol/L柠檬酸钠,用1mol/L HCl调节pH至7.0

(13)2×、1×、0.5×、0.25×和0.1×SSC:用20×SSC稀释。

4、操作步骤:

(1) 约50μl体积中酶切10pg-10μg的DNA, 然后在琼脂糖凝胶中电泳12-24小时(包括DNA分子量标准物)。

(2) 500ml水中加入25μl 10mg/ml溴化乙锭,将凝胶放置其中染色30分钟, 然后照相。

(3) 依次用下列溶液处理凝胶,并轻微摇动: 500ml 0.2mol/L HCl 10分钟, 倾去溶液(如果限制性片段>10kb, 酸处理时间为20分钟),用水清洗数次,倾去溶液500ml变性溶液两次,每次15分钟,倾去溶液500ml中和溶液30分钟。如果使用尼龙膜杂交,本步可以省略。

(4) 戴上手套,在盘中加20×SSC液,将硝酸纤维素滤膜先用无菌水完全湿透,再用20×SSC浸泡。将硝酸纤维素滤膜一次准确地盖在凝胶上,去除气泡。用浸过20×SSC液的3滤纸盖住滤膜,然后加上干的3滤纸和干纸巾,根据DNA复杂程度转移2-12小时。当使用尼龙膜杂交时,该膜用水浸润一次即可,转移时用0.4mol/L NaOH代替20×SSC。简单的印迹转移2-3小时,对于基因组印迹,一般需要较长时间的转移。

(5) 去除纸巾等,用蓝色圆珠笔在滤膜右上角记下转移日期,做好记号,取出滤膜,在2×SSC中洗5分钟,凉干后在80℃中烘烤2小时。注意在使用尼龙膜杂交时,只能空气干燥,不得烘烤。

(6) 将滤膜放入含6-10ml预杂交液的密封小塑料袋中,将预杂交液加在袋的底部,前后挤压小袋,使滤膜湿透。在一定温度下(一般为37-42℃)预杂交3-12小时,弃去预杂交液。

(7) 制备同位素标记探针(参见第一节),探针煮沸变性5分钟。

(8) 在杂交液中加入探针,混匀。如步骤(6)将混合液注入密封塑料袋中,在与预杂交相同温度下杂交6-12小时。

(9) 取出滤膜,依次用下列溶液处理,并轻轻摇动: 在室温下, 1×SSC/0.1% SDS, 15分钟, 两次。 在杂交温度下, 0.25×SSC/0.1% SDS, 15分钟, 两次。

(10) 空气干燥硝酸纤维素滤膜,然后在X光片上曝光。通常曝光1-2天后可见DNA谱带。对于≥108 cpm/μg从缺口平移所得探针,可很容易地从10μg哺乳DNA中检测到10pg的单拷贝基因。 Northern杂交与Southern杂交很相似。主要区别是被检测对象为RNA,其电泳在变性条件下进行,以去除RNA中的二级结构,保证RNA完全按分子大小分离。变性电泳主要有3种:乙二醛变性电泳、甲醛变性电泳和羟甲基汞变性电泳。电泳后的琼脂糖凝胶用与Southern转移相同的方法将RNA转移到硝酸纤维素滤膜上,然后与探针杂交。

1、材料:待检测的RNA及制备好的探针。

2、设备:电泳仪,电泳槽,塑料盆,真空烤箱,放射自显影盒,X-光片,杂交袋,硝酸纤维素膜或尼龙膜。

3、试剂:

(1)20×SSPE:175.3g NaCl, 88.2g柠檬酸钠,溶于800ml水中,用10mol/LNaOH调pH至7.4,定溶到1L。

(2)其他试剂:与Southern杂交试剂类似,只是所有的试剂均应用DEPC处理。

4、操作步骤:

(1)RNA经变性电泳完毕后,可立即将乙醛酰RNA转移至硝酸纤维素滤膜上。转移方法与转移DNA的方法相似。

(2)转移完毕后 ,以6×SSC溶液于室温浸泡此膜5分钟,以除去琼脂糖碎片。

(3)将该杂交膜夹于两张滤纸中间,用真空烤箱于80℃干燥0.5-2小时。

(4) 用下列两种溶液之一进行预杂交,时间为1-2小时。若于42℃进行,应采用: 50%甲酰胺,5×SSPE,2×Denhardt's试剂,0.1% SDS;若于68℃进行,应采用:6×SSC,2×Denhardt's试剂,0.1% SDS,(注意:BLOTTO不能用于Northern杂交)。

(5) 在预杂交液中加入变性的放射性标记探针,如欲检测低丰度mRNA,所用探针的量至少为0.1μg,其放射性比活度应大于2×108 cpm/分·μg,放在适宜的温度条件下杂交16-24小时。

(6) 用1×SSC、0.1% SDS于室温洗膜20分钟,随后用0.2×SSC、0.1% SDS于68℃洗膜3次,每次20分钟。

(7) 用X光片(Kodak XAR-2或与之相当的产品)进行放射自显影,附加增感屏于-70℃曝光24-48小时。

[注意]

(1)如果琼脂糖浓度高于1%,或凝胶厚度大于0.5cm,或待分析的RNA大于2.5kb,需用0.05mol/LNaOH浸泡凝胶20分钟,部分水解RNA并提高转移效率。浸泡后用经DEPC处理的水淋洗凝胶,并用20×SSC浸泡凝胶45分钟。然后再转移到滤膜上。

(2)在步骤(3)的操作中,如果滤膜上含有乙醛酰RNA,杂交前需用20mmol/L Tris·Cl (pH8.0)于65℃洗膜,以除去RNA上的乙二醛分子。

(3)RNA自凝胶转移至尼龙膜所用方法,与RNA转移至硝酸纤维素滤膜所用方法类似。

(4)含甲醛的凝胶在RNA转移前需用经DEPC处理的水淋洗数次,以除去甲醛。当使用尼龙膜杂交时注意,有些带正电荷的尼龙膜在碱性溶液中具有固着核酸的能力,需用7.5mmol/LNaOH溶液洗脱琼脂糖中的乙醛酰RNA,同时可部分水解RNA,并提高较长RNA分子(>2.3kb)转移的速度和效率。此外,碱可以除去mRNA分子的乙二醛加合物,免去固定后洗脱的步骤。乙醛酰RNA在碱性条件下转移至带正电荷尼龙膜的操作也按DNA转移的方法进行,但转移缓冲液为7.5mmol/LNaOH,转移结束后(4.5-6.0小时),尼龙膜需用2×SSC、0.1%SDS淋洗片刻、于室温晾干。

(5)尼龙膜的不足之处是背景较高,用RNA探针时尤为严重。将滤膜长时间置于高浓度的碱性溶液中,会导致杂交背景明显升高,可通过提高预杂交和杂交步骤中有关阻断试剂的量来予以解决。

(6)如用中性缓冲液进行RNA转移,转移结束后,将晾干的尼龙膜夹在两张滤纸中间,80℃干烤0.5-2小时,或者254nm波长的紫外线照射尼龙膜带RNA的一面。后一种方法较为繁琐,但却优先使用,因为某些批号的带正电荷的尼龙膜经此处理后,杂交信号可以增强。然而为获得最佳效果,务必确保尼龙膜不被过度照射,适度照射可促进RNA上小部分碱基与尼龙膜表面带正电荷的胺基形成交联结构,而过度照射却使RNA上一部分胸腺嘧啶共价结合于尼龙膜表面,导致杂交信号减弱。 对分散在若干个琼脂平板上的少数菌落(100-200)进行克隆筛选时,可采用本方法。将这些菌落归并到一个琼脂主平板以及已置于第二个琼脂平板表面的一张硝酸纤维素滤膜上。经培养一段时间后,对菌落进行原位裂解。主平板应贮存于4℃直至得到筛选结果。

1、材料:待检测的细菌平皿,已标记好的探针,硝酸纤维素滤膜等。

2、设备:恒温烤箱,恒温水浴,台式高速离心机等。

3、试剂:

(1)LB固体培养基。

(2)0.5mol/L NaOH。

(3)1mol/L Tris·Cl。

(4)1.5mol/L NaCl。

(5)0.5mol/L Tris·Cl。

(6)预洗液:5×SSC, 0.5%SDS, 1mmol/L EDTA (pH8.0)。

(7)预杂交液:50%甲酰胺,6×SSC(或6×SSPE),0.05×BLOTTO(甲酰胺可不用)。

(8)其余试剂:与Southern杂交相同。

4、操作步骤:

1. 将少数菌落转移到硝酸纤维素滤膜上:

(1) 在含有选择性抗生素的琼脂平板上放一张硝酸纤维素滤膜。

(2) 用无菌牙签将各个菌落先转移至滤膜上,再转移至含有选择性抗生素但未放滤膜的琼脂主平板上。应按一定的格子进行划线接种(或打点)。每菌落应分别划线于两个平板的相同位置上。最后,在滤膜和主平板上同时划一个含有非重组质粒(如pBR322)的菌落。

(3) 倒置平板,于37℃培养至划线的细菌菌落生长到0.5-1.0mm的宽度。

(4) 用已装防水黑色绘图墨水的注射器针头穿透滤膜直至琼脂,在3个以上的不对称位置作标记。在主平板大致相同的位置上也作上标记。

(5) 用Parafilm膜封好主平板,倒置贮放于4℃,直至获得杂交反应的结果。

(6) 裂解细菌,按本段下面所述方法,使释放的DNA结合于硝酸纤维素滤膜。

2. 菌落的裂解及DNA结合于硝酸纤维素滤膜

(1) 在一张保鲜膜上制作一个装有0.5mol/L NaOH的小洼(0.75ml),使菌落面朝上,将滤膜放到小洼上,展平保鲜膜,使滤膜均匀湿润,让滤膜留于原处2-3分钟。

(2) 用干纸巾从滤膜的下方吸干滤膜,用一张新的保鲜膜和新配制的0.5mol/L NaOH重复步骤(1)。

(3) 吸干滤膜,将滤膜转移到新的带有1mol/L Tris·Cl(pH7.4)的保鲜膜洼上。5分钟后吸干滤膜, 再重复一次该步骤。

(4) 吸干滤膜,把它转移到有1.5mol/L NaCl、0.5mol/L Tris·Cl (pH7.4)的保鲜膜小洼上5分钟后吸干滤膜,转移到一张干的滤纸上,置于室温20-30分钟,使滤膜干燥。

(5) 将滤膜夹在两张干的滤纸之间,在真空烤箱中于80℃干烤2小时,固定DNA。

(6) 将固定在膜上的DNA与32 P标记的探针杂交。

5.杂交

(1) 盛有2×SSC的塑料盘同,将干烤的滤膜飘浮在液面上,彻底浸湿5分钟。

(2) 将滤膜转到200ml预洗液的玻璃皿中。滤膜何叠在一起,放于溶液中。用保鲜膜盖住玻璃皿,放到位于培养箱内的旋转平台上。于50℃处理30分钟。在这一步及以后的所有步骤中,应缓缓摇动滤膜,防止它们粘在一起。

(3) 用泡过预洗液的吸水棉纸轻轻地从膜表面拭去细菌碎片,以降低杂交背景而不影响阳性杂交信号的强度和清晰度。

(4) 将滤膜转到盛有150ml预杂交液的玻璃中,在适宜温度(即在水溶液中杂交时用68℃,而在50%甲酰胺中杂交时用42℃)下,预杂交1-2小时。

(5) 将32 P标记的双链DNA探针于100℃加热5分钟,迅速置于冰浴中。单链探针不必变性。将探针加到杂交袋中杂交过夜。杂交期间,盛滤膜的容器应盖严,以防液体蒸发。

(6) 杂交结束后,去除杂交液,立即于室温把滤膜放入大体积(300-500ml)的2×SSC和0.1% SDS溶液中,轻轻振摇5分钟,并将滤膜至少翻转一次。重复洗 一次,同时应避免膜干涸。

(7)68℃用300-500ml 1×SSC和0.1% SDS溶液洗膜两次,每次1-1.5小时。此时已可进行放射自显影。如背景很高或实验要求严格的洗膜条件,可用300-500ml 0.2×SSC和0.1% SDS的溶液于68℃将滤膜浸泡60分钟。

(8) 把滤膜放在纸巾上于室温晾干后,把滤膜(编号面朝上)放在一张保鲜膜上,并在保鲜膜上作几个不对称的标记,以使滤膜与放射性自显影片位置对应。

(9) 用第二张保鲜膜盖住滤膜。加X光片并加上增感屏于-70℃曝光12-16小时。

(10) 底片显影后,在底片上贴一张透明硬纸片。在纸上标记阳性杂交信号的位置,同时在不对称分布点的位置上作出标记。可从底片上取下透明纸,通过对比纸上的点与琼脂上的点来鉴定阳性菌落。 斑点杂交是指将DNA或RNA样品直接点在硝酸纤维素滤膜上,然后与核酸探针分子杂交,以显示样品中是否存在特异的DNA或RNA。同一种样品经不同倍数的稀释,还可以得到半定量的结果。所以它是一种简便、快速、经济的分析DNA或RNA的方法,在基因分析和基因诊断中经常用到,是研究基因表达的有力工具。但由于目的序列未与非目的序列分离,不能了解目的序列的长度。尤其当本底干扰较高时,难以区分目的序列信号和干扰信号。

1、材料:待分析的DNA或RNA样品,已标记的探针。

2、设备:狭槽点样器,真空泵,恒温水浴,真空烤箱等。

3、试剂:

(1)100% 甲酰胺。

(2)甲醛(37%)。

(3) 20×SSC。

(4)0.1mol/L NaOH。

(5)硝酸纤维素滤膜。

(6)滤纸。

4、操作步骤:

(1) 10μl样品与20μl 100%甲酰胺、 7μl 37%甲醛、2μl 20×SSC混合。混合置于68℃,15分钟后置冰浴中。

(2) 用0.1mol/L NaOH清洗点样器,再用无菌水充分冲洗。将一张经20×SSC浸润的滤纸铺在点样器上,上面再铺上一张经20×SSC浸润1小时的硝酸纤维素滤膜,加盖并夹紧,接通真空泵。

(3) 用10×SSC清洗各样孔。在每一样品中加两倍体积的2×SSC,混合后加样于孔中。外围几个孔中加2μl染料定位,缓慢抽吸。每孔用1ml 10×SSC清洗两次。继续抽吸5分钟,吸干滤膜。

(4) 取出滤膜,夹在两张滤纸中间, 80℃真空烘干2小时。按上述Southern或Norhtern杂交所述的方法与放射性标记探针杂交。

[注意]

1、在放射自显影时应注意滤膜必须干燥,并覆盖上保鲜膜,否则,滤膜将与X-光片粘在一起,使以后的操作困难。

2、在杂交过程中,整个滤膜应一直是湿润的,不得干涸。

第三节 杂交反应的条件及参数的优化

不同的反应条件对杂交结果的影响如下:

(1) 根据杂交液的体积确定杂交的时间:一般来说使用较小体积的杂交液比较好,因为在小体积溶液中,核酸重新配对的速度快、探针用量少,从而使滤膜上的DNA在反应中起主要作用。但在杂交中必须保证有足够的杂交溶液覆盖杂交膜。

(2) 根据所用的杂交溶液确定杂交的温度:一般来说,杂交相为水溶液时,则在68℃杂交,而在50%甲酰胺溶液中时,则在42℃下杂交。

(3) 选用不同的封闭试剂:如Denhardt's试剂、肝素或一种由5%脱脂奶粉组成的BLOTTO, 这些试剂中需加入断裂的鲑鱼精子DNA或酵母DNA,并和SDS一起使用。与Denhardt's试剂相比, BLOTTO价格便宜,使用方便,同样可获得满意的结果,但它不能用于RNA杂交。一般而言,尼龙膜用Denhardt's试剂比用BLOTTO能得到更高的信噪比。对硝酸纤维素滤膜而言,通常在预杂交溶液和杂交溶液中都含有封闭剂。但是对尼龙膜,经常从杂交溶液中省去封闭剂,因为高浓度的蛋白质会干扰探针和目的基因的退火。

(4)根据需要在杂交过程中选用不同的振荡方法和程度,许多杂交膜一起反应时,连续的轻微振荡可获得较好的杂交结果。

(5) 在杂交过程中加入其他化合物, 如反应体系中加入10%硫酸葡聚糖或10% PEG, 杂交速度可增加约10倍。检测稀有序列时常用该方法,但它们有时会导致本底较高,并由于溶液的粘稠性而使操作困难。因此,除非在滤膜上含有的目的DNA量很少,或放射性探针的量有限, 一般不用硫酸葡聚糖或PEG。

(6) 根据探针与被检测目标之间的同源程度选择清洗的程度,如具有很高的同源性可选用严紧型洗脱方式(高浓度SSC), 反之则选用非严紧型洗脱方式(低浓度SSC)。洗脱通常在低于杂交体解链温度12-20℃的条件下进行。解链温度(melting temperature, Tm )是指在双链DNA或RNA分子变性形成分开的单链时光吸收度增加的中点处温度。通常富含G·C碱基对的序列比富含A·T碱基对序列的Tm 温度高。有关Tm的计算方法,请参考第八章。

(7) 根据标记探针的浓度及其比活性,选择不同的杂交条件及检测方法。一般使用新的同位素可获得较强的信号。

(8) 在水溶液中杂交时,用6×SSC或6×SSPE溶液的效果都一样。但在甲酰胺溶液中杂交时,应该用具有更强缓冲能力的6×SSPE。

上述这些条件的改变,对杂交的结果有不同的影响,应根据研究的具体情况,选用适当的方法。

帅气的心锁
冷酷的小蝴蝶
2026-02-05 08:29:04

DS是法国汽车工业顶级设计豪华品牌,DS的法文全称为Déesse,在法语中是“女神”的意思。

1955年,DS于巴黎车展首次亮相就以设计和技术上的创新引起了轰动,并引发了汽车业的革命,在汽车发展史上有着非常重要的地位。DS极受法国政要的欢迎,被誉为“总统座驾”,从戴高乐到奥朗德,DS都是法国总统的不二之选。

扩展资料

DS品牌积极投身国际赛事,在2018/2019赛季国际汽联电动方程式锦标赛FormulaE 中,DS钛麒车队一举斩获车队与车手双料冠军,彰显出DS品牌强大的电动技术实力及全面推进电气化战略的决心。

自2012年进入中国市场以来,DS品牌为中国消费者带来了一系列独具法式魅力的的产品,并收获了众多中国车主的信赖。未来,DS品牌将坚定发展信心、扎根中国市场,在发展战略、品牌建设、产品布局、服务模式等方面持续精进。

参考资料来源:DS官网-关于DS

多情的裙子
感性的舞蹈
2026-02-05 08:29:04
DS-CDMA技术遵循ITU规定的IMT-2000规格,并以W-CDMA方式为基础的一种通信技术。该技术能够利用5MHz的信道提供高达2Mbps的数据速度,同时能够扩大系统容量,提高通话时的语音质量,降低通话的掉线率,支持IP数据服务。DS-CDMA技术除了能提供窄带业务(如话音业务)之外,还能提供多种用户速率通信、VOD带宽的能力,以及根据不同业务提供不同服务等级的能力。

在CDMA标准中,DS-CDMA技术是其中的重要部分,是实现无线多媒体通信的关键。DS-CDMA技术最早起源于欧洲和日本的第三代无线研究活动,GSM的巨大成功对第三代系统在欧洲的标准化产生重大影响。在1996年,日本推出了一套DS-CDMA的实验系统方案,并得到了当时世界上主要的移动设备制造商的支持。1998年12月成立的3GPP(第三代伙伴项目)极大地推动了DS-CDMA技术的发展,加快了DS-CDMA的标准化进程,并最终使DS-CDMA技术成为ITU批准的国际通信标准。

DS-CDMA基于ANSI-41核心网,它使用新的频带,采用FDD工作方式,码片速率为3.84Mbps。DS-CDMA有更大的覆盖范围,采用自适应天线及多用户检测等新技术,并可支持频率间切换。由DS-CDMA技术组成的通信系统通常包括无线基地局装置、无线网络控制装置、多媒体信号处理装置。DS-CDMA系统的空中连接采用5MHz、10MHz或20MHz的无线信道。

参考资料:http://www.czfdcw.net/sj/article/list.asp?id=21