建材秒知道
登录
建材号 > 苯酚 > 正文

为什么苯酚厂房的硫化,蒸馏部位是甲类

迷路的花卷
斯文的绿草
2022-12-21 19:17:31

为什么苯酚厂房的硫化,蒸馏部位是甲类

最佳答案
整齐的鸡
寂寞的枕头
2025-12-04 11:28:41

“苯酚厂房的硫化”是来自于消防工程师教材,你仔细去看一下《建筑设计防火规范》,其实这里是一个印刷错误,正确的是“苯酚厂房的磺化”,而磺化工艺和催化、裂化、点解等都被定义为重点监管的危险化学品工艺。就是因为这些工艺危险性大,而危险性大的原因是需要使用一些甲类物质作为原料或会产生甲类性质的中间产品。

最新回答
饱满的太阳
迷人的睫毛膏
2025-12-04 11:28:41

邻位的键距比对位的短。

邻位的熔点会比对位的高,因为邻位的键距比对位的短因此键力就大就不容易断所以就需要更大的能量来使他断掉所以熔点就大。

苯酚的羟基系供电子基因,能将苯环上的两个邻位与对位的碳原子电子云的密度变大,造成活化,反应能力增强,易在这三个反应点上发生亲电取代反应。

优美的冷风
开放的康乃馨
2025-12-04 11:28:41
生产类别火灾危险性特征火灾危险性分类举例 甲生产时使用或产生的物质特征: 1.闪点<28℃的液体 2.爆炸下限<10%的气体 3.常温下能自行分解或在空气中氧化即能导致迅速自燃或爆炸的物质 4.常温下受到水或空气中水蒸气的作用

深情的铃铛
腼腆的芒果
2025-12-04 11:28:41

苯酚在空气中的氧化产物非常复杂,因为空气中不仅存在氧气,同时还有臭氧、过氧化物和一些自由基物种。颜色可能主要是醌类产生的。邻-和对-两种苯醌应该都是有的,搜索一下,发现主要的研究都是集中在怎么处理环境中的酚类物质的,不过终于还是找到了一篇文献罗列了之前报道的各种在苯酚水溶液中检出的氧化产物(溶解氧),可以看看。Devlin, H. R., et al. Mechanism of the oxidation of aqueous phenol with dissolved oxygen, Ind. Eng. Chem. Fundam.1984, 23, 387-392主要包括:邻苯二酚、对苯二酚、对苯醌、邻苯醌、己二烯二酸、马来酐、马来酸、富马酸、丙酸、乙酸、甲酸、二氧化碳、一氧化碳……。可吸收空气中水分并液化。有特殊臭味,极稀的溶液有甜味。腐蚀性极强。化学反应能力强。与醛、酮反应生成酚醛树脂、双酚A,与醋酐;水杨酸反应生成醋酸苯酯、水杨酸酯。还可进行卤代、加氢、氧化、烷基化、羧基化、酯化、醚化等反应。苯酚在通常温度下是固体,与钠不能顺利发生反应,如果采用加热熔化苯酚,再加入金属钠的方法进行实验,苯酚易被还原,在加热时苯酚颜色发生变化而影响实验效果。有人在教学中采取下面的方法实验,操作简单,取得了满意的实验效果。在一支试管中加入2-3毫升无水乙醚,取黄豆粒大小的一块金属钠,用滤纸吸干表面的煤油,放入乙醚中,可以看到钠不与乙醚发生反应。然后再向试管中加入少量苯酚,振荡,这时可观察到钠在试管中迅速反应,产生大量气体。这一实验的原理是苯酚溶解在乙醚中,使苯酚与钠的反应得以顺利进行。

乐观的巨人
平淡的面包
2025-12-04 11:28:41
二硝基甲苯

化学分子式: C6H3CH3(NO2)2

外观: 淡黄色至棕黄色片状或粒状

凝固点: 65.5-70.5℃

丙酮,甲苯或苯中不溶物: 0.10%

水份及挥发分: 0.25%

酸度(以硫酸计): 0.01%

碱度(定性): 无

粒度(通过孔径为l.00mm筛时筛下物): 95.0%(只限于粒状)

用途: 该品主要用于制造2,4-二氨基甲苯。也用于聚氨脂,染料,医药,橡胶等有机合成工业中。

2,4-二硝基甲苯,化学分子式:C7H6N2O4,性状: 淡黄色至黄色固体, 在阳光下颜色变深, 与碱接触变红。有毒, 易燃, 微溶于水, 溶于乙醚, 丙酮, 苯及甲苯等有机溶剂。

贪玩的哈密瓜
舒适的鸭子
2025-12-04 11:28:41
任何一种橡胶只有通过配合和加工,才能满足不同的产品性能的要求。橡胶的配合主要有硫化、补强和防老化三大体系:

(1)橡胶的硫化体系 橡胶的硫化就是通过橡胶分子间的化学交联作用将基本上呈塑性的生胶转化成弹性的和尺寸稳定的产品,硫化后的橡胶的物性稳定,使用温度范围扩大。“硫化过程(Curing)”一词在整个橡胶工业中普遍使用,在橡胶化学中占有重要地位。橡胶分子链间的硫化(交联)反应能力取决于其结构。不饱和的二烯类橡胶(如天然橡胶、丁苯橡胶和丁腈橡胶等)分子链中含有不饱和双键,可与硫黄、酚醛树脂、有机过氧化物等通过取代或加成反应形成分子间的交联。饱和橡胶一般用具有一定能量的自由基(如有机过氧化物)和高能辐射等进行交联。含有特别官能团的橡胶(如氯磺化聚乙烯等),则通过各种官能团与既定物质的特定反应形成交联,如橡胶中的亚磺酰胺基通过与金属氧化物、胺类反应而进行交联。

不同类型的橡胶与各种交联剂反应生成的交联键结构各不相同,硫化胶性能也各有不同。橡胶的交联键有三种形式:

① ② ③

第①种是使用硫黄或硫给予体作交联剂的情况,生成的可以是单硫键(x=1)、双硫键(x=2)和多硫键(x=3~8);

第②种是使用树脂交联和肟交联的情况;

第③种是使用过氧化物交联的过氧化物硫化和利用辐射交联的辐射硫化的情况,生成碳-碳键。

多数的通用橡胶采用硫黄或硫给予体硫化,即在生胶中加入硫黄或硫给予体以及缩短硫化时间的促进剂和保证硫黄交联效率的氧化锌和硬脂酸组成的活性剂。在实际中通常按硫黄用量及其与促进剂的配比情况划分成以下几种典型的硫化体系:

①普通硫磺硫化体系 由常用硫黄量(>1.5份)和常用促进剂量配合组成。使用这种硫化体系能使硫化胶形成较多的多硫键,和少量的低硫键(单硫键和双硫键)。硫化胶的拉伸强度较高,耐疲劳性好。缺点是耐热和耐老化性能较差。

②半有效硫化体系 由硫黄量0.8~1.5份(或部分硫给予体)与常用促进剂量配合所组成。使用这种硫化体系能使硫化胶形成适当比例的低硫键和多硫键,硫化胶的扯断强度和耐疲劳性适中,耐热、耐老化性能较好。

③有效硫化体系 由低硫黄量(0.3~0.5份)或部分硫给予体与高促进剂量(一般为2~4份)配合组成。使用这种硫化体系能使硫化胶形成占绝对优势的的低硫键(单硫键和双硫键),硫化胶的耐热、耐老化性能好,缺点是拉伸强度和耐疲劳性能较低。

④无硫硫化体系 不用硫黄而全部用硫给予体和促进剂配合组成。这种硫化体系与有效硫化体系的性能相似。

(2)橡胶的补强及补强填充体系

橡胶的补强是指能使橡胶的拉伸强度、撕裂强度及耐磨耗性等获得明显提高的作用。对于非自补强的合成橡胶,如果没有加入补强剂,便没有使用价值。加入炭黑等补强剂,可以使这些橡胶的强度提高数倍至十倍。炭黑对橡胶的强系数见表8.4-5

补强剂也使橡胶其它的性能发生变化,如硬度增大、定伸应力提高、应力松驰性能变差、弹性下降、滞后损失变大、压缩永久变形增大等。

①补强剂 橡胶的补强填充剂是按粒径来分类的,粒子的大小是填料对物性影响的主要依据。补强性填料的粒子极小,能赋予非结晶橡胶以有用的强度性能,并对结晶橡胶的强度也有一些改进。填料质量和粒子大小可用来控制这两类橡胶胶料的伸长性能。

炭黑是较优良的橡胶补强剂,多用于需要补强的场合。白色或浅色胶料的补强则使用被称为白炭黑的二氧化硅(SiO2)。

表5炭黑对橡胶补强系数

胶种 拉伸强度, MPa 补强系数

未补强的硫化胶 补强的硫化胶

丁苯橡胶(SBR) 2.5~3.5 20.0~26.0 5.7~10.4

丁腈橡胶(NBR) 2.0~3.0 20.0~27.0 0.6~13.5

乙丙橡胶(EPDM) 3.0~6.0 15.0~25.0 2.5~8.3

顺丁橡胶(BR) 8.0~10.0 18.0~25.0 1.8~3.1

天然橡胶(NR) 16.0~24.0 24.0~35.0 1.0~2.2

炭黑是按制法(炉法或热裂法)、粒子大小(20毫微米到50微米)和“结构”(粒子连接成短链或集团)的多少来分类的。每一参数都对胶料性能有显著的影响。其代表性用量是25~50phr,此量是用每百份橡胶(phr)中的重量份数来表示的。

从图中可以看出,随着炭黑用量的增加,橡胶的物性并不在单一炭黑用量上达其最优值。硫化胶的伸长率随着炭黑用量的增加而不断降低,同时其模量或刚度却不断升高。随着模量或刚度的增大,橡胶的变形性能(弹性)随之削弱,而更象皮革,导致动态应变时滞后损失和生热增加。

②增容粒状填料 这是些粒径比补强性填料大得多的物料,粒径通常是20微米。增容填料的主要功用是降低成本。随着其在胶料中的配入量增加,抗张强度和耐撕裂成比例的降低。因此其用量由物性要求所决定。通常的做法是在同一胶料中并用补强性和增容性填料,以便增加较廉的非橡胶物料含量,而不太损害橡胶的物性。具有代表性的增容性填料是碳酸钙和陶土。

③增塑(软化)剂油类 油类被用做增容和软化材料,引起塑性增加用来抵消大量填料所引起的胶料在加工中流动阻力的增加和硫化胶刚度的增大。同时会造成滞后损失增加和蠕变及应力松弛速度的增加。图7天然橡胶的物性与炭黑含量的关系

(3)橡胶的老化及防老剂 与许多其它有机材料一样,橡胶的强度、延伸性能和其它有用的机械性能会随时间的延续而逐渐劣化,称之为橡胶的老化。其主要原因是热氧老化和臭氧老化所致,它会因光或高温亦或某些微量元素(如铜或锰)而更加恶化。

热氧老化是一个复杂的过程,包括许多反应。影响反应的条件有:工艺条件,金属催化剂,温度及配合剂配方等。热氧老化的结果有两种:

①因断链导致橡胶软化发粘。天然橡胶和丁基胶发生的氧化主要是这种反应机制。

②因不断导致橡胶硬化发脆。丁苯胶、氯丁胶、丁腈胶及三元乙丙胶发生的氧化主要是这种反应机制。

大多数情况下,这两种损害机制都会发生,哪种机制占优势,哪种机制就决定制品的变化趋势。而且不管发生哪种损害机制,橡胶伸长率的损失都是测试橡胶老化最敏感的指标。

某些金属(主要是铜、锰、铁及钴)离子能通过影响过氧化物的分解催化橡胶氧化反应,加速氧的侵蚀。这种情况对橡胶的生胶比对硫化胶更为明显。硫黄硫化的硫化胶中,仅天然橡胶及其它含不饱和异戊二烯单元的橡胶会被影响至明显程度。改善方法是消除有害金属的来源,和在胶料中加入能与金属离子起反应生成稳定产物的金属稳定剂。

臭氧侵蚀机制通常认为是臭氧与橡胶中的不饱和部分(即“双键”)发生反应生成臭氧化物,臭氧化物容易分解,造成橡胶断链引起橡胶表面龟裂,龟裂随机械破裂而进一步增长。如果制品处于应变条件就产生龟裂。随着臭氧侵蚀历程的反复进行,龟裂增长则愈大。无应力的橡胶,其外表面会形成一层称为“霜”的银灰色薄层,在湿热环境下这种现象很容易发生。

橡胶防老剂是一类能防止(严格的说是延缓)橡胶老化的物质。因为橡胶老化的本质是橡胶的热氧老化和橡胶的臭氧老化,所以橡胶防老剂包括橡胶抗氧剂和抗臭氧剂。一般情况下,一种高效的抗臭氧剂也是一种抗氧剂,反之则不然。选择防老剂的标准是以最低的成本获得满意的防老效果,需要考虑的因素包括防老剂的污染性、变色性、挥发性,溶解性、稳定性以及物理状态.

胺类防老剂——不同类型的单胺和双胺是高效抗氧剂,但一般都会产生较严重的变色和污染。这类防老剂广泛使用的典型种类有:

①苯基萘胺类;

②二氢化喹啉类;

③二苯胺衍生物类;

④取代的对苯二胺类。

酚类防老剂的效果一般不如胺类防老剂,但不存在变色问题。故不能使用胺类防老剂浅色橡胶制品,可选用酚类防老剂。非污染不变色抗氧剂有如下5类:

①受阻酚类抗氧剂;

②受阻双酚类抗氧剂;

③对苯二酚类抗氧剂;

④亚磷酸酯类抗氧剂;

⑤有机硫化合物类抗氧剂。

抗臭氧剂的选择要根据橡胶的不同应用而定,静态臭氧防护与动态臭氧防护各有许多不同的要求。针对不同的环境条件及不同的臭氧浓度,有如下四类物质可选作抗臭氧剂,其中有些物质的抗臭氧作用有一定的局限性。

①石蜡;

②二丁基二硫代氨基甲酸盐;

③6-乙氧基-2,2,4-3甲基-1,2-二氢喹啉;

④取代的对苯二酚。

防老剂在使用过程中的挥发损失,与防老剂的分子量和分子类型有关。通常,分子量越大,挥发性就越低。分子类型的影响又比分子量更大。例如,受阻酚的挥发性比具有相同分子量的胺类防老剂高。

防老剂在橡胶中的溶解度取决于防老剂的化学结构以及胶种和温度等因素。在橡胶中溶解度高,在水和有机溶剂中溶解度低是比较理想的。在橡胶中的溶解度低,则容易发生喷霜。在水和有机溶剂中的溶解度高,则在使用过程中易被水或溶剂抽出而损失

防老剂的物理状态也是一个重要特征。橡胶聚合物制造部门需要液态和易于乳化的材料,而橡胶制品部门则需要选用固态的、能自由流动但无粉尘飞扬的材料。

防老剂用量的原则是能保证橡胶制品在长期使用后不全部被消耗。必须同时考虑诸多因素,如材料的成本、胶种、污染的要求等。一般配方中的防老剂用量为3份左右。

柔弱的钢笔
微笑的火
2025-12-04 11:28:41

火灾危险性分类:分为生产、储存物品、可燃气体和可燃液体的火灾危险性四种。

甲类

乙类

丙类

生产的火灾危险性分类分为甲、乙、丙、丁、戊级。

储存物品的火灾危险性分类分为甲、乙、丙、丁、戊级。

可燃气体的火灾危险性分类分为甲、乙级。

可燃液体的火灾危险性分类分为甲、乙、丙级。

火灾危险等级分为轻危险级、中危险级、严重危险级和仓库危险级。

轻危险级指建筑高度为24m以下的办公楼、旅馆等。

中危险等级指高层民用建筑、公共建筑(含单、多高层)、文化遗产建筑、工业建筑等。

严重危险级指印刷厂、酒精制品、可燃液体制品等工厂的备料与车间等。

仓库危险级指食品、烟酒、木箱、纸箱包装的不燃难燃物品、仓储式商场的货架区等。

辛勤的鸵鸟
如意的鱼
2025-12-04 11:28:41
对氨基苯酚的制备

发布日期:2020/3/26 8:24:04

概述

对氨基苯酚,中文别名:4-氨基苯酚、4-氨基-1-羟基苯,外文名称:4-Aminophenol,简称PAP,是广泛用于医药、染料、抗氧剂、感光材料的重要有机中间体。对氨基苯酚亦称"对羟基苯胺",是目前在我国应用较广泛的一种精细有机化工中间体,在染料工业上用于合成弱酸性黄6G、弱酸性嫩黄5G、硫化深蓝3R、硫化蓝CV、硫化艳绿GB、硫化红棕B3R、硫化还原黑CLG等。在医药工业上对氨基苯酚用于合成扑热息痛、安妥明等。也用于制备显影剂、抗氧剂和石油添加剂等产品。

合成方法[1]

对氨基苯酚最早由Baeyer 和 Caro 在1874 年由锡粉还原对硝基苯酚而制得。由于对氨基苯酚用途广泛, 国内外有关合成研究报道很多, 现按原料路线将对氨基苯酚的合成方法概述如下:

方法一:对硝基苯酚法

1.铁粉还原法[2]

对硝基苯酚经铁屑在酸性介质中还原生成对氨基苯酚粗品,再经焦亚硫酸钠溶液浸渍,过滤干燥而得到成品,具体反应式为:

原料消耗见表1。

此法生产PAP的收率较高,为91.8%。但是工艺路线长,生产成本高;同时,每生产1t产品需要排放2t多铁泥及大量废水,环境污染严重。因此,此法在多数国家已经被淘汰,而我国大部分企业仍在使用该工艺。1992年化工部决定停止扩大该法生产。

2.催化加氢法

该法一般以 P t/C、Pd/C 作催化剂,在大约 0.2~0.5M Pa,70~ 90℃加氢还原对硝基苯酚制备PAP粗品。由于催化剂昂贵、 回收困难、生产成本高,国内未见有工业化生产报道。

3.电解还原法

该方法是在10%~30% H2SO4 水溶液、电解密度3.14~ 8.38A /dm2、40~70℃、T iO2/T i 电极、T i阴极旋转条件下进行的。产率70%左右。 该法目前未见有工业化报道。

方法二:苯酚法

1.苯酚亚硝化法

苯酚在 0~5℃与亚硝酸钠和硫酸作用, 生成对亚硝基苯酚, 再经还原、 酸析, 可得 PA P。该法操作条件苛刻, 环境污染严重, 不易实现工业化生产。

2.苯酚偶合法

苯胺与亚硝酸钠和盐酸在低温 (0~5℃) 反应, 制得重氮盐, 后者和苯酚偶联生成偶氮化合物。偶氮化合物再经还原生成 PAP 和苯胺, 其中还原偶氮化合物的方法主要有化学还原法、电解还原法和催化加氢还原法等。

方法三:对苯二酚氨化法

用脂肪族醚作溶剂, 在惰性气体存在下, 对苯二酚与氨水反应, 制得 PAP。 该法不仅工艺要求严格, 反应条件苛刻, 生产成本也较高, 限制了工业生产。

方法四:对苯二胺水解法

对苯二胺的氢卤酸盐在 150~ 350℃下加热水解可得 PAP 和对苯二酚。

方法五:对硝基氯化苯法

该法以对硝基氯化苯为原料, 在碱性条件下水解得对氨基苯酚钠, 再经酸化和还原制得PAP。 该法为国内生产 PAP 的主要方法。 但污染严重, 生产过程长,总收率较低, 产品质量不稳定。

方法六:硝基苯法

以硝基苯为原料制取PAP, 原料易得, 工艺途径多, 降低成本的潜力较大, 是近年来研究的热点。制备方法可分为三种: 金属还原法、 电解还原法和催化加氢还原法。 其主要反应机理均为硝基苯被氢化生成苯基羟胺, 然后进行Bam berger 重排制得 PA P。

1.金属还原法

该法是在稀硫酸中, 用铝粉或镁粉等金属粉末将硝基苯一步还原为 PAP。 金属还原法开发较早, 国内外专利和文献均有报道, 收率在 60%~70% 之间。该法工艺简单, 但金属消耗量大, 且存在回收利用等后处理问题, 因此难于大规模生产。

2.电解还原法

该法是温度在80~90℃, 以 20%~ 30% 硫酸作介质, 加入少量表面活性剂通过电解, 使置于阴极上的硝基苯还原生成 PAP。 影响因素主要有电极材料、电解液的组成、 电压和电流密度的控制等。 采用隔膜式电解槽, 通入氮气保护, 可防止 PA P 氧化和减少氧化偶氮苯的产生, 据报道 T iO2/T i 作电极效果最好。该法操作简单、 流程短、 产品纯度高、 污染小、 成本低。 目前, 国外大规模工业生产大多采用此法。 国内上海华东化工学院、 天津化工学院、 北京大学对此工艺均进行了研究。 此法对反应器的设计及工艺条件控制有较高的技术要求, 且能耗较高。

3.催化加氢还原法

该法是在合适的催化剂及酸性介质中, 将硝基苯还原生成中间产物羟基苯胺后, 再重排成 PAP。该法是国外70年代新技术。英国Harting Chemicals 公司、 美国Mallin Chrodt公司相继采用该法投产。 日本三井东压精细化学品公司、 国内北京医科大学、 天津大学、 中科院长春应化所等都进行了该工艺的研究开发, 但国内未见有成功的工业化报道。

对氨基苯酚的生产工艺大多是采用稀硫酸 (浓度为15%~40% )来保持反应的pH值, 以P t、 Pd为催化剂, 活性炭为载体, 加入适当表面活性剂, 在 70~110℃、0~1MPa下反应。 反应结束后, 未反应的硝基苯, 可使催化剂悬浮, 分出水相经处理可得到PAP。 影响该反应的主要因素是催化剂、温度、 酸溶液的组成及压力。

近年来, 国内外在催化剂选择及组成、 提高反应收率方面做了大量研究。 在催化剂组成方面, N orm an等发现 P t~Ru/C 作催化剂, 可防止硝基苯过度加氢并提高反应选择性[13]。 采用 nP t∶nPd= 20的 P t~Pd合金催化剂中, 具有高活性与选择性。当Pt~Ru/C 催化剂中P t∶R u= 5∶1时, PAP收率可达80% , 此外,还有文献报道采用 PtS/C 及MoS2/C 作催化剂。

催化剂的载体亦是影响催化剂性能的一大因素。一般选择活性炭和氧化铝, 后者有利于贵金属的回收。实验表明, 采用一定的工艺制作的高分子载体催化剂,反应 500 h不失活, 具有极强的竞争力。

Henke采用多次加入硝基苯的办法, 生成对氨基酚和苯胺的摩尔比为 3∶1。L ain tze 等人在反应体系中加入有机酸 (如甲酸), 收率和选择性均有提高。加入表面活性剂如季铵盐类有利于水相和有机相充分接触, 加快反应速度。 此外, 加入二甲亚砜、硫醚等也有抑制副产物苯胺生成的作用。总之, 硝基苯催化加氢合成 PAP, 具有污染少、能量消耗低的优点, 因此最具工业化价值。

生产应用

1.在医药工业中,PAP主要用来合成N-乙酰对氨基酚,是治疗感冒的解热镇痛剂,还可以用来合成阿的平、扑热息痛、安妥酮、维生素B、复合烟酰胺等;

2.在橡胶工业中, 可合成 40/ONA、 4020、 4030 等对苯二胺类防老剂

3.在染料工业中, 可合成发用染料4-氨基-2-硝基苯酚, 以及硫化染料、苯酸啶酚,是合成偶氮及硫化染料中间体 5-氨基水杨酸的原料;

4.PAP还可以用于生产照相显影液米土尔 (M eto l) ,也可以直接用作抗氧剂和石油制品添加剂。

参考文献

[1] 高洪, 袁华. 对氨基苯酚的合成及应用述评[J]. 化学与生物工程, 2000, 17(2):1-2.

[2] 周诗彪, 熊华高, 张维庆, etal. 对氨基苯酚合成工艺探讨[J]. 广东化工, 2009, 36(10):50-51.

分享免责申明

推荐新闻

1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐的提纯方法

2022/12/07

二乙二醇的性质及毒性

2022/12/07

辛酸铑的制备

2022/12/07

2,2,6-三甲基-4H-1,3-二英-4-酮的合成与应用转化

2022/12/07

醋酸镍的性质与应用转化

2022/12/07

六氟磷酸四乙氰铜的合成与危害

2022/12/07

4-氨基苯酚生产厂家及价格列表

4-氨基苯酚

¥询价

湖北启步新材料科技有限公司

2022/12/07

对氨基苯酚

¥询价

武汉弘德悦欣医药科技有限公司

2022/12/07

对氨基苯酚

¥100

河北克拉维尔生物科技有限公司

2022/12/07

欢迎您浏览更多关于4-氨基苯酚的相关新闻资讯信息

完美的啤酒
暴躁的玉米
2025-12-04 11:28:41
阳极反应:2H2O→O2↑+4H++4e-(1分) 阴极反应:C6H5NO2+4H++4e-→HOC6H4NH2+H2O(2分) 总反应:C6H5NO2+H2O=HOC6H4NH2+O2↑(2分)

精明的摩托
不安的帽子
2025-12-04 11:28:41
因为过氧化物分解产生的自由基,会进而夺取弹性体分子链上的氢原子,生成过氧化物分解产物,同时形成聚合物自由基,为产生聚合物交联键奠定了基础。由于过氧化物自由基会更倾向于夺取离解能较小氢原子,即相对活泼的氢原子,所以在这一阶段,最主要的副反应就是助剂对交联的干扰。作为副反应,过氧化物自由基也可以与助剂的氢原子反应,这样就消耗了过氧化物自由基,进而降低了交联效率。所以应该避免使用带有大量活泼氢原子的助剂,这些助剂会对过氧化物硫化产生明显的干扰。例如普通的芳烃油含有大量的活泼氢和不饱和键,会严重影响交联效率,甚至难以硫化,所以过氧化物配方体系中应杜绝使用芳烃油,而优先考虑使用精炼的石蜡油和酯类增塑剂等;又例如6PPD,BHT等防老剂都会明显的消耗过氧化物自由基,也应谨慎选用,相比之下,防老剂RD(或称TMQ)等由于对过氧化物交联的干扰小,就常被推荐用于过氧化物体系。同时,这也是过氧化物在不同弹性体中交联效率不同的原因之一。弹性体主链上活泼氢数量多,则交联效率高,反之则低。如在NBR,BR等主链上存在大量的双键和活性较高的烯丙基氢,较易形成聚合物自由基,通常交联效率比较高,而在如EPM等橡胶中,交联效率就要明显的降低了。另一方面,一些助剂由于具有较高的消耗自由基的能力,则可作为防焦剂使用,消耗自由基的同时延迟了焦烧时间,提高胶料的加工安全性。